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ABSTRACT
The ubiquitously-installed Java Runtime Environment (JRE)
provides a complex, flexible set of mechanisms that support
the execution of untrusted code inside a secure sandbox.
However, many recent exploits have successfully escaped the
sandbox, allowing attackers to infect numerous Java hosts.
We hypothesize that the Java security model affords devel-
opers more flexibility than they need or use in practice, and
thus its complexity compromises security without improving
practical functionality. We describe an empirical study of the
ways benign open-source Java applications use and interact
with the Java security manager. We found that developers
regularly misunderstand or misuse Java security mechanisms,
that benign programs do not use all of the vast flexibility
afforded by the Java security model, and that there are clear
differences between the ways benign and exploit programs
interact with the security manager. We validate these results
by deriving two restrictions on application behavior that
restrict (1) security manager modifications and (2) privilege
escalation. We demonstrate that enforcing these rules at
runtime stop a representative proportion of modern Java
7 exploits without breaking backwards compatibility with
benign applications. These practical rules should be enforced
in the JRE to fortify the Java sandbox.

1. INTRODUCTION
There are three broad reasons that Java is such a popular

target for attackers. First, the Java Runtime Environment
(JRE) is widely installed on user endpoints. Second, the
JRE can and often does execute external code, in the form of
applets and Java Web Start (JWS) applications [1, 2]. Finally,
there are hundreds of known and zero-day vulnerabilities [3]
in Java. In the common scenario, often referred to as a
“drive-by download,” attackers lure users to a website that
contains a hidden applet to exploit JRE vulnerabilities.

In theory, such attacks should not be so common: Java
provides a sandbox to enable the safe execution of untrusted
code and to isolate components from one another. This
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should protect both the host application and machine from
malicious behavior. In practice, these security mechanisms
are problematically buggy such that Java malware is often
able to alter the sandbox’s settings [4] to override security
mechanisms. Such exploits take advantage of defects in either
the JRE itself or the application’s sandbox configuration to
disable the security manager, the component of the sandbox
responsible for enforcing the security policy [5, 6, 7, 8].

In this paper, we investigate this disconnect between theory
and practice. We hypothesize that it results primarily from
unnecessary complexity and flexibility in the design and
engineering of Java’s security mechanisms. For example,
applications are allowed to change the security manager at
runtime, whereas static-only configuration of the manager
would be more secure. The JRE also provides a number of
security permissions that are so powerful that a sandbox that
enforces any of them cannot be secure. We hypothesize that
benign applications do not need all of this power, and that
they interact with the security manager in ways that are
measurably different from exploits. If true, these differences
can be leveraged to improve the overall security of Java
applications, and prevent future attacks.

To validate these insights, we conducted an empirical study
to answer the question: How do benign applications interact
with the Java security manager? We studied and character-
ized those interactions in 36 open-source Java projects that
use the security manager, taken from the Qualitas Corpus
[9] and GitHub.

We discovered two types of security managers in practice.
Defenseless managers enforce a policy that allows sandboxed
code to modify sandbox settings. Such applications are inher-
ently insecure, because externally-loaded malicious code can
modify or disable the security manager. We found defense-
less managers in use by applications that modified sandbox
settings at runtime, typically as workarounds to using more
complicated (but more correct) security mechanisms or to en-
force policies or implement functionality unrelated to security.
We believe that such applications use the sandbox to imple-
ment certain non-security requirements because Java does
not provide better mechanisms for doing so. The sandbox is
not intended to be used this way, and these use cases both
reduce security in practice and limit the potential exploit
mitigations that are backwards compatible with benign appli-
cations. On the other hand, applications with self-protecting
managers do not allow sandboxed code to modify security
settings. It might still be possible to exploit such applications
due to defects in the JRE code that enforces security policies,
but not due to poorly-deployed local security settings.



We found that software that uses the sandbox as intended—
for protection from malicious external code—does not use its
vast flexibility. For these applications, the flexibility decreases
their security without obviously benefiting the developers or
application functionality. In fact, we found and reported a
security vulnerability related to the sandbox in one of the
applications under study.

We propose two runtime rules that restrict the flexibility of
the sandbox and fortify Java against the two most common
modern attack types without breaking backwards compat-
ibility in practice. We evaluate our rules with respect to
their ability to guard against ten applets in a popular exploit
development and delivery framework, Metasploit 4.10.01,
that successfully attack unpatched versions of Java 7. Taken
together, the rules stopped all ten exploits and did not break
backwards-compatibility when tested against a corpus of be-
nign applications. We are engaged in an ongoing discussion
on the OpenJDK security-dev mailing list about implement-
ing runtime enforcement of these rules in the JVM itself.

The contributions of this papers are as follows:

• A study of open-source applications’ interactions with the
security manager (Section 4). We identify open-source
applications that enforce constraints on sub-components
via the Java sandbox, as well as unconventional behaviors
that indicate usability and security problems that the Java
security model can be improved to mitigate.

• An enumeration of Java permissions that make security
policies difficult to enforce (Section 2.2), a discussion of
real-world cases where these permissions are used (Sec-
tions 4.3 and 4.4), and a sandbox-bypassing exploit for a
popular open-source application made vulnerable due to
their use (Section 4.4).

• Two novel rules for distinguishing between benign and
malicious Java programs, validated empirically (Section 5).

• A discussion of tactics for practically implementing the
rules, with a case for direct JVM adoption (Section 5.1).

