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Abstract—Automated program repair holds the potential to significantly reduce software maintenance effort and cost. However, recent
studies have shown that it often produces low-quality patches that repair some but break other functionality. We hypothesize that
producing patches by replacing likely faulty regions of code with semantically-similar code fragments, and doing so at a higher level of
granularity than prior approaches can better capture abstraction and the intended specification, and can improve repair quality. We
create SOSRepair, an automated program repair technique that uses semantic code search to replace candidate buggy code regions
with behaviorally-similar (but not identical) code written by humans. SOSRepair is the first such technique to scale to real-world defects
in real-world systems. On a subset of the ManyBugs benchmark of such defects, SOSRepair produces patches for 22 (34%) of the 65
defects, including 3, 5, and 6 defects for which previous state-of-the-art techniques Angelix, Prophet, and GenProg do not, respectively.
On these 22 defects, SOSRepair produces more patches (9, 41%) that pass all independent tests than the prior techniques. We
demonstrate a relationship between patch granularity and the ability to produce patches that pass all independent tests. We then show
that fault localization precision is a key factor in SOSRepair’s success. Manually improving fault localization allows SOSRepair to patch
23 (35%) defects, of which 16 (70%) pass all independent tests. We conclude that (1) higher-granularity, semantic-based patches
can improve patch quality, (2) semantic search is promising for producing high-quality real-world defect repairs, (3) research in fault
localization can significantly improve the quality of program repair techniques, and (4) semi-automated approaches in which developers
suggest fix locations may produce high-quality patches.
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1 INTRODUCTION

AUTOMATED program repair techniques (e.g., [8], [15],
[16], [19], [20], [39], [44], [45], [46], [49], [55], [58], [59],

[64], [79], [91], [94], [97], [110], [112]) aim to automatically
produce software patches that fix defects. For example,
Facebook uses two automated program repair tools, Sap-
Fix and Getafix, in their production pipeline to suggest
bug fixes [60], [83]. The goal of automated program repair
techniques is to take a program and a suite of tests, some
of which that program passes and some of which it fails,
and to produce a patch that makes the program pass all the
tests in that suite. Unfortunately, these patches can repair
some functionality encoded by the tests, while simultane-
ously breaking other, undertested functionality [85]. Thus,
quality of the resulting patches is a critical concern. Recent
results suggest that patch overfitting — patches that pass a
particular set of test cases supplied to the program repair
tool but fail to generalize to the desired specification — is
common [85], [47], [57], [76]. The central goal of this work
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is to improve the ability of automated program repair to
produce high-quality patches on real-world defects.

We hypothesize that producing patches by (1) replac-
ing likely faulty regions of code with semantically-similar
code fragments, and (2) doing so at a higher level of gran-
ularity than prior approaches can improve repair quality.
There are two underlying reasons for this hypothesis:

1) The observation that human-written code is highly
redundant [4], [13], [14], [25], [61], suggesting that,
for many buggy code regions intended to implement
some functionality, there exist other code fragments
that seek to implement the same functionality, and at
least one does so correctly.

2) Replacing code at a high level of granularity (e.g.,
blocks of 3–7 consecutive lines of code) corresponds
to changes at a higher level of abstraction, and is thus
more likely to produce patches that correctly capture
the implied, unwritten specifications underlying de-
sired behavior than low-level changes to tokens or
individual lines of code.

For example, suppose a program has a bug in a loop that
is intended to sort an array. First, consider another, seman-
tically similar loop, from either the same project, or some
other software project. The second loop is semantically
similar to the buggy loop because, like the buggy loop,
it sorts some arrays correctly. At the same time, the sec-
ond loop may not be semantically identical to the buggy
loop, especially on the inputs that the buggy loop mis-
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handles. We may not know a priori if the second, similar
loop is correct. However, sorting is a commonly imple-
mented subroutine. If we try to replace the buggy code
with several such similar loops, at least one is likely to
correctly sort arrays, allowing the program to pass the test
cases it previously failed. In fact, the high redundancy
present in software source code suggests such commonly
implemented subroutines are frequent [4], [13], [14], [25].
Second, we posit that replacing the entire loop with a simi-
lar one is more likely to correctly encode sorting than what
could be achieved by replacing a + with a -, or inserting a
single line of code in the middle of a loop.

Our earlier work on semantic-search-based repair [38]
presented one instance that demonstrated that higher-
granularity, semantic-based changes can, in fact, improve
quality. On short, student-written programs, on aver-
age, SearchRepair patches passed 97.3% of independent
tests not used during patch construction. Meanwhile, the
relatively lower-granularity patches produced by Gen-
Prog [49], TrpAutoRepair [75], and AE [107] passed 68.7%,
72.1%, and 64.2%, respectively [38]. Unfortunately, as we
describe next, SearchRepair cannot apply to large, real-
world programs.

This paper presents SOSRepair, a novel technique that
uses input-output-based semantic code search to automat-
ically find and contextualize patches to fix real-world de-
fects. SOSRepair locates likely buggy code regions, identi-
fies similarly-behaving fragments of human-written code,
and then changes the context of those fragments to fit the
buggy context and replace the buggy code. Semantic code
search techniques [77], [88], [89], [90] find code based on
a specification of desired behavior. For example, given
a set of input-output pairs, semantic code search looks
for code fragments that produce those outputs on those
inputs. Constraint-based semantic search [88], [89], [90]
can search for partial, non-executable code snippets. It is a
good fit for automated program repair because it supports
searching for code fragments that show the same behavior
as a buggy region on initially passing tests, while looking
for one that passes previously-failing tests as well.

While SOSRepair builds on the ideas from SearchRe-
pair [38], to make SOSRepair apply, at scale, to real-world
defects, we redesigned the entire approach and developed
a conceptually novel method for performing semantic
code search. The largest program SearchRepair has re-
paired is a 24-line C program written by a beginner pro-
grammer to find the median of three integers [38]. By
contrast, SOSRepair patches defects made by professional
developers in real-world, multi-million-line C projects.
Since SearchRepair cannot run on these real-world defects,
we show that SOSRepair outperforms SearchRepair on the
IntroClass benchmark of small programs.

We evaluate SOSRepair on 65 real-world defects of 7
large open-source C projects from the ManyBugs bench-
mark [48]. SOSRepair produces patches for 22 defects,
including 1 that has not been patched by prior tech-
niques (Angelix [64], Prophet [58], and GenProg [49]). We
evaluate patch quality using held-out independent test

suites [85]. Of the 22 defects for which SOSRepair pro-
duces patches, 9 (41%) pass all the held-out tests, which is
more than the prior techniques produce for these defects.
On small C programs in the IntroClass benchmark [48],
SOSRepair generates 346 patches, more than SearchRe-
pair [38], GenProg [49], AE [108], and TrpAutoRepair [75].
Of those patches, 239 pass all held-out tests, again, more
than the prior techniques.

To make SOSRepair possible, we make five major contri-
butions to both semantic code search and program repair:

1) A more-scalable semantic search query encoding.
We develop a novel, efficient, general mechanism for
encoding semantic search queries for program repair,
inspired by input-output component-based program
synthesis [35]. This encoding efficiently maps the
candidate fix code to the buggy context using a sin-
gle query over an arbitrary number of tests. By con-
trast, SearchRepair [38] required multiple queries to
cover all test profiles and failed to scale to large code
databases or queries covering many possible permu-
tations of variable mappings. Our new encoding ap-
proach provides a significant speedup over the prior
approach, and we show that the speedup grows with
query complexity.

2) Expressive encoding capturing real-world program
behavior. To apply semantic search to real-world
programs, we extend the state-of-the-art constraint
encoding mechanism to handle real-world C language
constructs and behavior, including structs, pointers,
multiple output variable assignments, console output,
loops, and library calls.

3) Search for patches that insert and delete code. Prior
semantic-search-based repair could only replace buggy
code with candidate fix code to affect repairs [38]. We
extend the search technique to encode deletion and
insertion.

4) Automated, iterative search query refinement en-
coding negative behavior. We extend the semantic
search approach to include negative behavioral ex-
amples, making use of that additional information
to refine queries. We also propose a novel, iterative,
counter-example-guided search-query refinement ap-
proach to repair buggy regions that are not covered
by the passing test cases. When our approach en-
counters candidate fix code that fails to repair the
program, it generates new undesired behavior con-
straints from the new failing executions and refines
the search query, reducing the search space. This im-
proves on prior work, which could not repair buggy
regions that no passing test cases execute [38].

5) Evaluation and open-source implementation.
We implement and release SOSRepair (https:
//github.com/squaresLab/SOSRepair), which
reifies the above mechanisms. We evaluate SOSRe-
pair on the ManyBugs benchmark [48] commonly
used in the assessment of automatic patch gen-
eration tools (e.g., [58], [64], [75], [107]). These
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Fig. 1: Overview of the SOSRepair approach.

programs are four orders of magnitude larger
than the benchmarks previously used to evaluate
semantic-search-based repair [38]. We show that,
as compared to previous techniques applied to
these benchmarks (Angelix [64], Prophet [58], and
GenProg [49]), SOSRepair patches one defect none
of those techniques patch, and produces patches of
comparable quality to those techniques. We measure
quality objectively, using independent test suites
held out from patch generation [85]. We therefore
also release independently-generated held-out
test suites (https://github.com/squaresLab/
SOSRepair-Replication-Package) for the
defects we use to evaluate SOSRepair.

Based on our experiments, we hypothesize that fault
localization’s imprecision on real-world defects hampers
SOSRepair. We create SOSRepair⊕, a semi-automated ver-
sion of SOSRepair that is manually given the code location
in which a human would repair the defect. SOSRepair⊕

produces patches for 23 defects. For 16 (70%) of the defects,
the produced patches pass all independent tests. Thus,
SOSRepair⊕ is able to produce high-quality patches for
twice the number of defects than SOSRepair produces (16
versus 9). This suggests that semantic code search holds
promise for producing high-quality repairs for real-world
defects, perhaps in a semi-automated setting in which
developers suggest code locations to attempt fixing. More-
over, advances in automated fault localization can directly
improve automated repair quality.

To directly test the hypothesis that patch granularity
affects the ability to produce high-quality patches, we alter
the granularity of code SOSRepair can replace when pro-
ducing patches, allowing for replacements of 1 to 3 lines, 3
to 7 lines, or 6 to 9 lines of code. On the IntroClass bench-
mark, using the 3–7-line granularity results in statistically
significantly more patches (346 for 3–7-, 188 for 1–3-, and
211 for 6–9-line granularities) and statistically significantly
more patches that pass all the held-out tests (239 for 3–7-,
120 for 1–3-, and 125 for 6–9-line granularities).

The rest of this paper is organized as follows. Section 2
describes the SOSRepair approach and Section 3 our imple-
mentation of that approach. Section 4 evaluates SOSRepair.
Section 5 places our work in the context of related research,
and Section 6 summarizes our contributions.