We begin by discussing necessary background on the Java
sandbox and exploits (Section 2). We present the methodol-
ogy and dataset for our empirical study in Section 3. The
results of the study are discussed in Section 4, leading to our
rules which are defined and evaluated in Section 5. Finally,
we discuss limitations, cover related work, and conclude in
Sections 6, 7, and 8 respectively.

2. BACKGROUND
In this section, we describe the Java sandbox (Section 2.1),

distinguish between defenseless and self-protecting security
managers (Section 2.2) and provide a high-level description
of how Java exploits commonly work (Section 2.3).

2.1 The Java sandbox
The Java sandbox is designed to safely execute code from

untrusted sources using components summarized in Figure
1. When a class loader loads a class (e.g., from the network,
filesystem, etc.), it assigns the class a code source that in-
dicates the code origin, and associates it with a protection
domain. Protection domains segment the classes into groups
by permission set. These sets contain permissions that explic-
itly allow actions with security implications, such as writing
to the filesystem, accessing the network, etc [10]. Unlisted

1http://www.metasploit.com/
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Figure 1: High-level summary of the Java sandbox.

actions are disallowed. Policies written in the Java policy
language [11] define permission sets and their associated code
sources. By default, all classes not loaded from the local file
system are run within a restrictive sandbox that restricts
their ability to interact with the host application or machine.

The sandbox is activated by setting a security manager,
which acts as the gateway between the sandbox and the rest
of the application. Whenever a sandboxed class attempts to
execute a method with security implications, that method
queries the security manager to determine if the operation
should be permitted. To perform a permission check, the
security manager walks the call stack to ensure each class in
the current stack frame has the specific permission needed
to perform the action.2

Missing checks in code that should be protected are a
common source of Java vulnerabilities, because the security-
critical code must initiate the check. Note that such vulner-
abilities lie in the JRE itself (i.e., the code written by the
Java developers), not in code using the sandbox to execute
untrusted code.

2.2 Defenseless vs. self-protecting managers
Java is flexible about when the sandbox is enabled, config-

ured, and reconfigured. The default case for web applets and
applications that use Java Web Start is to set what we call a
self-protecting security manager before loading the network
application. The security manager, and thus the sandbox, is
self-protecting in the sense that it does not allow the appli-
cation to change sandbox settings. Self-protecting managers
might still be exploited due to defects in the JRE code that
enforces security policies, but not due to poorly-deployed
local security settings. We contrast self-protecting managers
with those we call defenseless, meaning that sandboxed ap-
plications are permitted to modify or disable the security
manager. A defenseless manager is virtually useless in terms
of improving the security of either a constrained application
or its host. However, we find in Section 4 that develop-
ers have found interesting non-security uses for defenseless
managers in otherwise benign software.

We evaluated whether each of the available Java permis-
sions can lead to sandbox bypasses. Table 1 summarizes the
set of permissions that distinguish between self-protecting

2Stack-based access control is discussed in more detail in [12,
13, 14, 15]



Table 1: List of sandbox-defeating permissions. A security manager that enforces a policy containing any of
these permission results in a defenseless sandbox. A subset of these permissions were first identified in [7].

Permission Risk

RuntimePermission(“createClassLoader”) Load classes into any protection domain
RuntimePermission(“accessClassInPackage.sun”) Access powerful restricted-access internal classes
RuntimePermission(“setSecurityManager”) Change the application’s current security manager
ReflectPermission(“suppressAccessChecks”) Allow access to all class fields and methods as if they are public
FilePermission(“<<ALL FILES>>”, “write, execute”) Write to or execute any file
SecurityPermission(“setPolicy”) Modify the application’s permissions at will
SecurityPermission(“setProperty.package.access”) Make privileged internal classes accessible

and defenseless security managers.

2.3 Exploiting Java code
While the Java sandbox should prevent malicious applets

from executing their payloads, certain defects in the JRE
implementation of these security mechanisms can permit ma-
licious code to set a security manager to null.3 This disables
the sandbox and enables all operations. This approach was
common in drive-by downloads between 2011 and 2013 [5].

There are a couple of ways to maliciously disable a security
manager. Type confusion attacks break type safety to
craft objects that can perform operations as if they have a
different type. Commonly, attackers craft objects that (1)
point to the System class to directly disable the sandbox
or (2) act as if they had the same type as a privileged
class loader to elevate a payload class’s privileges (see CVE-
2012-0507 [18]). In confused deputy attacks, exploitative
code “convinces” another class to return a reference to a
privileged class [19] known to contain a vulnerability that
can be attacked to disable the sandbox (see CVE-2012-4681
[20]). The “convincing” is necessary because it is rare that a
vulnerable privileged class is directly accessible to all Java
applications; doing so violates the access control principle
that is part of the Java development culture.4

Modern exploits that manipulate the security manager
simply disable it. This is possible largely because the Java
security model grants enormous flexibility to set, weaken,
strengthen, or otherwise change a security manager after its
creation. Our core thesis is that the overall security of Java
applications could be improved by simplifying these security
mechanisms, without loss to benign functionality.

3. SECURITY MANAGER STUDY
In this section, we describe the dataset and methodology

for our empirical study of the open-source Java application
landscape. Our basic research question is: How do benign
open-source Java applications interact with the security man-
ager? The answer to this question informs which JVM-level
modifications can be used to improve security while main-
taining backwards compatibility. There are four possibilities:

1. Benign applications never disable the security manager.
If true, only exploitative code attempts to disable the
security manager, and the ability to do so could be re-
moved from the JVM. This would be easy to implement

3Many of the recent vulnerabilities would not have been
introduced if the JRE were developed strictly following “The
CERT Oracle Secure Coding Standard for Java.” [16, 6, 17]
4https://blogs.oracle.com/jrose/entry/the isthmus in the
vm

but would not guard against exploits that weaken the
sandbox without disabling it.