2 THE SOSREPAIR APPROACH

Figure 1 overviews the SOSRepair approach. Given a pro-
gram and a set of test cases capturing correct and buggy
behavior, SOSRepair generates patches by searching over
a database of snippets of human-written code. Unlike
keyword or syntactic search (familiar to users of standard
search engines), semantic search looks for code based on a
specification of desired and undesired behavior. SOSRe-
pair uses test cases to construct a behavioral profile of a
potentially buggy code region. SOSRepair then searches
over a database of snippets for one that implements the
inferred desired behavior, adapts a matching snippet to
the buggy code’s context, and patches the program by re-
placing the buggy region with patch code, inserting patch
code, or deleting the buggy region. Finally, SOSRepair
validates the patched program by executing its test cases.

We first describe an illustrative example and define key
concepts (Section 2.1). We then detail SOSRepair’s ap-
proach that (1) uses symbolic execution to produce static
behavioral approximations of a set of candidate bug re-
pair snippets (Section 2.2), (2) constructs a dynamic pro-
file of potentially-buggy code regions, which serve as in-
ferred input-output specifications of desired behavior (Sec-
tion 2.3), (3) constructs an SMT query to identify candidate
semantic repairs to be transformed into patches and vali-
dated (Section 2.4), and (4) iteratively attempts to produce
a patch until timeout occurs (Section 2.5). This section fo-
cuses on the conceptual approach; Section 3 will describe
implementation details.

2.1 Illustrative example and definitions
Consider the example patched code in Figure 2 (top),
which we adapt (with minor edits for clarity and expo-
sition) from php interpreter bug issue #60455, concern-
ing a bug in the streams API.1 Bug #60455 reports that
streams mishandles files when the EOF character is on
its own line. The fixing commit message elaborates:
“stream get line misbehaves if EOF is not detected to-
gether with the last read.” The change forces the loop
to continue such that the last EOF character is consumed.
The logic that the developer used to fix this bug is not
unique to the stream_get_record function; indeed, very

1. https://bugs.php.net/bug.php?id=60455
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1 // len holds current position in stream
2 while (len < maxlen) {
3 php_stream_fill_read_buffer(stream,
4 len + MIN(maxlen- len chunk_size));
5 just_read =
6 (stream->writepos - stream->readpos)-len;
7 - if (just_read < toread) {
8 + if (just_read == 0) {
9 break;
10 } else {
11 len = len + just_read;
12 }
13 }

1 if (bufflen > 0)
2 mylen += bufflen;
3 else break;

Fig. 2: Top: Example code, based on php bug # 60455, in
function stream_get_record. The developer patch modi-
fies the condition on line 7, shown on line 8. Bottom: A
snippet appearing in the php date module, implementing
the same functionality as the developer patch (note that
just_read is never negative in this code), with different
variable names.

similar code appears in the php date module (bottom of
Figure 2). This is not unusual: there exists considerable re-
dundancy within and across open-source repositories [4],
[25], [33], [96].

Let F refer to a code snippet of 3–7 lines of C code. F
can correspond to either the buggy region to be replaced
or a snippet to be inserted as a repair. In our example bug,
a candidate buggy to-be-replaced region is lines 7–11 in
top of Figure 2; the snippet in the bottom of Figure 2 could
serve as a repair snippet. We focus on snippets of size
3–7 lines of code because patches at a granularity level
greater than single-expression, -statement, or -line may
be more likely to capture developer intuition, producing
more-correct patches [38], but code redundancy drops off
sharply beyond seven lines [25], [33]. We also verify these
findings by conducting experiments that use code snippets
of varying sizes (Section 4.3).
F ’s input variables ~Xf are those whose values can ever

be used (in the classic dataflow sense, either in a compu-
tation, assignment, or predicate, or as an argument to a
function call); F ’s output variables ~Rf are those whose
value may be defined with a definition that is not killed by
the end of the snippet. In the buggy region of Figure 2, ~Xf

is {just read, toread, len}; ~Rf is {len}. ~Rf may be of
arbitrary size, and ~Xf and ~Rf are not necessarily disjoint,
as in our example. ~Vf is the set of all variables of interest
in F : ~Vf = ~Xf ∪ ~Rf .

To motivate a precise delineation between variable uses
and definitions, consider a concrete example that demon-
strates correct behavior for the buggy code in Figure 2:
if just_read = 5 and len = 10 after line 6, at line 12, it
should be the case that just_read = 5 and len = 15. A
naive, constraint-based expression of this desired behav-
ior, e.g., (just read = 5) ∧ (len = 10) ∧ (just read =

5) ∧ (len = 15) is unsatisfiable, because of the conflicting
constraints on len.

For the purposes of this explanation, we first address the
issue by defining a static variable renaming transformation
over snippets. Let Uf (x) return all uses of a variable x in
F and Df (x) return all definitions of x in F that are not
killed. We transform arbitrary F to enforce separation
between inputs and outputs as follows:

F ′= F [Uf (x)/xi] s.t.x ∈ Vf , xi∈Xin, xi fresh
Ft=F

′[Df (x)/xi] s.t.x ∈ Rf , xi∈Xout, xi fresh

All output variables are, by definition, treated also as
inputs, and we choose fresh names as necessary. Xin and
Xout refer to the sets of newly-introduced variables.

2.2 Candidate snippet encoding

In an offline pre-processing step, we prepare a database
of candidate repair snippets of 3–7 lines of C code. This
code can be from any source, including the same project,
its previous versions, or open-source repositories. A naive
lexical approach to dividing code into line-based snippets
generates many implausible and syntactically invalid snip-
pets, such as by crossing block boundaries (e.g., lines 10–12
in the top of Figure 2). Instead, we identify candidate re-
pair snippets from C blocks taken from the code’s abstract
syntax tree (AST). Blocks of length 3–7 lines are treated
as a single snippet. Blocks of length less than 3 lines are
grouped with adjacent blocks. We transform all snippets
F into Ft (Section 2.1). In addition to the code itself (pre-
and post- transformation) and the file in which it appears,
the database stores two types of information per snippet:

1) Variable names and types. Patches are constructed at
the AST level, and are thus always syntactically valid.
However, they can still lead to compilation errors
if they reference out-of-scope variable names, user-
defined types, or called functions. We thus identify
and store names of user-defined structs and called
functions (including the file in which they are de-
fined). We additionally store all variable names from
the original snippetF ( ~Vf , ~Xf , ~Rf ), as well as their cor-
responding renamed versions in Ft (Xin and Xout ).

2) Static path constraints. We symbolically execute [12],
[40] Ft to produce a symbolic formula that stati-
cally overapproximates its behavior, described as con-
straints over snippet input and outputs. For example,
the fix snippet in Figure 2 can be described as:

((bufflenin > 0) ∧ (mylenout = mylenin + bufflenin))
∨(¬(bufflenin > 0) ∧ (mylenout = mylenin))

We query an SMT solver to determine whether such
constraints match desired inputs and outputs.

The one-time cost of database construction is amortized
across many repair efforts.
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2.3 Profile construction

SOSRepair uses spectrum-based fault localization
(SBFL) [37] to identify candidate buggy code regions.
SBFL uses test cases to rank program entities (e.g., lines)
by suspiciousness. We expand single lines identified
by SBFL to the enclosing AST block. Candidate buggy
regions may be smaller than 3 lines if no region of fewer
than 7 lines can be created by combining adjacent blocks.

Given a candidate buggy region F , SOSRepair con-
structs a dynamic profile of its behavior on passing and
failing tests. Note that the profile varies by the type of
repair, and that SOSRepair can either delete the buggy
region; replace it with a candidate repair snippet; or
insert a piece of code immediately before it. We discuss
how SOSRepair iterates over and chooses between
repair strategies in Section 2.5. Here, we describe profile
generation for replacement and insertion (the profile is
not necessary for deletion).

SOSRepair first statically substitutes Ft for F in the
buggy program, declaring fresh variables Xin and Xout.
SOSRepair then executes the program on the tests,
capturing the values of all local variables before and after
the region on all covering test cases. (For simplicity and
without loss of generality, this explanation assumes that
all test executions cover all input and output variables.)
Let Tp be the set of all initially passing tests that cover Ft

and Tn the set of all initially failing tests that do so. If t
is a test case covering Ft, let valIn(t, x) be the observed
dynamic value of x on test case t before Ft is executed
and valOut(t, x) its dynamic value afterwards. We index
each observed value of each variable of interest x by the
test execution on which the value is observed, denoted
xt. This allows us to specify desired behavior based on
multiple test executions or behavioral examples at once.
To illustrate, assume a second passing execution of the
buggy region in Figure 2 on which len is 15 on line 6 and
25 on line 12 (ignoring just_read for brevity).

(
(lenin =

10) ∧ (lenout = 15)
)
∧
(
(lenin = 15) ∧ (lenout = 25)

))
is trivially unsatisfiable;

(
(lenin

1 = 10) ∧ (lenout
1 =

15)
)
∧
(
(lenin

2 = 15) ∧ (lenout
2 = 25)

))
, which indexes

the values by the tests on which they were observed, is
not. The dynamic profile is then defined as follows:

P := Pin ∧ P p
out ∧ Pn

out

Pin encodes bindings of variables to values on entry to
the candidate buggy region on all test cases; P p

out enforces
the desired behavior of output variables to match that
observed on initially passing test cases; Pn

out enforces that
the output variables should not match to those observed
on initially failing test cases. Pin is the same for both
replacement and insertion profiles:

Pin :=
∧

t∈Tp∪Tn

∧
xi∈Xin

xti = valIn(t, xi)

Pout combines constraints derived from both passing
and failing executions, or P p

out ∧ Pn
out . For replacement

queries:

P p
out :=

∧
t∈Tp

∧
xi∈Xout

xti = valOut(t, xi)

Pn
out :=

∧
t∈Tn

¬(
∧

xi∈Xout

xti = valOut(t, xi))

For insertion queries, the output profile specifies that
the correct code should simply preserve observed passing
behavior while making some observable change to initially
failing behavior:

P p
out :=

∧
t∈Tp

∧
xi∈Xout

xti = valIn(t, xi)

Pn
out :=

∧
t∈Tn

¬(
∧

xi∈Xout

xti = valIn(t, xi))

Note that we neither know, nor specify, the correct value
for these variables on such failing tests, and do not require
annotations or developer interaction to provide them such
that they may be inferred.

2.4 Query construction

Assume candidate buggy region C (a context snippet), can-
didate repair snippet S, and corresponding input vari-
ables, output variables, etc. (as described in Section 2.1).
Our goal is to determine whether the repair code S can
be used to edit the buggy code, such that doing so will
possibly address the buggy behavior without breaking
previously-correct behavior. This task is complicated by
the fact that candidate repair snippets may implement the
desired behavior, but use the wrong variable names for
the buggy context (such as in our example in Figure 2). We
solve this problem by constructing a single SMT query for
each pair of C, S , that identifies whether a mapping exists
between their variables ( ~Vc and ~Vs) such that the resulting
patched code (S either substituted for or inserted before C)
satisfies all the profile constraints P . An important prop-
erty of this query is that, if satisfiable, the satisfying model
provides a variable mapping that can be used to rename S
to fit the buggy context.