2. Benign applications do not weaken a set security manager.
If true, the JVM could be modified to prevent any weak-
ening or disabling of the sandbox. This is more powerful
than simply removing the ability to disable the security
manager but is significantly more difficult to implement.
For example, if a permission to write to a file is replaced
by a permission to write to a different file, is the sandbox
weakened, strengthened, or equally secure?

3. Benign applications never modify the sandbox if a self-
protecting security manager has been set. If true, the JVM
could disallow any change to a self-protecting security
manager. A runtime monitor in the JVM can determine
if a security manager is self-protecting (based on the per-
mission set) when an application attempts to change the
sandbox. This is much easier to implement soundly than
the previously-described approach, and guards against
the same number and types of exploits.

4. Benign applications do not change a set security manager.
If true, any attempted change to an already established
security manager can be considered malicious. This would
be the ideal result: restricting this operation is easy to
implement in the JVM.

This section describes our study dataset (Section 3.1) and
methodology (Section 3.2); we describe results in Section 4.

3.1 Dataset
In the absence of an existing corpus of benign applications

that interact with the manager, we combined relevant sub-
jects from the QualitasCorpus (QC) version 20130901 [9], a
collection of popular open source Java applications created
for empirical studies, and GitHub. While QC contains 112
applications, we found only 24 applications interacted with
the security manager. To increase the size and diversity
of the dataset (beyond those that meet the QC inclusion
requirements), we added 12 applications from Github that
also interact with the security manager.5 Table 2 lists the 36
applications that comprise the dataset. Version numbers and
Git commit hashes are available in an online supplement.6

We identified relevant applications in the QC set by search-
ing for the keyword SecurityManager in the applications’
source code. We performed a similar process on the GitHub
set, adding the keywords System.setSecurityManager( and

5Applets, commonly run in a sandboxed environment, would
be natural study subjects. However, we were unable to find
any benign applets that interacted with the security manager,
likely because of Java’s strict restrictions on their behavior.
6https://github.com/SecurityManagerCodeBase/
ProjectsProfiles/blob/master/projects list.xlsx



Table 2: Security manager interactions dataset.

App name Description KLOC Repo

Apache Ant Java Project Builder 265 QC
Apache Batik SVG Image Toolkit 366 QC
Apache Derby Relational Database 1202 QC
Eclipse IDE 7460 QC
FreeMind Mind-Mapping Tool 86 QC
Galleon Media Server 83 QC
Apache Hadoop Distrib. Comp. Frwk. 1144 QC
Hibernate Obj.-Rel. Mapper 376 QC
JBoss App. Middleware 968 QC
JRuby Ruby Interpreter 372 QC
Apache Lucene Search Software 726 QC
Apache MyFaces Server Software 328 QC
NekoHTML HTML Parser 13 QC
Netbeans IDE 8490 QC
OpenJMS Messaging Service 112 QC
Quartz Job Scheduler 66 QC
QuickServer TCP Server Frwk. 64 QC
Spring Web Dev. Library 828 QC
Apache Struts Web Dev. Library 277 QC
Apache Tomcat Web Server 493 QC
Vuze File Sharing App. 895 QC
Weka Machine Learning Algs. 531 QC
Apache Xalan XML Trans. Library 204 QC
Apache Xerces XML Parsing Library 238 QC
AspectJ Java Extension 701 GH
driveddoc Application Connector 7 GH
Gjman Development Toolkit <1 GH
IntelliJ IDEA IDE 4094 GH
oxygen-libcore Android Dev. Lib. 1134 GH
refact4j Meta-model Frwk. 21 GH
Security-Manager Alt. Security Manager 4 GH
Spring-Modules Spring Extension 212 GH
System Rules JUnit Extension 2 GH
TimeLag Sound Application 1 GH
TracEE JavaEE Support Tool 18 GH
Visor Closure Library 1 GH

System.setSecurityManager(null) to remove false posi-
tives and find applications that disable the manager, re-
spectively. We picked the top 6 applications from the results
for each keyword, removing manually-identified false posi-
tives and duplicates. We studied each GitHub program at
its most recent commit and each QC program at its most
recent stable release as of June 2014.

3.2 Methodology
We performed a tool-supported manual inspection of the

applications in our dataset to group them into qualitative,
non-overlapping categories based on their interactions with
the security manager. The first category includes applica-
tions that can or do change a set security manager at run
time. If an application did not change the security manager,
we looked to see if it set a single security manager during
execution. If so, it was categorized as sets an immutable
manager. Applications that interact with a security manager
that they did not set do so to adjust to different security
settings. We categorized any such application as supports
being sandboxed. For the final category, if a program did
not contain any interaction with the security manager in the
main application, but did interact with it in test cases, we
categorized the application as only interacts in unit tests;
such applications use unit test interactions to test against
multiple security settings.

We created static and dynamic analysis tools to assist in

a manual inspection of each application’s security manager
interactions. We created a FindBugs [21] plugin that uses
a sound dataflow analysis to determine which manager defi-
nitions reach calls to System.setSecurityManager(). The
dynamic analysis tool uses the Java Virtual Machine Tool
Interface (JVMTI) [22] to set a modification watch on the se-

curity field of Java’s System class, which stores the security
manager object for the application.