The repair search query is thus comprised of three con-
straint sets: (1) mapping components ψmap and ψconn ,
which enforce a valid and meaningful mapping between
variables in the candidate repair snippet and those in the
buggy context, (2) functionality component φfunc , which
statically captures the behavior of the candidate repair
snippet, and (3) the specification of desired behavior, cap-
tured in a dynamic profile P (Section 2.3). We now detail
the mapping and functionality components, as well as how
patches are constructed and validated based on satisfiable
semantic search SMT queries.

2.4.1 Mapping component

Our approach to encoding semantic search queries for
program repair takes inspiration from SMT-based input-
output-guided component-based program synthesis [35].
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The original synthesis goal is to connect a set of compo-
nents to construct a function f that satisfies a set of input-
output pairs 〈αi, βi〉 (such that ∀i, f(αi) = βi). This is ac-
complished by introducing a set of location variables, one for
each possible component and function input and output
variable, that define the order of and connection between
components. Programs are synthesized by constructing an
SMT query that constrains location variables so that they
describe a well-formed program with the desired behavior
on the given inputs/outputs. If the query is satisfiable, the
satisfying model assigns integers to locations and can be
used to construct the desired function. See the prior work
by Jha et al. for full details [35].

Mapping queries for replacement. We extend the loca-
tion mechanism to map between the variables used in a
candidate repair snippet and those available in the buggy
context. We first describe how mapping works for re-
placement queries, and then the differences required for
insertion. We define a set of locations as:

L = {lx|x ∈ ~Vc ∪ ~Vs}

The query must constrain locations so that a satisfying
assignment tells SOSRepair how to suitably rename vari-
ables in S such that a patch compiles and enforces desired
behavior. The variable mapping must be valid: Each vari-
able in S must uniquely map to some variable in C (but not
vice versa; not all context snippet variables need map to
a repair snippet variable). The ψmap constraints therefore
define an injective mapping from ~Vs to ~Vc:

ψmap :=
( ∧
x∈ ~Vc∪ ~Vs

1 ≤ lx ≤ | ~Vc|
)

∧ distinct(L, ~Vc) ∧ distinct(L, ~Vs)
distinct(L, ~V ) :=

∧
x,y∈~V ,x 6≡y

lx 6= ly

This exposition ignores variable types for simplicity;
in practice, we encode them such that matched variables
have the same types via constraints on valid locations.

Next, ψconn establishes the connection between loca-
tion values and variable values as well as between input
and output variables ~Xs, ~Rs and their freshly-renamed
versions in Xin and Xout across all covering test execu-
tions t ∈ Tp ∪ Tn. This is important because although the
introduced variables eliminate the problem of trivially un-
satisfiable constraints over variables used as both inputs
and outputs, naive constraints over the fresh variables —
e.g., (lenin1 = 10)∧ (lenout1 = 15)— are instead trivially
satisfiable. Thus:
ψconn := ψout ∧ ψin

ψout :=
∧

x∈XC
out ,y∈XS

out

lx = ly =⇒

( |Tp∪Tn|∧
t=1

xtin = ytin ∧ xtout = ytout
)

ψin :=
∧

x∈XC
in ,y∈XS

in

lx = ly =⇒
( |Tp∪Tn|∧

t=1

xtin = ytin
)

Where XC
in and XS

in refer to the variables in the context
and repair snippet respectively and xin refers to the fresh
renamed version of variable x, stored inXin (and similarly
for output variables).

Insertion. Instead of drawing ~Vc from the replacement
region (a heuristic design choice to enable scalability), in-
sertion queries define ~Vc as the set of local variables live
after the candidate insertion point. They otherwise are
encoded as above.

2.4.2 Functionality component
φfunc uses the path constraints describing the candidate
repair snippet S such that the query tests whether S satis-
fies the constraints on the desired behavior described by
the profile constraints P . The only complexity is that we
must copy the symbolic formula to query over multiple si-
multaneous test executions. Let ϕc be the path constraints
from symbolic execution. ϕc(i) is a copy of ϕc where all
variables xin ∈ XS

in and xout ∈ XS
out are syntactically re-

placed with indexed versions of themselves (e.g., xiin for
xin ). Then:

φfunc :=

|Tp∪Tn|∧
i=1

ϕc(i)

φfunc is the same for replacement and insertion queries.

2.4.3 Patch construction and validation
The repair query conjoins the above-described constraints:

ψmap ∧ ψconn ∧ φfunc ∧ P

Given S and C for which a satisfiable repair query has
been constructed, the satisfying model assigns values to
locations in L and defines a valid mapping between vari-
ables in the original snippets S and C (rather than their
transformed versions). This mapping is used to rename
variables in S and integrate it into the buggy context. For
replacement edits, the renamed snippet replaces the buggy
region wholesale; for insertions, the renamed snippet is in-
serted immediately before the buggy region. It is possible
for the semantic search to return satisfying snippets that
do not repair the bug when executed, if either the snippet
fails to address the bug correctly, or if the symbolic execu-
tion is too imprecise in its description of snippet behavior.
Thus, SOSRepair validates patches by running the patched
program on the provided test cases, reporting the patch as
a fix if all test cases pass.

2.5 Patch iteration
Traversal. SOSRepair iterates over candidate buggy re-
gions and candidate repair strategies, dynamically testing
all snippets whose repair query is satisfiable. SOSRepair
is parameterized by a fault localization strategy, which
returns a weighted list of candidate buggy lines. Such
strategies can be imprecise, especially in the absence of
high-coverage test suites [87]. To avoid getting stuck
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1: procedure REFINEPROFILE(program, Tests,Xout)
2: constraints← ∅
3: for all t ∈ Tests do . all tests t ∈ Tests failed
4: c← ¬(

∧
x∈Xout

xt = valOut(t, x, program))

5: constraints← constraints ∪ c
6: end for
7: return constraints
8: end procedure

Fig. 3: Incremental, counter-example profile refinement.
REFINEPROFILE receives a program with the candidate
snippet incorporated, a set of Tests that fail on program,
and the set of output variables Xout. It computes new
constraints to refine the profile by excluding the observed
behavior. valOut(t, xi, program) returns the output value
of variable xi when test t is executed on program.

trying many patches in the wrong location, SOSRepair tra-
verses candidate buggy regions using breadth-first search.
First, it tries deletion at every region. Deletion is necessary
to repair certain defects [115], though it can also lead to
low-quality patches [76]. However, simply disallowing
deletion does not solve the quality problem: even repair
techniques that do not formally support deletion can do
so by synthesizing tautological if conditions [56], [64].
Similarly, SOSRepair can replace a buggy region with a
snippet with no effect. Because patches that effectively
delete are likely less maintainable and straightforward
than those that simply delete, if a patch deletes function-
ality, it is better to do so explicitly. Thus, SOSRepair tries
deleting the candidate buggy region first by replacing it
with an empty candidate snippet whose only constraint
is TRUE. We envision future improvements to SOSRepair
that can create and compare multiple patches per region,
preferring those that maintain the most functionality. Next,
SOSRepair attempts to replace regions with identified fix
code, in order of ranked suspiciousness; finally, SOSRepair
tries to repair regions by inserting code immediately
before them. We favor replacement over insertion because
the queries are more constrained. SOSRepair can be
configured with various database traversal strategies,
such as trying snippets from the same file as the buggy
region first, as well as trying up to N returned matching
snippets per edit type per region. SOSRepair then cycles
through buggy regions and matched snippets N-wise,
before moving to the next edit type.

Profile refinement. Initially-passing test cases partially
specify the expected behavior of a buggy code region,
thus constraining which candidate snippets quality to be
returned by the search. Initially-failing test cases only
specify what the behavior should not be (e.g., “given input
2, the output should not be 4”). This is significantly less
useful in distinguishing between candidate snippets. Pre-
vious work in semantic search-based repair disregarded
the negative example behavior in generating dynamic pro-
files [38]. Such an approach might be suitable for small
programs with high-coverage test suites. Unfortunately, in

real-world programs, buggy regions may only be executed
by failing test cases [87]. We observed this behavior in our
evaluation on real-world defects.

To address this problem, other tools, such as An-
gelix [64], require manual specification of the correct val-
ues of variables for negative test cases. By contrast, we
address this problem in SOSRepair via a novel incremental,
counter-example-guided profile refinement for candidate re-
gions that do not have passing executions. Given an initial
profile derived from failing test cases (e.g., “given input
2, the output should not be 4”), SOSRepair tries a single
candidate replacement snippet S. If unsuccessful, SOS-
Repair adds the newly discovered unacceptable behavior
to the profile (e.g., “given input 2, the output should not
be 6”). Figure 3 details the algorithm for this refinement
process. Whenever SOSRepair tries a snippet and observes
that all tests fail, it adds one new negative-behavior con-
straint to the constraint profile for each failing test. Each
constraint is the negation of the observed behavior. For ex-
ample, if SOSRepair observes that test t fails, it computes
its output variable values (e.g., x1 = 3, x2 = 4) and adds
the constraint ¬ ((xt1 = 3) ∧ (xt2 = 4)) to the profile, which
specifies that the incorrect observed behavior should not
take place. Thus, SOSRepair gradually builds a profile
based on negative tests without requiring manual effort.
SOSRepair continues on trying replacement snippets with
queries that are iteratively improved throughout the repair
process. Although this is slower than starting with passing
test cases, it allows SOSRepair to patch more defects.

3 THE SOSREPAIR IMPLEMENTATION

We implement SOSRepair using KLEE [12], Z3 [21], and
the clang [17] infrastructure; the latter provides parsing,
name and type resolution, and rewriting facilities, among
others. Section 3.1 describes the details of our implemen-
tation. Section 3.2 summarizes the steps we took to release
our implementation and data, and to make our experi-
ments reproducible.

3.1 SOSRepair implementation design choices

In implementing SOSRepair, we made a series of design
decisions, which we now describe.

Snippet database. SOSRepair uses the symbolic execution
engine in KLEE [12] to statically encode snippets. SOS-
Repair uses KLEE’s built-in support for loops, using a
two-second timeout; KLEE iterates over the loop as many
times as possible in the allocated time. We encode user-
defined struct types by treating them as arrays of bytes
(as KLEE does). SOSRepair further inherits KLEE’s built-
in mechanisms for handling internal (GNU C) function
calls. As KLEE does not symbolically execute external
(non GNU C) function calls, SOSRepair makes no assump-
tions about such functions’ side-effects. SOSRepair instead
makes a new symbolic variable for each of the arguments
and output, which frees these variables from previously
generated constraints. These features substantially expand
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the expressive power of the considered repair code over
previous semantic search-based repair. We do sacrifice
soundness in the interest of expressiveness by casting float-
ing point variables to integers (this is acceptable because
unsoundness can be caught in testing). This still precludes
the encoding of snippets that include floating point con-
stants, but future SOSRepair versions can take advantage
of KLEE’s recently added floating point support.