We split the dataset between two of the authors, who each
analyzed applications using the following steps:

1. Run grep on all Java source files in the application to find
lines containing the keyword SecurityManager. Manually
inspect the results in their original source code files to un-
derstand how the application interacts with the sandbox.

2. Run the static analysis on retained applications. Manually
inspect the returned code, focusing on initialization.

3. Use the dynamic analysis, using parameters informed by
the previous steps, to verify conclusions.

4. Summarize operations performed on the security man-
ager, categorize accordingly, and determine if the security
manager is self-protecting or defenseless.

We undertook a pilot study where each author indepen-
dently inspected the same six applications and compared
their results. This ensured the two authors understood the
analysis steps and produced consistent results.

4. STUDY RESULTS
In this section, we describe the results of our empirical

study of open-source Java programs and how they interact
with the security manager.

4.1 Summary of benign behaviors
Recall that in Section 3, we refined the high-level research

question—how do benign applications interact with the secu-
rity manager?—into four possibilities, and that the possible
mitigations required in each case varied. Revisiting those
possibilities with respect to our dataset, we found:

1. Benign applications do sometimes disable the security
manager. We found that such applications typically use a
defenseless sandbox for non-security purposes.

2. Several benign applications do provide methods for the
user to dynamically change the security policy or the
manager in ways that can reduce sandbox security.

3. Benign applications do not change the security manager
if a self-protecting security manager has been set.

4. Benign applications do sometimes change a set security
manager. We observed multiple applications that changed
a set security manager.

In terms of the four possible mitigation strategies, only the
third—a runtime monitor that blocks modifications to a self-
protecting security manager—can improve security without
breaking benign behavior. Fortunately, this technique does
not require complex, context-sensitive information about
whether a change to a policy weakens the sandbox or not.

4.2 Applications by category
Table 3 summarizes our dataset into the categories de-

scribed in Section 3. The applications in categories 1, 3, and
4 are consistent with any of the potential JVM modifications
because they do not interact with the security manager in



Table 3: Classification of application interactions
with the security manager.

Type of Interaction QC GitHub Total

1. Sets an immutable manager 6 1 7
2. Changes set manager 5 3 8
3. Supports being sandboxed 10 3 13
4. Interacts only in unit tests 3 5 8

691 System.setSecurityManager(new AntSecurityManager(
originalSM , Thread.currentThread ()));

703 // ... execute Ant...

723 finally {
724 // ...
725 if (System.getSecurityManager () instanceof

AntSecurityManager) {
726 System.setSecurityManager(originalSM);
727 }

Figure 2: Snippet of Eclipse code that uses a security
manager to prevent Ant from terminating the JVM.

complex ways (i.e., if all applications fell into these categories,
the Java security model could be dramatically simplified by
eliminating most of its flexibility without breaking existing
applications). We will not discuss applications in categories
3 or 4 further, because they did not result in useful insights
about common benign behaviors. Most applications in the
Sets an immutable manager category use the sandbox cor-
rectly. We discuss a few particularly interesting examples
below. There are eight applications in the Changes set man-
ager category, which is the most interesting in terms of
possible modifications to the Java security model. They
make the most use of Java’s flexible security mechanisms.
We therefore focus on these applications in our discussion.

We discuss applications that use the sandbox for non-
security purposes in Section 4.3 and applications that use
the sandbox for its intended security purposes in Section 4.4.

4.3 Non-security uses of the sandbox
Most of the applications that interact with the sandbox in

non-security ways did so to enforce architectural constraints
when interacting with other applications; the rest forcibly
disabled the sandbox to reduce development complexity. This
misappropriation of Java’s security features increases the
difficulty of mitigating attacks against them by increasing the
odds of backwards compatibility issues. These applications
included applications in both categories 1 and 2, and all
require defenseless security managers.

4.3.1 Enforcing architectural constraints
Java applications often call System.exit() when an un-

recoverable error occurs. When such an application is used
as a library, System.exit() closes the calling application as
well, because both are running in the same JVM. To prevent
this without modifying the library application, a calling ap-
plication needs to enforce the architectural constraint that
called library code cannot terminate the JVM.

We found three applications in our dataset that enforce
this constraint by setting a security manager that prevents
System.exit() calls: Eclipse, GJMan, and AspectJ.7 For

7GJMan contains a code comment referencing a blog post

example, Eclipse uses Ant as a library, and Ant calls Sys-

tem.exit() to terminate a build script in the event of an
unrecoverable error. However, when Eclipse uses Ant as a
library, it reports an error to the user and continues to exe-
cute. Figure 2 shows how Eclipse uses a security manager to
enforce this constraint; Eclipse restores the original manager
after Ant closes.

This technique does enforce the desired constraint, and ap-
pears to be the best solution available in Java at the moment.
However, it is problematic for applications using the sandbox
for security purposes. The technique requires the applica-
tion to dynamically change the security manager, which in
turn requires a defenseless manager. As a result, the calling
applications themselves cannot be effectively sandboxed, as
might be desirable e.g., when run from Java Web Start. The
host machine thus can not be protected from the application
itself, or the library code that the application calls.

4.3.2 Web applications outside the sandbox
We found web applications that insist on being run unsand-

boxed. By default, Java executes such applications inside a
self-protecting sandbox with a restrictive policy that excludes
operations like accessing local files, retrieving resources from
third party servers, or changing the security manager.

Applications in our set that require these permissions opted
to run outside of the sandbox. We found two applications that
do this: Eclipse and Timelag. Both applications attempted
to set the security manager to null at the beginning of
execution. A restrictive sandbox catches this as a security
violation and terminates the application; to run it, the user
must ensure that such a sandbox is not set. The rationale
for disabling the manager in Eclipse is explained in a code
comment that reads, “The launcher to start eclipse using
webstart. To use this launcher, the client must accept to
give all security permissions.” Timelag performs the same
operation, but without associated explanatory comments that
we could find, thus we can only infer developers motivation.

The developers of Eclipse and Timelag could have either:
1) painstakingly constructed versions of the application that
run reasonably using only the permissions available within
the sandbox (e.g. by detecting the sandbox and avoiding or
disabling privileged operations) or 2) gotten the applications
digitally signed by a recognized certificate authority and con-
figured to run with all permissions. These developers likely
found these alternatives overly burdensome. The examples
from our study suggest that developers are sometimes willing
to exchange security guarantees in the interest of avoiding
such labor-intensive options.

4.4 Using the security manager for security
Other applications interact with the manager in security-

oriented ways. Batik, Eclipse, and Spring-modules allow the
user to set and change an existing manager; Ant, Freemind,
and Netbeans explicitly set then change the manager.

Batik SVG Toolkit allows users to constrain applications
by providing a method to turn the sandbox on or off. This
trivially requires a defenseless sandbox. The Batik download
page provides several examples of library use, one of which
(the “rasterizer” demo) enables and disables the sandbox.
However, there seems to be no reason to do so in this case
other than to demonstrate the functionality; we were unable

that we believe is the origin of this solution. http://www.
jroller.com/ethdsy/entry/disabling system exit



1 <permi s s i ons>
2 <grant c l a s s=”java . s e c u r i t y . Al lPermis s ion ”/>
3 <revoke c l a s s=”java . u t i l . PropertyPermiss ion ”

/>
4 </ permi s s i ons>

Figure 3: An Apache example of an Ant build script
element to grant all but one permission. This results
in a defenseless security manager; thus revoking one
permission does not lead to application security.

to discern the rationale from the examples or documentation.
Ant, Freemind, and Netbeans explicitly set then change

the manager, requiring the ability to reconfigure, disable,
or weaken the sandbox at runtime to claim backwards com-
patibility. Ant allows users to create scripts that execute
Java classes during a build under a user-specified permis-
sions set. Figure 3 shows an example permission set from
the Ant Permissions website.8 The grant element provides
the application all permissions, while the revoke element
restricts the application from using property permissions.
Due the use of a defenseless security manager, malicious
code can easily disable the sandbox and perform all actions,
including those requiring PropertyPermissions. Although
this policy is only an example, its existence suggests possible
confusion on the part of either its author or its consumers
about appropriate security policies for untrusted code.

Ant saves the current manager and replaces it with a
custom manager before executing constrained external code.
The custom manager is not initially defenseless, but contains
a private switch to make it so for the purposes of restoring
the original manager. Ant therefore catches applications
that perform actions restricted by the user while typically
protecting sandbox settings. However, it is not clear this
implementation is free of vulnerabilities. Netbeans similarly
sets a security manager around separate applications.

Both of these cases require a defenseless security manager,
otherwise the application would not be able to change the
current security manager. Similar to the case in Section 4.3.2,
Java provides an “orthodox” mechanism to achieve this goal
while aligning with intended sandbox usage: a custom class
loader that loads untrusted classes into a constrained pro-
tection domain. This approach is more clearly correct and
enables a self-protecting sandbox.

An attempt to solve a similar problem in Freemind 0.9.0
illustrates the dangers of a defenseless manager. Freemind
is a mind mapping tool that allows users to execute Groovy
scripts on such maps (Groovy is a scripting language that is
built on top of the JRE). A Java application that executes
such a script typically allows it to execute in the same JVM
as the application itself. As a result, a specially-crafted mind
map can exploit users that run its scripts.

Freemind implements an architecture that is intended to
allow the sandbox to enforce a stricter policy on the Groovy
scripts than on the rest of Freemind. The design centers
around a custom security manager that is set as the system
manager in the usual manner. This custom manager contains
a field holding a proxy manager for script execution. In this
design, all checks to the security manager are ultimately
deferred to the proxy manager in this field. When this field
is set to null, the sandbox is effectively disabled even though

8https://ant.apache.org/manual/Types/permissions.html

31 /** By default , everything is allowed. But you
32 * can install a different security controller
33 * once , until you install it again. Thus , the
34 * code executed in between is securely
35 * controlled by that different security manager.
36 * Moreover , only by double registering the
37 * manager is removed. So, no malicious code
38 * can remove the active security manager.
39 * @author foltin */
40 public void setFinalSecurityManager(

SecurityManager pFinalSM) {
41 if(pFinalSM == mFinalSM){
42 mFinalSM = null;
43 return;
44 }
45 if(mFinalSM != null) {
46 throw new SecurityException("There is a

SecurityManager installed already.");
47 }
48 mFinalSM = pFinalSM;
49 }

Figure 4: Initialization of Freemind’s security man-
ager, including a custom proxy. This demonstrates
two problems with the sandbox as used by develop-
ers: (1) using Java policies as a blacklist is dangerous
and (2) modifying the manager at runtime requires a
work-around (ineffective or incomplete, in this case)
to defend against malicious users.

the system’s manager is still set to the custom manager.
Figure 4 shows how Freemind sets the proxy security man-

ager field. Once a manager is set, if setFinalSecurityMan-

ager is called again with a different security manager, a
SecurityException is thrown, but calling the method with
a reference to the set manager disables the sandbox. The
comment implies that this sequence of operations was imple-
mented to prevent malicious applications from changing the
settings of the sandbox.