Overall, we encode snippets by embedding them in a
small function, called from main, and defining their input
variables as symbolic (using klee_make_symbolic). We use
KLEE off-the-shelf to generate constraints for the snippet-
wrapping function, using KLEE’s renaming facilities to
transform F into Ft for snippet encoding. KLEE generates
constraints for nearly all compilable snippets. Exceptions
are very rare, e.g., KLEE will not generate constraints for
code containing function pointers. However, KLEE will
sometimes conservatively summarize snippets with single
TRUE constraints in cases where it can technically reason
about code but is still insufficiently expressive to fully
capture its semantics.

Console output. Real-world programs often print mean-
ingful output. Thus, modeling console output in semantic
search increases SOSRepair applicability. We thus define
a symbolic character array to represent console output in
candidate repair snippets. Because symbolic arrays must
be of known size, we only model the first 20 characters of
output. We transform calls to printf and fprintf to call
sprintf with the same arguments. KLEE handles these
standard functions natively. We track console output in
the profile by logging the start and end of the buggy can-
didate region, considering anything printed between the
log statements as meaningful.

Profile construction. For consistency with prior work [38],
we use Tarantula [37] to rank suspicious source lines. We
leave the exploration of other fault localization mecha-
nisms to future work. To focus our study on SOSRepair
efficacy (rather than efficiency, an orthogonal concern), we
assume the provision of one buggy method to consider for
repair, and then apply SBFL to rank lines in the method.
Given such a ranked list, SOSRepair expands the identified
lines to surrounding regions of 3–7 lines of code, as in the
snippet encoding step. The size of the region is selected
by conducting an initial experiment on small programs
presented in Section 4.3. SOSRepair attempts to repair
each corresponding buggy region in rank order, skipping
lines that have been subsumed into previously-identified
and attempted buggy regions.

Queries and iteration. Z3 [21] can natively handle inte-
gers, booleans, reals, bit vectors, and several other com-
mon data types, such as arrays and pairs. To determine
whether a candidate struct type is in scope, we match
struct names syntactically. For our experiments, we con-
struct snippet databases from the rest of the program un-
der repair, pre-fix, which supports struct matching. Addi-
tionally, programs are locally redundant [96], and devel-

opers are more often right than not [22], and thus we hy-
pothesize that a defect may be fixable via code elsewhere
in the same program. However, this may be unnecessarily
restrictive for more broadly-constructed databases. We
leave a more flexible matching of struct types to future
work. SOSRepair is configured by default to try repair
snippets from the same file as a buggy region first, for all
candidate considered regions; then the same module; then
the same project.

3.2 Open-source release and reproducibility

To support the reproduction of our results and help re-
searchers build on our work, we publicly release our im-
plementation: https://github.com/squaresLab/
SOSRepair. We also release a replication package
that includes all patches our techniques found on
the ManyBugs benchmark and the necessary scripts
to rerun the experiment discussed in Section 4.4,
and all independently generated tests discussed in
Section 4.1.2: https://github.com/squaresLab/
SOSRepair-Replication-Package.

Our implementation includes Docker containers and
scripts for reproducing the evaluation results described
in Section 4. The containers and scripts use BugZoo [95],
a decentralized platform for reproducing and interacting
with software bugs. These scripts both generate snippet
databases (which our release excludes due to size) and
execute SOSRepair.

SOSRepair uses randomness to make two choices dur-
ing its execution: the order in which to consider equally
suspicious regions returned by SOSRepair’s fault localiza-
tion, and the order in which to consider potential snippets
returned by the SMT solver that satisfy all the query con-
straints. SOSRepair’s configuration includes a random
seed that controls this randomness, making executions
deterministic. However, there remain two sources of non-
determinism that SOSRepair cannot control. First, SOSRe-
pair sets a time limit on KLEE’s execution on each code
snippet (recall Section 3.1). Due to CPU load and other fac-
tors, in each invocation, KLEE may be able to execute the
code a different number of times in the time limit, and thus
generate different constraints. Second, if a code snippet
contains uninitialized variables, those variables’ values
depend on the memory state. Because memory state may
differ between executions, SOSRepair may generate dif-
ferent profiles on different executions. As a result of these
two sources of nondeterminism, SOSRepair’s results may
vary between executions. However, in our experiments,
we did not observe this nondeterminism affect SOSRe-
pair’s ability to find a patch, only its search space and
execution time.

4 EVALUATION

This section evaluates SOSRepair, answering several re-
search questions. The nature of each research question
informs the appropriate dataset used in its answering, as

https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package
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we describe in the context of our experimental method-
ology (Section 4.1). We begin by using IntroClass [48], a
large dataset of small, well-tested programs, to conduct
controlled evaluations of:
• Comparison to prior work: How does SOSRepair

perform as compared to SearchRepair [38], the prior
semantic-based repair approach (Section 4.2)?

• Tuning: What granularity level is best for the pur-
poses of finding high-quality repairs (Section 4.3)?

Next, in Section 4.4, we address our central experimental
concern by evaluating SOSRepair on real-world defects
taken from the ManyBugs benchmark [48], addressing:
• Expressiveness: How expressive and applicable is

SOSRepair in terms of the number and uniqueness of
defects it can repair?

• Quality: What is the quality and effectiveness of
patches produced by SOSRepair?

• The role of fault localization: What are the limitations
and bottlenecks of SOSRepair’s performance?

Section 4.5 discusses informative real-world example
patches produced by SOSRepair.

Finally, we isolate and evaluate two key SOSRepair fea-
tures:
• Performance improvements: How much performance

improvements does SOSRepair’s novel query encod-
ing approach afford (Section 4.6)?

• Profile refinement: How much is the search space
reduced by the negative profile refinement approach
(Section 4.7)?

Finally, we discuss threats to the validity of our experi-
ments and SOSRepair’s limitations in Section 4.8.

4.1 Methodology
We use two datasets to answer the research questions out-
lined above. SOSRepair aims to scale semantic search
repair to defects in large, real-world programs. However,
such programs are not suitable for most controlled large-
scaled evaluations, necessary for, e.g., feature tuning. Ad-
ditionally, real-world programs preclude a comparison to
previous work that does not scale to handle them. For such
questions, we consider the IntroClass benchmark [48] (Sec-
tion 4.1.1). However, where possible, and particularly in
our core experiments, we evaluate SOSRepair on defects
from large, real-world programs taken from the Many-
Bugs [48] benchmark (Section 4.1.2).

We run all experiments on a server running Ubuntu
16.04 LTS, consisting of 16 Intel(R) Xeon(R) 2.30 GHz CPU
E5-2699 v3s processors and 64 GB RAM.

4.1.1 Small, well-tested programs
The IntroClass benchmark [48] consists of 998 small defec-
tive C programs (maximum 25 lines of code) with multi-
ple test suites, intended for evaluating automatic program
repair tools. Because the programs are small, it is compu-
tationally feasible to run SOSRepair on all defects multiple
times, for experiments that require several rounds of exe-
cution on the whole benchmark. Since our main focus is

program kLOC tests defects patched

gmp 145 146 2 0
gzip 491 12 4 0
libtiff 77 78 9 8
lighttpd 62 295 5 1
php 1,099 8,471 39 9
python 407 355 4 2
wireshark 2,814 63 2 2

total 5,095 9,420 65 22

Fig. 4: Subject programs and defects in our study, and the
number of each for which SOSRepair generates a patch.

applicability to real-world defects, we use the IntroClass
benchmark for tuning experiments, and to compare with
prior work that cannot scale to real-world defects.

Defects. The IntroClass benchmark consists of 998 defects
from solutions submitted by undergraduate students to
six small C programming assignments in an introductory
C programming course. Each problem class (assignment)
is associated with two independent test suites: One that
is written by the instructor of the course (the black-box
test suite), and one that is automatically generated by
KLEE [12], a symbolic execution tool that automatically
generates tests (the white-box test suite). Figure 6 shows
the number of defects in each program assignment group
that fail at least one test case from the black-box test suite.
The total number of such defects is 778.

Patch quality. For all repair experiments on IntroClass,
we provide the black-box tests to the repair technique to
guide the search for a patch. We then use the white-box
test suite to measure patch quality, in terms of the percent
of held-out tests the patched program passes (higher is
better).

4.1.2 Large, real-world programs
The ManyBugs [48] benchmark consists of 185 defects
taken from nine large, open-source C projects, commonly
used to evaluate automatic program repair tools (e.g., [58],
[64], [75], [107]).

Defects. The first four columns of Figure 4 show the
project, size of source code, number of developer-written
tests, and the number of defective versions of the Many-
Bugs programs we use to evaluate SOSRepair. Prior
work [68] argues for explicitly defining defect classes (the
types of defects that can be fixed by a given repair method)
while evaluating repair tools, to allow for fair comparison
of tools on comparable classes. For instance, Angelix [64]
cannot fix the defects that require adding a new statement
or variable, and therefore all defects that require such mod-
ification are excluded from its defect class. For SOSRepair,
we define a more general defect class that includes all the
defects that can be fixed by editing one or more consec-
utive lines of code in one location, and are supported by
BugZoo (version 2.1.29) [95]. As mentioned in Section 3.2,
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snippet size # of functions called constraints time to build
program snippets (# characters) variables in the snippet per snippet the DB (h)

mean median mean median mean median mean median

gmp 6,003 95.4 88 4.0 4 0.9 0 32.7 3 26.3
gzip 2,028 103.2 93 2.6 2 1.1 1 25.4 2 2.3
libtiff 3,010 114.8 108 3.0 3 1.2 1 29.9 2 5.8
lighttpd 797 90.6 82 2.0 2 1.4 1 24.8 2 2.3
php 22,423 113.5 100 2.7 2 1.4 1 19.8 2 51.6
python 20,960 116.1 108 2.4 2 1.0 1 26.9 1 41.9
wireshark 90,418 157.7 145 4.3 4 1.6 1 6.4 2 115.1

Fig. 5: The code snippet database SOSRepair generates for each of the ManyBugs programs. SOSRepair generated a
total of 145,639 snippets, with means of 140 characters, 4 variables, 1 function call, and 13 SMT constraints. On average,
SOSRepair builds the database in 35 hours, using a single thread.

we use Docker containers managed by BugZoo to run ex-
periments in a reproducible fashion. BugZoo supports
ManyBugs scenarios that can be configured on a modern,
64-bit Linux system; we therefore exclude 18 defects from
valgrind and fbc, which require the 32-bit Fedora 13 vir-
tual machine image originally released with ManyBugs.
Further, automatically fixing defects that require editing
multiple files or multiple locations within a file is beyond
SOSRepair’s current capabilities. We therefore limit the
scope of SOSRepair’s applicability only to the defects that
require developers to edit one or more consecutive lines
of code in a single location. In theory, SOSRepair can be
used to find multi-location patches, but considering multi-
ple locations increases the search space and is beyond the
scope of this paper.

SOSRepair’s defect class includes 65 of the 185 Many-
Bugs defects. We use method-level fault localization
by limiting SOSRepair’s fault localization to the method
edited by the developer’s patch, which is sometimes hun-
dreds of lines long. We construct a single snippet database
(recall Section 3) per project from the oldest version of
the buggy code among all the considered defects. There-
fore, the snippet database contains none of the developer-
written patches.

Figure 5 shows, for each ManyBugs program, the mean
and median snippet size, the number of variables in code
snippets, the number of functions called within the snip-
pets, the number of constraints for the code snippets
stored in the database, and the time spent on building the
database. For each program, SOSRepair generates thou-
sands of snippets, and for each snippet, on average, KLEE
generates tens of SMT constraints. SOSRepair generated
a total of 145,639 snippets, with means of 140 characters,
4 variables, 1 function call, and 13 SMT constraints. The
database generation is SOSRepair’s most time-consuming
step, which only needs to happen once per project. The
actual time to generate the database varies based on the
size of the project. It takes from 2.3 hours for gzip up to
115 hours for wireshark, which is the largest program in
the ManyBugs benchmark. On average, it takes 8.2 sec-
onds to generate each snippet. However, we collected

these numbers using a single thread. This step is easily
parallelizable, representing a significant performance op-
portunity in generating the database. We set the snippet
granularity to 3–7 lines of code, following the results of
our granularity experiments (Section 4.3) and previous
work on code redundancy [25].

Patch quality. A key concern in automated program re-
pair research is the quality of the produced repairs [76],
[85]. One mechanism for objectively evaluating patch
quality is via independent test suites, held out from patch
generation. The defects in ManyBugs are released with
developer-produced test suites of varying quality, often
with low coverage of modified methods. Therefore, we
construct additional held-out test suites to evaluate the
quality of generated patches. For a given defect, we au-
tomatically generate unit tests for all methods modified
by either the project’s developer or by at least one of the
automated repair techniques in our evaluation. We do
this by constructing small driver programs that invoke the
modified methods:
• Methods implemented as part of an extension or mod-

ule can be directly invoked from a driver’s main func-
tion (e.g., the substr_compare method of php string

module.)
• Methods implemented within internal libraries are in-

voked indirectly by using other functionality. For ex-
ample, the method do_inheritance_check_on_method

of zend_compile library in php is invoked by creating
and executing php programs that implement inher-
itance. For such methods, the driver’s main func-
tion sets the values of requisite global variables and
then calls the functionality that invokes the desired
method.

We automatically generate random test inputs for the
driver programs that then invoke modified methods. We
generate inputs until either the tests fully cover the target
method or until adding new test inputs no longer signif-
icantly increases statement coverage. For four php and
two lighttpd scenarios for which randomly generated test
inputs were unable to achieve high coverage, we manually
added new tests to that effect. For libtiff methods requir-
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ing tiff images as input, we use 7,214 tiff images randomly
generated and released by the AFL fuzz tester [2]. We use
the developer-patched behavior to construct test oracles,
recording logged, printed, and returned values and exit
codes as ground truth behavior. If the developer-patched
program crashes on an input, we treat the crash as the
expected behavior.

We release these generated test suites (along with
all source code, data, and experimental results) to
support future evaluations of automated repair
quality on ManyBugs. All materials may be down-
loaded from https://github.com/squaresLab/
SOSRepair-Replication-Package. This release is
the first set of independently-generated quality-evaluation
test suites for ManyBugs.

Baseline approaches. We compare to three previous re-
pair techniques that have been evaluated on (subsets) of
ManyBugs, relying on their public data releases. An-
gelix [64] is a state-of-the-art semantic program repair
approach; Prophet [58] is a more recent heuristic tech-
nique that instantiates templated repairs [56], informed
by machine learning; and GenProg [49] uses genetic pro-
gramming to combine statement-level program changes
in a repair search. GenProg has been evaluated on all
185 ManyBugs defects; Angelix, on 82 of the 185 defects;
Prophet, on 105 of 185. Of the 65 defects that satisfy SOSRe-
pair’s defect class, GenProg is evaluated on all 65 defects,
Angelix on 30 defects, and Prophet on 39 defects.

4.2 Comparison to SearchRepair
First, to substantiate SOSRepair’s improvement over previ-
ous work in semantic search-based repair, we empirically
compare SOSRepair’s performance to SearchRepair [38].
Because SearchRepair does not scale to the ManyBugs
programs, we conduct this experiment on the IntroClass
dataset (Section 4.1.1). We use the black-box tests to guide
the search for repair, and the white-box tests to evaluate
the quality of the produced repair.

Figure 6 shows the number of defects patched by each
technique. SOSRepair patches more than twice as many
defects as SearchRepair (346 versus 150, out of the 778 total
repairs attempted). This difference is statistically signifi-
cant based on Fisher’s exact test (p < 10−15). The bottom
row shows the mean percent of the associated held-out
test suite passed by each patched program. Note that
SOSRepair’s average patch quality is slightly lower than
SearchRepair’s (91.5% versus 97.3%). However, 239 of the
346 total SOSRepair patches pass 100% of the held-out
tests, constituting substantially more very high-quality
patches than SearchRepair finds total (150). Overall, how-
ever, semantic search-based patch quality is quite high,
especially as compared to patches produced by prior tech-
niques as evaluated in the prior work: AE [107] finds
patches for 159 defects with average quality of 64.2%, Tr-
pAutoRepair [75] finds 247 patches with 72.1% quality,
and GenProg [108] finds 287 patches with average qual-
ity of 68.7% [38]. Overall, SOSRepair outperforms these

problem class defects SearchRepair SOSRepair

checksum 29 0 3
digits 91 0 24
grade 226 2 37
median 168 68 87
smallest 155 73 120
syllables 109 4 75

total 778 150 346

mean quality 97.3% 91.5%

Fig. 6: Number of defects repaired by SearchRepair and
SOSRepair on IntroClass dataset. “Mean quality” denotes
the mean percent of the associated held-out test suite
passed by each patched programs.

prior techniques in expressive power (number of defects
repaired, at 346 of 778), and those patches are of measur-
ably higher quality.

4.3 Snippet Granularity
Snippet granularity informs the size and preparation of
the candidate snippet database, as well as SOSRepair’s
expressiveness. Low granularity snippets may produce
prohibitively large databases and influence patch quality.
High granularity (i.e., larger) snippets lower the available
redundancy (previous work suggests that the highest code
redundancy is found in snippets of 1–7 lines of code [25])
and may reduce the probability of finding fixes. Both for
tuning purposes and to assess one of our underlying hy-
potheses, we evaluate the effect of granularity on repair
success and patch quality by systematically altering the
granularity level of both the code snippets in the SOS-
Repair database and the buggy snippet to be repaired.
Because this requires a large number of runs on many
defects to support statistically significant results, and to
reduce the confounds introduced by real-world programs,
we conduct this experiment on the IntroClass dataset, and
use SOSRepair to try to repair all defects in the dataset
using granularity level configuration of 1–3 lines, 3–7 lines,
and 6–9 lines of code.

Figure 7 shows the number of produced patches, the
number of those patches that pass all the held-out tests,
and the mean percent of held-out test cases that the patches
pass, by granularity of the snippets in the SOSRepair
database. The granularity of 3–7 lines of code produces the
most patches (346 versus 188 and 211 with other granular-
ities), and the most patches that pass all the held-out tests
(239 versus 120 and 125 with other granularities). Fisher’s
exact test confirms that these differences are statistically
significant (all p < 10−70).

While the number of patches that pass all defects is sig-
nificantly higher for the 3–7 granularity, and the fraction of
patches that pass all held-out tests is higher for that gran-
ularity (69.1% for 3–7, 63.8% for 1–3, and 59.2% for 6–9),
the mean patch quality is similar for all the three levels

https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package
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patches passing mean % of
patches all held-out tests held-out tests passing

program 1–3 3–7 6–9 1–3 3–7 6–9 1–3 3–7 6–9

checksum 0 3 8 0 3 8 — 100.0% 100.0%
digits 26 24 17 14 9 5 91.5% 89.5% 92.9%
grade 1 37 2 1 37 2 100.0% 100.0% 100.0%
median 14 87 52 1 63 44 84.5% 95.0% 95.5%
smallest 60 120 132 27 57 54 80.4% 82.2% 78.5%
syllables 87 75 17 77 70 12 97.0% 98.6% 97.0%

Total 188 346 211 120 239 125

Fig. 7: A comparison of applying SOSRepair to IntroClass defects with three different levels of granularity: 1–3, 3–7,
and 6–9 lines of code.

of granularity. We hypothesize that this observation may
be a side-effect of the small size of the programs in the In-
troClass benchmark and the high redundancy induced by
many defective programs in that benchmark attempting to
satisfy the same specification. We suspect this observation
will not extend to benchmarks with more diversity and
program complexity, and thus make no claims about the
effect of granularity on average quality.

We configure our database in subsequent experiments
to use snippets of 3–7 lines, as these results suggest that
doing so may provide a benefit in terms of expressive
power. The results of this study may not immediately
extend to large, real-world programs; we leave further
studies exploring repair granularity for large programs to
future work.

4.4 Repair of large, real-world programs
A key contribution of our work is a technique for semantic
search-based repair that scales to real-world programs; we
therefore evaluate SOSRepair on defects from ManyBugs
that fall into its defect class (as described in Section 4.1.2).
The “patched” column in Figure 4 summarizes SOSRe-
pair’s ability to generate patches. Figure 8 presents repair
effectiveness and quality for all considered defects in the
class, comparing them with patches produced by previous
evaluations of Angelix, Prophet, and GenProg. Figure 8
enumerates defects for readability and maps each “pro-
gram ID” to a revision pair of the defect and developer-
written repair.

4.4.1 Repair expressiveness and applicability
SOSRepair patches 22 of the 65 defects that involved
modifying consecutive lines by the developer to fix those
defects. The Angelix, Prophet, and GenProg columns
in Figure 8 indicate which approaches succeed on
patching those defects (8 for not patched, and NA for not
attempted, corresponding to defects outside the defined
defect class for a technique). There are 5 defects that all
four techniques patch. SOSRepair is the only technique
that repaired libtiff-4. SOSRepair produces patches
for 3 defects that Angelix cannot patch, 5 defects that
Prophet cannot patch, and 6 defects that GenProg cannot

patch. These observations corroborate results from prior
work on small programs, which showed that semantic
search-based repair could target and repair defects that
other techniques cannot [38].