Freemind sets a proxy security manager to stop unsigned
scripts from creating network sockets, accessing the file-
system, or executing programs before initiating execution of
a Groovy script. The manager grants all other permissions
by overriding permission checks with implementations that
do nothing, thus any script can turn off the sandbox.

We demonstrated that the custom security manager is
easily removed using reflection to show that the problem is
more complex than simply fixing permission checks related
to setting the security manager. Figure 5 shows a Groovy
exploit to turn off the manager. The script gets a reference
to the system’s manager and its class. The class has the
same type as the custom security manager, thus the exploit
gets a reference to the proxy manager field. The field is made
public to allow the exploit to reflectively null it, disabling
the sandbox to allow “forbidden” operations. We notified
Freemind developers of this vulnerability in August of 2014
and offered our advice in achieving their desired outcome.

All of these applications ran afoul of the Java sandbox’s
flexibility even though they attempted to use it for its in-
tended purpose. They must all be run with defenseless
managers, and those that manipulate the set security policy
dynamically do so problematically. While Java does provide
the building blocks for constraining a subset of an application
with a policy that is stricter than what is imposed on the
rest of the application, it is clear that it is too easy to get
this wrong: We’ve seen no case where this goal was achieved



1 de f sm = System . getSecurityManager ( )
2 de f f i n a l sm = sm . getC las s ( ) . ge tDec la r edF ie ld (

”mFinalSecurityManager ”)
3 f i n a l sm . s e tAc c e s s i b l e ( t rue )
4 f i n a l sm . s e t (sm , nu l l )
5 new F i l e ( ”hacked . txt ”) . withWriter { out −> out

. wr i t eL ine ( ”HACKED! ”) }

Figure 5: Exploit that breaks out of the scripting
sandbox in Freemind to execute arbitrary code.

in a way that is known to be free of vulnerabilities. These
case studies support our general claims that the Java security
mechanisms are overly complex, and that this complexity
contributes to security vulnerabilities in practice.

5. FORTIFYING THE SANDBOX
Based on our study of how open-source Java programs

interact with the security manager, we propose two changes
to the current Java security model to stop exploits from dis-
abling self-protecting managers. These rules can be applied
to all Java applications. These rules reduce the flexibility and
thus complexity of the Java security model without breaking
backwards compatibility in practice:
Privilege escalation rule. If a self-protecting security
manager is set for the application, a class may not directly
load a more privileged class. This rule is violated when the
protection domain of a loaded class implies a permission that
is not implied in the protection domain that loaded it.
Security manager rule. The manager cannot be changed
if a self-protecting security manager has been set by the
application. This is violated when code causes a change in
the sandbox’s configuration, the goal of many exploits.

In this section, we evaluate the protection merits and back-
wards compatibility of these rules through an implementation
of runtime monitors that enforce them. This evaluation was
done in collaboration with a large aerospace company. Sec-
tion 5.1 discusses how we implemented our runtime monitors,
Sections 5.2 and 5.3 explain the methodology behind and
results of experiments that evaluate the rules’ ability to stop
exploits while maintaining backwards compatibility.

5.1 Implementation using JVMTI
JVMTI is a native interface that enables the creation

of dynamic analysis tools, called agents, such as profilers,
debuggers, or thread analyzers. JVMTI agents can intercept
and respond to events such as class or thread creation, field
access or modification, breakpoints, etc. JVMTI requires
turning off the just-in-time compiler (JIT) to enforced the
security manager rule, which slows down program execution
enough that our monitors are not suitable for adoption with
current JVMTI implementations. A more correct and general
approach is to embed our rules directly in the JRE. We are
currently in communication with the OpenJDK developers
on their security-dev mailing list about doing so.

5.1.1 Enforcing the privilege escalation rule
To enforce the Privilege Escalation rule, our agent stops a

program when a class is loaded to check for privilege escala-
tion. The existence of restricted-access packages complicates
this implementation slightly. Restricted-access packages are
technically public but are intended only for internal JRE
use. Benign applications can (and often do) use JDK classes

to access these restricted implementations (e.g., much of
the functionality in java.lang.reflect is backed by the
restricted-access sun package). We therefore allow the JRE
itself to load restricted-access packages at runtime, but pre-
vent such loading from the application classes. Because
exploit payloads are not implemented in restricted-access
JRE packages, the Privilege Escalation rule can permit this
standard behavior while preventing attacks.

Note that there are two ways that application code might
directly access such packages in the current security model:
(1) exploit a vulnerability in a class that can access them or
(2) receive permission from the security manager via an ac-

cessClassInPackage("sun") permission in the policy. The
first behavior is undesirable, and is thus rightfully prevented
by the enforcement of this rule. The second behavior would
require a defenseless manager.

5.1.2 Enforcing the security manager rule
We enforce the Security Manager rule by monitoring every

read from and write to the field in the System class that stores
the security manager (the security field). The agent stores
a shadow copy of the most recently-set security manager.
Whenever the field is written, the agent checks its shadow
copy of the manager. If the shadow copy is null, the manager
is being set for the first time. If the new manager is self-
protecting, the agent updates the shadow copy. If not, the
agent stops performing stringent checks because the rule does
not apply in the presence of a defenseless manager.

The agent checks modifications to the security manager
and validates it when it is referenced. The latter is necessary
to catch type confusion attacks, which change the manager
without triggering a JVMTI modification event. The tool
detects unauthorized changes every time the manager is used
by comparing the current manager with the shadow copy
for changes. Type confusion attacks that masquerade as a
privileged class loader will not be detected by our agent, and
may still be dangerous when exploited in collaboration with
other JRE vulnerabilities.