Even though efficiency is not a focus of SOSRepair’s de-
sign, we measured the amount of time required to generate
a patch with SOSRepair. On average, it took SOSRepair
5.25 hours to generate patches reported in Figure 8. Ef-
ficiency is separate from, and secondary to the ability to
produce patches and can be improved by taking advan-
tage of parallelism and multithreading in SOSRepair’s
implementation. On average, 57.6% of the snippets in the
database (satisfying type constraints) matched the SMT
query described in Section 2.4. Of the repaired defects,
seven involve insertion, seven involve replacement, and
eight involve deletion.

4.4.2 Repair effectiveness and quality

Figure 8 shows the percent of evaluation tests passed by
the SOSRepair, Angelix, Prophet, and GenProg patches.
“Coverage” is the average statement-level coverage of the
generated tests on the methods modified by either the de-
veloper or by at least one automated repair technique in
our evaluation. SOSRepair produces more patches (9, 41%)
that pass all independent tests than Angelix (4), Prophet (5)
and, GenProg (4). For the defects patched in-common by
SOSRepair and other techniques, Angelix and SOSRepair
patch 9 of the same defects; both SOSRepair and Angelix
produce 4 patches that pass all evaluation tests on this
set. Prophet and SOSRepair patch 11 of the same defects;
both SOSRepair and Prophet produce 5 patches that pass
all evaluation tests on this set. GenProg and SOSRepair
patch 16 of the same defects; 4 out of these 16 GenProg
patches and 8 SOSRepair patches pass all evaluation tests.
Thus, SOSRepair produces more patches that pass all in-
dependent tests than GenProg, and as many such patches
as Angelix and Prophet. This suggests that semantic code
search is a promising approach to generate high-quality
repairs for real defects, and that it has potential to repair
defects that are outside the scope of other, complementary
repair techniques.
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program ID: revision pair coverage Angelix Prophet GenProg SOSRepair SOSRepair⊕

gmp-2: 14166-14167 — 4 8 4 8 8
gzip-2: 3fe0caeada-39a362ae9d — 8 4 8 8 8
gzip-3: 1a085b1446-118a107f2d — 8 8 4 8 8
gzip-4: 3eb6091d69-884ef6d16c — 4 8 8 8 8
libtiff-1: 3b848a7-3edb9cd 90% 4 99% 4 99% 4 97% 4 97% " 8
libtiff-2: a72cf60-0a36d7f 76% 4 100% 8 4 100% 4 100% " 4 100% "
libtiff-3: eec4c06-ee65c74 73% 4 96% 4 96% 4 96% 4 96% " 4 96% "
libtiff-4: 09e8220-f2d989d 96% 8 8 8 4 59% ! 4 100% -
libtiff-5: 371336d-865f7b2 50% 4 100% 8 4 98% 4 99% ! 8
libtiff-6: 764dbba-2e42d63 73% 4 92% 4 92% 4 28% 4 99% " 4 99% !
libtiff-7: e8a47d4-023b6df 82% 4 100% 8 4 0% 4 100% " 4 100% !
libtiff-8: eb326f9-eec7ec0 90% 8 4 100% 4 100% 4 60% - 4 100% -
libtiff-9: b2ce5d8-207c78a — 8 8 8 8 8
lighttpd-1: 2661-2662 50% NA 4 100% 4 100% 4 100% - 4 100% -
lighttpd-3: 2254-2259 — NA 8 8 8 8
lighttpd-4: 2785-2786 — NA 8 8 8 8
lighttpd-5: 1948-1949 — NA 4 8 8 8
php-1: 74343ca506-52c36e60c4 89% NA NA 4 17% 4 100% ! 4 100% !
php-2: 70075bc84c-5a8c917c37 86% 4 100% 4 100% 4 0% 4 100% " 4 100% "
php-3: 8138f7de40-3acdca4703 63% ‡ 4 100% 8 4 100% - 8
php-4: 1e6a82a1cf-dfa08dc325 100% NA NA 8 4 53% - 4 53% -
php-5: ff63c09e6f-6672171672 79% NA NA 4 80% 4 90% ! 4 50% -
php-6: eeba0b5681-d3b20b4058 40% NA NA 4 0% 4 0% - 4 100% !
php-7: 77ed819430-efcb9a71cd 70% 8 4 100% 4 50% 4 100% - 8
php-8: 01745fa657-1f49902999 100% 4 67% 8 4 100% 4 67% ! 8
php-9: 7aefbf70a8-efc94f3115 79% NA NA 8 4 91% ! 8
php-14: 0a1cc5f01c-05c5c8958e — NA NA 4 8 8
php-15: 5bb0a44e06-1e91069eb4 — 8 4 8 8 8
php-16: fefe9fc5c7-0927309852 — 8 4 4 8 8
php-17: e65d361fde-1d984a7ffd — 4 4 8 8 8
php-18: 5d0c948296-8deb11c0c3 — 8 8 8 8 8
php-19: 63673a533f-2adf58cfcf — 4 4 8 8 8
php-20: 187eb235fe-2e25ec9eb7 — 4 4 4 8 8
php-21: db01e840c2-09b990f499 — 8 8 8 8 8
php-22: 453c954f8a-daecb2c0f4 — 8 8 4 8 8
php-23: b60f6774dc-1056c57fa9 — 4 4 8 8 8
php-24: 1f78177e2b-d4ae4e79db — NA NA 8 8 8
php-25: 2e5d5e5ac6-b5f15ef561 — NA NA 4 8 8
php-26: c4eb5f2387-2e5d5e5ac6 — NA NA 4 8 8
php-27: ceac9dc490-9b0d73af1d — NA NA 4 8 8
php-28: fcbfbea8d2-c1e510aea8 — NA NA 8 8 8
php-29: 236120d80e-fb37f3b20d — NA NA 4 8 8
php-30: 55acfdf7bd-3c7a573a2c — NA NA 4 8 8
php-31: ecc6c335c5-b548293b99 — NA NA 4 8 8
php-32: eca88d3064-db0888dfc1 — NA NA 4 8 8
php-33: 544e36dfff-acaf9c5227 — NA NA 8 8 8
php-34: 9de5b6dc7c-4dc8b1ad11 — NA NA 4 8 8
php-35: c1322d2505-cfa9c90b20 — NA NA 4 8 8
php-36: 60dfd64bf2-34fe62619d — NA NA 4 8 8
php-37: 0169020e49-cdc512afb3 — NA NA 8 8 8
php-38: 3954743813-d4f05fbffc — NA NA 8 8 8
php-39: 438a30f1e7-7337a901b7 — NA NA 8 8 8
python-1: 69223-69224 100% NA 4 33% 8 4 76% - 4 76% -
python-2: 69368-69372 72% NA 4 54% 8 4 50% ! 4 50% -
python-3: 70098-70101 — NA 4 8 8 8
python-4: 70056-70059 — NA 8 4 8 8
wireshark-1: 37112-37111 100% 4 87% 4 87% 4 87% 4 100% " 4 100% "
wireshark-2: 37122-37123 100% NA NA 4 87% 4 100% " 4 100% "

Ù

additional defects patched by SOS⊕

Ù

gmp-1: 13420-13421 97% 4 99% 4 99% 8 8 4 100% -
gzip-1: a1d3d4019d-f17cbd13a1 79% ‡ 4 100% 8 8 4 100% -
lighttpd-2: 1913-1914 56% NA 4 100% 8 8 4 100% !
php-10: 51a4ae6576-bc810a443d 90% NA NA 4 92% 8 4 92% -
php-11: d890ece3fc-6e74d95f34 72% ‡ 4 100% 8 8 4 100% -
php-12: eeba0b5681-f330c8ab4e 42% NA NA 4 0% 8 4 100% -
php-13: 80dd931d40-7c3177e5ab 71% NA NA 8 8 4 100% -

Fig. 8: SOSRepair patches 22 of the 65 considered defects, 9 (41%) of which pass all of the independent tests. When SOSRepair is
manually provided a fault location (SOSRepair⊕), it patches 23 defects, 16 (70%) of which pass all of the independent tests. All
defects repaired by either SOSRepair or SOSRepair⊕ (shaded in gray) have a generated test suite for patch quality assessment.
Coverage is the mean statement-level coverage of that test suite on the patch-modified methods. 4 indicates that a technique
produced a patch, 8 indicates that a technique did not produce a patch, and NA indicates that the defect was not attempted by
a technique (for Angelix, this defect was outside its defect class; for Prophet this defect was not available because Prophet was
evaluated on an older version of ManyBugs). Three of the released Angelix patches [64] (denoted ‡) do not automatically apply to
the buggy code. Each SOSRepair and SOSRepair⊕ patch is either a replacement (!), an insertion (-), or a deletion (").
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4.4.3 Improving patch quality through fault localization

Although these baseline results are promising, most of the
patches previous semantic search-based repair produced
on small program defects passed all held-out tests [38]. We
investigated why SOSRepair patch quality is lower than
this high bar. We hypothesized that two possible reasons
are that real-world buggy programs do not contain code
that can express the needed patch, or that fault localization
imprecision hampers SOSRepair success. Encouragingly,
anecdotally, we found that many buggy programs do con-
tain code that can express the developer patch. However,
fault localization is the more likely culprit. For example,
for gmp-1, fault localization reports 59 lines as equally-
highly suspicious, including the line modified by the de-
veloper, but as part of its breadth-first strategy, SOSRepair
only tries 10 of these 59.

We further observed that in some cases, more than one
mapping between variables satisfies the query, but only
one results in a successful patch. Since trying all possible
mappings is not scalable, SOSRepair only tries the first
mapping selected by the solver. Including more variables
in the mapping query increases the number of patch pos-
sibilities, but also the complexity of the query.

We created SOSRepair⊕, a semi-automated version of
SOSRepair that can take hints from the developer regard-
ing fault location and variables of interest. SOSRepair⊕

differs from SOSRepair in the following two ways:
1) SOSRepair uses spectrum-based fault localiza-

tion [37] to identify candidate buggy code regions.
SOSRepair⊕ uses a manually-specified candidate
buggy code region. In our experiments, SOSRepair⊕

uses the location of the code the developer modified
to patch the defect as its candidate buggy code region,
simulating the developer suggesting where the repair
technique should try to repair a defect.

2) SOSRepair considers all live variables after the in-
sertion line in its query. While multiple mappings
may exist that satisfy the constraints, not all such
mappings may pass all the tests. SOSRepair uses the
one mapping the SMT solver returns. SOSRepair⊕

can be told which variables not to consider, simulat-
ing the developer suggesting to the repair technique
which variables likely matter for a particular defect.
A smaller set of variables of interest increases the
chance that the mapping the SMT solver returns and
SOSRepair⊕ tries is a correct one. We found that
for 6 defects (gzip-1, libtiff-4, libtiff-8, php-10,
php-12, and gmp-1), SOSRepair failed to produce a
patch because it attempted an incorrect mapping. For
these 6 defects, we instructed SOSRepair⊕ to reduce
the variables of interest to just those variables used in
the developer-written patch.

On our benchmark, SOSRepair⊕ patches 23 defects
and 16 (70%) of them pass all independent tests. While
it is unsound to compare SOSRepair⊕ to prior, fully-
automated techniques, our conclusions are drawn only
from the comparison to SOSRepair; the quality results

for the SOSRepair⊕-patched defects for the prior tools in
Figure 8 are only for reference.

Our experiments show that precise fault localization al-
lows SOSRepair⊕ to patch 7 additional defects SOSRepair
could not (bottom of Figure 8), and to improve the quality
of 3 of SOSRepair’s patches. Overall, 9 new patches pass
100% of the independent tests.

SOSRepair and SOSRepair⊕ sometimes attempt to patch
defects at different locations: SOSRepair using spectrum-
based fault localization and SOSRepair⊕ at the location
where the developer patched the defect. For 6 defects,
SOSRepair finds a patch, but SOSRepair⊕ does not. Note
that defects can often be patched at multiple locations, and
developers do not always agree on a single location to
patch a particular defect [10]. Thus, the localization hint
SOSRepair⊕ receives is a heuristic, and may be neither
unique nor optimal. In each of these 6 cases, the patch
SOSRepair finds it at an alternate location than where the
developer patched the defect.

Because SOSRepair and SOSRepair⊕ sometimes patch
at different locations, the patches they produce sometimes
differ, and accordingly, so does the quality of those patches.
In our experiments, in all but one case (php-5) SOSRepair⊕

patches were at least as high, or higher quality than SOS-
Repair patches for the same defect.

We conclude that research advancements that produce
more accurate fault localization or elicit guidance from de-
velopers in a lightweight manner are likely to dramatically
improve SOSRepair performance. Additionally, input (or
heuristics) on which variables are likely related to the
buggy functionality (and are thus appropriate to consider)
could limit the search to a smaller but more expressive
domain, further improving SOSRepair.

4.5 Example patches
In this section, we present several SOSRepair patches pro-
duced on the ManyBugs defects (Section 4.4), comparing
them to developer patches and those produced by other
tools. Our goal is not to be comprehensive, but rather to
present patches highlighting various design decisions.

Example 1: python-1. The python interpreter at revision
#69223 fails a test case concerning a variable that should
never be negative. The developer patch is as follows:

}
+ if (timeout < 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "timeout must be non-negative");
+ return NULL;
+ }
seconds = (long)timeout;

Fault localization correctly identifies the developer’s in-
sertion point for repair. Several snippets in the python

project perform similar functionality to the fix, including
the following, from the IO module:

if (n < 0) {
PyErr_SetString(PyExc_ValueError,

"invalid key number");
return NULL;

}
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SOSRepair correctly maps variable n to timeout and inserts
the code to repair the defect. Although the error message is
not identical, the functionality is, and suitable to satisfy the
developer tests. However, unlike the developer tests, the
generated tests do consider the error message, explaining
the patch’s relatively low success on the held-out tests.
Synthesizing good error messages is an open problem;
such a semantically meaningful patch could still assist
developers in more quickly addressing the underlying
defect [106].

GenProg did not patch this defect; Angelix was not
attempted on it, as the defect is outside its defect class.
The Prophet patch modifies an if-check elsewhere in the
code to include a tautological condition:

- if ((!rv)) {
+ if((!rv) && !(1)) {

if (set_add_entry((PySetObject *)...

This demonstrates how techniques that do not delete di-
rectly can still do so, motivating our explicit inclusion of
deletion.

Example 2: php-2. We demonstrate the utility of explicit
deletion with our second example, from php-2 (recall Fig-
ure 8). At the buggy revision, php fails two test cases
because of an incorrect value modification in its string

module. Both the developer and SOSRepair delete the
undesired functionality:

- if (len > s1_len - offset) {
- len = s1_len - offset;
- }

Angelix and Prophet correctly eliminate the same func-
tionality by modifying the if condition such that it always
evaluates to false. GenProg inserts a return; statement in
a different method.

Example 3: php-1. Finally, we show a SOSRepair patch
that captures a desired semantic effect while syntactically
different from the human repair. Revision 74343ca506 of
php-1 (recall Figure 8) fails 3 test cases due to an incor-
rect condition around a loop break, which the developer
modifies:

- if (just_read < toread) {
+ if (just_read == 0) {

break;
}

This defect inspired our illustrative example (Section 2.1).
Using default settings, SOSRepair first finds a patch identi-
cal to the developer fix. To illustrate, we present a different
but similar fix that SOSRepair finds if run beyond the first
repair:

if ((int)box_length <= 0) {
break;

}

SOSRepair maps box_length to just_read, and replaces the
buggy code. In this code, just_read is only ever greater
than or equal to zero, such that this patch is acceptable.
Angelix and Prophet were not attempted on this defect;
GenProg deletes other functionality.

R² = 0.982
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Fig. 9: The speedup of the new encoding approach over
the previous approach grows with query complexity.

4.6 Query encoding performance
To answer our final two research questions, we isolate and
evaluate two key novel features of SOSRepair. First, this
section evaluates the performance improvements gained
by SOSRepair’s novel query encoding approach. Second,
Section 4.7 evaluates the effects of SOSRepair’s negative
profile refinement approach on reducing the search space.

In the repair search problem, query complexity is a func-
tion of the number of test inputs through a region and the
number of possible mappings between a buggy region and
the repair context. To understand the differences between
SOSRepair’s and the old approach’s encodings, consider a
buggy snippet C with two input variables a and b and a sin-
gle output variable c. Suppose C is executed by two tests,
t1 and t2. And suppose S is a candidate repair snippet
with two input variables x and y, a single output variable
z, and path constraints ϕc generated by the symbolic exe-
cution engine. SOSRepair’s encoding uses location variables
to discover a valid mapping between variables a, b and
x, y that satisfy ϕc constraints for both test cases t1 and
t2, with a single query (recall Section 2.4.1). Meanwhile,
the prior approach [38] traverses all possible mappings
between variables (m1 : (a = x) ∧ (b = y) ∧ (c = z) and
m2 : (a = y) ∧ (b = x) ∧ (c = z)), and creates a query
for every test case, for every possible variable mapping.
A satisfiable query implies its mapping is valid for that
particular test. For example, to show that mapping m1 is
a valid mapping, two queries are required (one for t1 and
one for t2), and only if both are satisfiable ism1 considered
valid. The number of queries required for this approach
grows exponentially in the number of variables, as there
is an exponential number of mappings (permutation) of
the variables. In our example, there are two possible map-
pings and two tests, so four queries are required, unlike
SOSRepair’s one.

To evaluate the performance impact of SOSRepair’s
new encoding, we reimplement the previous encoding
approach [38]. We then compare SMT solver speed on the
same repair questions using each encoding. Running on
two randomly-selected ManyBugs defects, we measured
the response time of the solver on more than 10,000 queries
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Fig. 10: Fraction of defects that can reject fractions of
the search space (measured via SMT queries) using only
iteratively-constructed negative examples. Profile refine-
ment improves scalability by reducing the number of can-
didate snippets to consider. Console output that relies on
symbolic values affects this performance.

for both versions of encoding techniques. Figure 9 shows
the speed up using the new encoding as compared to the
old encoding, as a function of query complexity (number
of tests times the number of variable permutations). The
new encoding approach delivers a significant speed up
over the previous approach, and the speed up increases
linearly with query complexity (R2 = 0.982).

Looking at the two approaches individually, query time
increases linearly with query complexity (growing slowly
slope-wise, but with a very high R2 = 0.993) with the
previous encoding, and is significantly more variable with
the new encoding and does not appear linearly related to
query complexity (R2 = 0.008). Overall, Figure 9 shows
the speed up achieved with the new encoding, and its
linear increase as query complexity grows.

4.7 Profile refinement performance

The profile refinement approach (recall Section 2.5) uses
negative tests to iteratively improve a query, reduce the
number of attempted candidate snippets, and repair de-
fects without covering passing test cases. By default, SOS-
Repair uses the automated, iterative query refinement
on all defects whenever at least one faulty region under
consideration is covered only by negative test cases. In
our experiments, for 2 ManyBugs defects (libtiff-8 and
lighttpd-2), the patches SOSRepair and SOSRepair⊕ pro-
duce cover a region only covered by negative test cases,
though SOSRepair and SOSRepair⊕ use the refinement
process while attempting to patch other defects as well.

In this experiment, we evaluate the effect of iterative
profile refinement using negative examples on the size of
the considered SMT search space. We conduct this experi-
ment on a subset of the IntroClass dataset to control for the
effect of symbolic execution performance (which is highly
variable on the real-world programs in ManyBugs). We
ran SOSRepair on all the defects in the median, smallest,
and grade programs, only using the initially failing test

cases, with profile refinement, for repair. For every buggy
line selected by the fault localization and expanded into a
region with granularity of 3–7 lines of code, we measured
the number of candidate snippets in the database that can
be rejected by the SMT-solver (meaning the patch need not
be dynamically tested to be rejected, saving time) using
only negative queries.

Figure 10 shows the percent of the search space excluded
after multiple iterations for all buggy regions. For exam-
ple, the first bar shows that on 68% of buggy regions tried,
fewer than 20% of candidate snippets were eliminated by
the solver when only negative tests are available, leaving
more than 80% of possible candidates for dynamic eval-
uation. We find that approach effectiveness depends on
the nature of the defect and snippets. In particular, the
approach performs poorly when desired snippet behavior
involves console output that depends on a symbolic vari-
able. This makes sense: KLEE produces random output
in the face of symbolic console output, and such output
is uninformative in specifying undesired behavior. Our
results show that on 14% of the defects (that are dependent
on console output), more than 40% of database snippets
can be rejected using only the test cases that the program
initially failed. We also transformed the defects in the
dataset to capture console output by variable assignments,
treating those variables as the output (rather than the con-
sole printout); Figure 10 also shows the results of running
the same study on the modified programs. More than 40%
of the possible snippets can be eliminated for 66% of the
preprocessed programs. Overall, profile refinement can
importantly eliminate large amounts of the search space,
but its success depends on the characteristics of the code
under repair.

4.8 Threats and limitations
Even though SOSRepair works on defects that require
developers to modify a single (potentially multi-line) loca-
tion in the source code, we ensure that it generalizes to all
kinds of defects belonging to large unrelated projects by
evaluating SOSRepair on a subset of the ManyBugs bench-
mark [48], which consists of real-world, real-developer
defects, and is used extensively by prior program repair
evaluations [48], [58], [64], [70], [75], [107]. The defects
in our evaluation also cover the novel aspects of our ap-
proach, e.g., defects with only negative profiles, console
output, and various edit types.

Our work inherits KLEE’s limitations: SOSRepair can-
not identify snippets that KLEE cannot symbolically ex-
ecute, impacting patch expressiveness nevertheless, the
modified buggy code can include KLEE-unsupported con-
structs, such as function pointers. Note that this limitation
of KLEE is orthogonal to our repair approach. As KLEE
improves in its handling of more complex code, so will
SOSRepair. Our discussion of other factors influencing
SOSRepair success (recall Section 4.4) suggests directions
for improving applicability and quality.