5.2 Effectiveness at fortifying the sandbox
We evaluated our rules’ ability to block sandbox-disabling

exploits on ten Java 7 exploits for the browser from Metas-
ploit 4.10.0, an exploit development and delivery framework.
We ran the exploits on 64-bit Windows 7 against the initial
release of version 7 of the JRE. The ten exploits in question
include both type confusion and confused deputy attacks.
Metasploit contains many Java exploits outside of the subset
we used, but the excluded exploits either only work against
long obsolete versions of the JRE or are not well positioned
to be used in drive-by downloads. Our results thus show our
rules stop the vast majority of current exploits.

We ran the exploits (1) without the agent, (2) with the
agent but only enforcing the Privilege Escalation rule, and (3)
while enforcing both rules. We tested the Privilege Escalation
rule separately because while the Security Manager rule stops
all the exploits on its own, the Privilege Escalation rule stops
exploits earlier, has significantly less overhead, and can detect
attacks that are not explicitly targeting the manager. Table 4
summarizes our results. All ten of the exploits succeeded
without the agent. The Privilege Escalation rule stops four of
them. All ten were stopped when both rules were enforced.

Together, the rules are capable of stopping current exploit
tactics while narrowing available future tactics by blocking



Table 4: Effectiveness test results. The exploits are
taken from the subset of Metasploit 4.10.0 that ap-
ply in modern environments and follow a drive-by-
download paradigm. Taken together, the proposed
security model restrictions stop all tested exploits.

Monitor
CVE-ID Privilege Escalation Both

2011-3544 Attack Succeeded Attack Blocked
2012-0507 Attack Blocked Attack Blocked
2012-4681 Attack Succeeded Attack Blocked
2012-5076 Attack Succeeded Attack Blocked
2013-0422 Attack Blocked Attack Blocked
2013-0431 Attack Blocked Attack Blocked
2013-1488 Attack Succeeded Attack Blocked
2013-2423 Attack Succeeded Attack Blocked
2013-2460 Attack Blocked Attack Blocked
2013-2465 Attack Succeeded Attack Blocked

privilege escalation exploit routes.

5.3 Validating Backwards-Compatibility
By construction, the rules do not restrict benign behav-

ior in the applications we studied in Sections 3 and 4. To
mitigate the threat of overfitting and increase the general-
izability of our results, we also executed the monitors on
the applications in Table 5. This set is composed of be-
nign JWS applications that, like applets, are automatically
sandboxed. This expands the scope of our results beyond
the desktop applications studied above and evaluates our
proposed modifications in context (JWS programs are typ-
ically run with restrictive security policies). The set also
includes closed-source applications, providing evidence that
our results generalize beyond open source.

For each program, we confirmed that the agent does not
negatively affect benign workloads. ArgoUML, JavaOpen-
StreetMap, and mucommand contained unit tests that we
ran in the presence of our monitors. Costello, and JabRef
did not provide tests, but do provide example workloads that
we used in their place. CrossFTP contained neither tests nor
sample workloads, thus we fuzzed the GUI for 30 minutes
using a custom fuzzer and uploaded a file to a remote FTP
server as a sample workload.9

In each case, we confirmed that the tests, sample workloads,
or fuzzed executions worked without a security manager. To
sandbox the applications, we developed security policies using
a custom security manager that does not throw exceptions
and that prints out checked permissions as each program
executes. Finally, we ran each case a third time using our
policy and the standard Java security manager with our
monitors attached and enforcing the rules. The rules did not
break any unit tests, sample workloads, or fuzzed executions.

Finally, to validate our rules on representative desktop
applications, we confirmed the agent does not break programs
in the DaCapo Benchmarks v9.12-bach set [23]. DaCapo
systematically exercises each application using a range of
inputs to achieve adequate coverage. For all but one case,
we set a security manager that granted all permissions and
attached our monitors to application execution; we let Batik
set its own security manager because it exits if it cannot do
so. Our rules did not break any DaCapo applications.

9GUI fuzzing source code can be found at https://goo.gl/
ccTLVR.

6. LIMITATIONS AND VALIDITY
Limitations. Neither of the rules we propose in Section 5
will stop all Java exploits. While the rules catch all of
the exploits in our set, some Java vulnerabilities can be
exploited to cause significant damage without disabling the
security manager. For example, our rules will not detect type
confusion exploits that mimic privileged classes to perform
their operations directly. However, our rules substantially
improve Java sandbox security, and future work will be able
to build upon these results to create mitigation techniques
for additional types of exploits.
Internal validity. Our study results are dependent on
accurately studying the source code of applications and their
comments. In most cases, security manager interactions are
easily understood, but there are a few particularly complex
interactions that may be misdiagnosed. Furthermore, we
did not review all application code, thus we may have taken
a comment or some source code out of context in larger
applications. Finally, using two different reviewers may lead
to variations in the interpretations of some of the data.

We mitigated these threats by using a checklist, FindBugs
plugin, and JVMTI agent to provide reviewers consistent
processes for reviewing code and validating their results. Fur-
thermore, we inspected entire source files that contained secu-
rity manager operations. We tested our tools and processes in
a pilot study to find and mitigate sources of inconsistencies.
External validity. The study only includes open-source
applications. It is possible that closed-source applications
interact with the security manager in ways that we did not
see in the open-source community. However, we inspected
a few small closed-source applications with our aerospace
collaborators. We did not find any code that suggested this is
the case. This result is further supported by the closed-source
programs included in the dataset in Section 5.3.
Reliability. While the majority of the study is easily repli-
cable, GitHub search results are constantly changing. Using
GitHub to generate a new dataset would likely result in a
different dataset. Furthermore, over the course of the study,
one application either became a private repository or was
removed from GitHub (Visor).