Our experiments limit the database of code snippets to
those found in the same project, based on observations of
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high within-project redundancy [4]. Anecdotally, we have
observed SOSRepair failing to produce a patch when using
snippets only from the same project, but succeeding with
a correct patch when using snippets from other projects.
For example, for gzip-1 defect, the code in gzip lacks the
necessary snippet to produce a patch, but that snippet
appears in the python code. Extending SOSRepair to use
snippets from other projects could potentially improve
SOSRepair’s effectiveness, but also creates new scalability
challenges, including handling code snippets that include
custom-defined, project-specific types and structures.

Precisely assessing patch quality is an unsolved prob-
lem. As with other repair techniques guided by tests, we
use tests, a partial specification, to evaluate the quality of
SOSRepair’s patches. Held-out, independently generated
or written test suites represent the state-of-the-art of patch
quality evaluation [85], along with manual inspection [58],
[76]. Although developer patches (which we use as a func-
tional oracle) may contain bugs, in the absence of a better
specification, evaluations such as ours must rely on the
developers.

We conduct several experiments (e.g., Sec-
tions 4.3 and 4.7) on small programs from the Intro-
Class benchmark [48], since these experiments require
controlled, large-scale executions of SOSRepair. Even
though these experiments provide valuable insights, their
results may not immediately extend to large, real-world
programs.

We publicly release our code, results, and new test suites
to support future evaluation, reproduction, and extension,
mitigating the risk of errors in our implementation or
setup. All materials may be downloaded from https:
//github.com/squaresLab/SOSRepair (SOSRe-
pair’s implementation), and https://github.com/
squaresLab/SOSRepair-Replication-Package
(SOSRepair’s replication package).

5 RELATED WORK

We place our work in the context of related research in two
areas, code search and automated program repair.

5.1 Code search
Execution-based semantic code search [77] executes code
to find matches with queries as test cases, signature, and
keywords [77]. Meanwhile constraint-satisfaction-based
search [88], [89], [90] matches input-output examples to
code fragments via symbolic execution. SOSRepair builds
on this prior work. Synthesis can adapt code-search results
to a desired context [93], [105]. The prior approaches had
humans directly or indirectly write queries. By contrast,
SOSRepair automatically extracts search queries from pro-
gram state and execution, and uses the query results to
map snippets to a new context. Other code search work
synthesizes Java directly from free-form queries [32], [86]
or based on crash reports [27]. While effective at repairing
Java expressions that use wrong syntax or are missing ar-
guments [32], this type of repair does not target semantic

errors and requires an approximate Java-like expression
as part of the query (and is thus similar to synthesis by
sketching [86]).

5.2 Program repair

There are two general classes of approaches to repairing
defects using failing tests to identify faulty behavior and
passing tests to demonstrate acceptable program behav-
ior: generate-and-validate or heuristic repair and semantic-
based repair. The former uses search-based techniques
or predefined templates to generate many syntactic can-
didate patches, validating them against the tests (e.g.,
GenProg [49], Prophet [58], AE [107], HDRepair [46], Er-
rDoc [94], JAID [15], Qlose [19], and Par [39], among oth-
ers). Techniques such as DeepFix [31] and ELIXIR [80]
use learned models to predict erroneous program loca-
tions along with patches. ssFix [110] uses existing code
that is syntactically related to the context of a bug to pro-
duce patches. CapGen [109] works at the AST node level
(token-level) and uses context and dependency similarity
(instead of semantic similarity) between the suspicious
code fragment and the candidate code snippets to produce
patches. To manage the large search space of candidates
created because of using finer-level granularity, it extracts
context information from candidate code snippets and pri-
oritizes the mutation operators considering the extracted
context information. SimFix [36] considers the variable
name and method name similarity in addition to the struc-
tural similarity between the suspicious code and candidate
code snippets. Similar to CapGen, it prioritizes the candi-
date modifications by removing the ones that are found
less frequently in existing patches. Hercules [81] general-
izes single-location program repair techniques to defects
that require similar edits be made in multiple locations.
Enforcing that a patch keeps a program semantically sim-
ilar to the buggy version by ensuring that user-specified
correct traces execute properly on the patched version
can repair reactive programs with linear temporal logic
specifications [98]. Several repair approaches have aimed
to reduce syntactic or semantic differences between the
buggy and patched program [19], [36], [38], [45], [63], [98],
[109], with a goal of improving patch quality. For exam-
ple, Qlose [19] minimizes a combination of syntactic and
semantic differences between the buggy and patched pro-
grams while generating candidate patches. SketchFix [34]
optimizes the candidate patch generation and evaluation
by translating faulty programs to sketches (partial pro-
grams with holes) and lazily initializing the candidates
of the sketches while validating them against the test ex-
ecution. SOFix [50] uses 13 predefined repair templates
to generate candidate patches. These repair templates are
created based on the repair patterns mined from Stack-
Overflow posts by comparing code samples in questions
and answers for fine-grained modifications. SapFix [60]
and Getafix [83], two tools deployed on production code at
Facebook, efficiently produce repairs for large real-world
programs. SapFix [60] uses prioritized repair strategies,
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including pre-defined fix templates, mutation operators,
and bug-triggering change reverting, to produce repairs
in realtime. Getafix [83] learns fix patterns from past code
changes to suggest repairs for bugs that are found by Infer,
Facebook’s in-house static analysis tool.

SOSRepair’s approach to using existing code to inform
repair is reminiscent of Prophet [58], Par [39], IntPTI [16],
and HDRepair [46] that use models of existing code to
create or evaluate patches. SOSRepair does not use pat-
terns, but rather considers a database of code snippets for
candidate patches, using a constraint solver and existing
test cases to assess them. The latter class of approaches
use semantic reasoning to synthesize patches to satisfy an
inferred specification (e.g., Nopol [112], Semfix [73], Di-
rectFix [63], Angelix [64], S3 [45], JFIX [44]). SemGraft [62]
infers specifications by symbolically analyzing a correct
reference implementation (as opposed to using test cases),
but unlike SOSRepair, requires that reference implementa-
tion. Genesis [55], Refazer [79], NoFAQ [20], Sarfgen [100],
and Clara [30] process correct patches to automatically
infer code transformations to generate patches, a problem
conceptually related to our challenge in integrating repair
snippets to a new context.

SearchRepair [38] combines those classes, using a con-
straint solver to identify existing code to construct repairs.
SOSRepair builds on SearchRepair, fundamentally improv-
ing the approach in several important ways. It is signifi-
cantly more expressive (handling code constructs used in
real code and reasoning about snippets that can affect mul-
tiple variables as output) and scalable (SearchRepair could
only handle small, student-written C programs), supports
deletion and insertion, uses failing test cases to restrict
the search space, repairs code without passing examples,
and its encoding of the repair query is significantly more
expressive and efficient.

The location mechanism we adapt to repair queries
was previously proposed for program synthesis [35] and
adapted to semantic-based program repair [63], [64], [73].
Despite underlying conceptual similarities, SOSRepair
differs from these approaches in key ways. Instead
of replacing buggy expressions in if conditions or as-
signments with synthesized expressions, SOSRepair uses
the constraint solver to identify existing code to use as
patches, at a higher level of granularity than in prior
work. Like SOSRepair, semantic-based approaches con-
strain desired behavior with failing test cases to guide
patch synthesis. Critically, however, prior techniques re-
quire that the expected output on failing test cases be ex-
plicitly stated, typically through annotation. See, for ex-
ample, https://github.com/mechtaev/angelix/
blob/master/doc/Manual.md. SOSRepair automati-
cally infers and uses the negative behavior extracted from
the program state with no additional annotation burden.

Like SOSRepair, approaches that aim to generate higher-
quality patches using a test suite are complementary to
attempts to generate oracles to improve the test suite.
For example, Swami processes natural-language specifica-
tions to generate precise oracles and tests, improving on

both developer-written and other automatically-generated
tests [69]. Similarly, Toradacu [29] and Jdoctor [9] generate
oracles from Javadoc comments, and @tComment [92]
generates preconditions related to nullness of param-
eters, each of which can lead to better tests. Regres-
sion test generation tools, e.g., EvoSuite [23] and Ran-
doop [74], can help ensure patches do not alter otherwise-
undertested functionality. UnsatGuided [114] generates
regression tests using EvoSuite to constrain the repair
process and produce fewer low-quality patches. How-
ever, automatically-generated tests often differ in quality
from manually-written ones [101], [84], and have different
effects on patch quality [85]. Specification mining uses
execution data to infer (typically) FSM-based specifica-
tions [1], [5], [6], [7], [28], [41], [42], [43], [51], [52], [53],
[54], [78], [82]. TAUTOKO uses such specifications to gen-
erate tests, e.g., of sequences of method invocations on
a data structure [18], then iteratively improving the in-
ferred model [18], [99]. Patch quality can also potentially
improve using generated tests for non-functional prop-
erties, such as software fairness, which rely on observed
behavior, e.g., by asserting that the behavior on inputs
differing in a controlled way should be sufficiently simi-
lar [26], [11], [3]. Meanwhile, assertions on system data
can also act as oracles [71], [72], and inferred causal re-
lationships in data management systems [24], [65], [66]
can help explain query results, debug errors [102], [103],
[104], and suggest oracles for systems that rely on data
management systems [67].

Our central goal is to improve the ability of program
repair to produce correct patches. Recent work has ar-
gued for evaluating patch correctness using independent
tests [47], [85], [111], [113], which is the approach we fol-
low, as opposed to manual examination [57], [76]. Of the 22
defects for which SOSRepair produces patches, 9 pass all
the independent tests, more than prior techniques. Improv-
ing fault localization, 16 of the patches SOSRepair⊕ pro-
duces pass all independent tests. This suggests that high-
granularity, semantic-search-based repair can produce
more high-quality patches, and that better fault localiza-
tion can play an important role in improving repair quality.

6 CONTRIBUTIONS

Automated program repair may reduce software produc-
tion costs and improve software quality, but only if it pro-
duces high-quality patches. While semantic code search
can produce high-quality patches [38], such an approach
has never been demonstrated on real-world programs. In
this paper, we have designed SOSRepair, a novel approach
to using semantic code search to repair programs, focusing
on extending expressiveness to that of real-world C pro-
grams and improving the search mechanism’s scalability.
We evaluate SOSRepair on 65 defects in large, real-world
C programs, such as php and python. SOSRepair produces
patches for 22 (34%) of the defects, and 9 (41%) of those
patches pass 100% of independently-generated, held-out
tests. SOSRepair repairs a defect no prior techniques have,
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and produces higher-quality patches. In a semi-automated
approach that manually specifies the fault’s location, SOS-
Repair patches 23 defects, of which 16 (70%) pass all inde-
pendent tests. Our results suggest semantic code search
is a promising approach for automatically repairing real-
world defects.
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