7. RELATED WORK
As far as we are aware, no study has examined Java appli-

cations’ use of the sandbox. However, several recent studies
have examined the use of security libraries that can be overly
complex or misused, discovering rampant misuse and serious
vulnerabilities. Georgiev et al. uncovered vulnerabilities in
dozens of security critical applications caused by SSL library
protocol violations [24]. These applications misconfigured
high-level libraries such that the high-level libraries misused
low-level SSL libraries, which in turn failed silently. So-
morovsky et al. demonstrate vulnerabilities in 11 security
frameworks such that Security Assertion Markup Language
(SAML) assertions are not checked properly in the face of cer-
tain API mis-orderings [25]. Li et al. examined browser-based
password managers and found that many of their features
relied on an incorrect version of the same-origin policy, which
could allow attackers to steal user credentials [26].

Our rules increase the security of the sandbox by effec-
tively removing unnecessary features. Prior work has taken
a different approach, proposing to re-implement the Java
sandbox or add to it to increase security. Cappos et al. cre-



Table 5: Backwards compatibility dataset.

Name Description KLOC Workload Latest Commit

ArgoUML UML Tool 389 1244 test cases 1/11/15
Costello GUI Testing Frontend closed source 9 provided examples 5/09/12
CrossFTP FTP Client closed source GUI fuzzing, sample workload 1/18/15
JavaOpenStreetMap Map Editor 343 406 test cases 1/18/15
JabRef Reference Manager 148 3 provided examples 3/11/14
mucommander File Manager 106 27 test cases 1/23/14

ated a new sandbox structure involving a security-isolated
kernel separating sandboxed applications from the main sys-
tem [27]. They validated this structure by translating past
Java CVEs into exploits for the new kernel. Provos et al.
describe a method of separating privileges to reduce privi-
lege escalation [28]. Their approach is partially implemented
in the Java security model. Li and Srisa-an extended the
Java sandbox by providing extra protection for JNI calls [29].
Their implementation, Quarantine, separates JNI accessible
objects to a heap which contains extra protection mecha-
nisms. The performance of their mechanism is also measured
using DaCapo. Siefers et al. created a tool, Robusta, which
separates JNI code into another sandbox [30]. Sun and Tan
extend the Robusta technique to be JVM independent [31].

Java applets are the most common ways to transmit Java
exploits. Detectors have been created to identify drive-
by downloads in JavaScript [32], and in Adobe Flash [33].
Helmer et al. used machine learning to identify malicious
applets [34]. Their approach monitored system call traces to
identify malicious behavior after execution. However, this
approach is entirely reactive. Our approach terminates ex-
ploits when they attempt to break out of the sandbox, before
they perform their payloads. Schlumberger et al. used ma-
chine learning and static analysis to identify common exploit
features in malicious applets [35]. Blasing et al. detect mali-
cious Android applications using static and dynamic analyses
of sandboxed executions [36]. Unlike these automated ap-
proaches, our rules show a better understanding of benign
sandbox interactions can inform unique mitigation strategies.

8. CONCLUSION
Li Gong, the primary designer of the Java security archi-

tecture, admitted in a ten year retrospective on Java Security
that he did not know how or how extensively the“fine grained
access control mechanism”(i.e. the Java sandbox) is used [37].
Our study fills in that gap.

Our empirical study of open-source applications supports
the hypothesis that the Java security model provides more
flexibility than developers use in practice. The study also
strongly suggests that the model’s complexity leads to unnec-
essary vulnerabilities and bad security practices. We further
validated the findings of our study by defining two rules,
which together successfully defeated Metasploit’s applet ex-
ploits without breaking backwards compatibility.

We take several general lessons from these findings. First,
Java should provide simpler alternative mechanisms for var-
ious common goals, such as constraining access to global
resources or adapting to multiple security contexts. We
found that developers sometimes use the sandbox to pre-
vent third party components from calling System.exit(),
a specific instance of a more general development problem:
frameworks often need to enforce constraints on plugins (e.g.,
to ensure non-interference). We also observed that develop-

ers who attempted to make non-trivial use of the sandbox
often do so incorrectly, even though the functionality in
question could theoretically be implemented correctly within
the current model (albeit with increased complexity). One
promising approach is to allow programmers to temporarily
strengthen security policies (e.g. by adding a permission).

We observed evidence that many developers struggle to
understand and use the security manager for any purpose.
This is perhaps why there were only 36 applications in our
sample. Some developers seemed to misunderstand the in-
teraction between policy files and the security manager that
enforces them. Others appear confused about how permis-
sions work, not realizing that restricting just one permission
but allowing all others results in a defenseless sandbox. Our
concerns here are shared by the IntelliJ developers, who in-
clude static analysis checks to warn developers that a security
expert should check all security manager interactions [38]. In
general, sandbox-defeating permissions should be packaged
and segregated to prevent accidentally defenseless sandboxes.
Finally, some developers appear to believe the sandbox func-
tions as a blacklist when, in reality, it is a whitelist. In total,
our results and observations suggest that the model itself
should be simplified, and that more resources—tool support,
improved documentation, or better error messages—should
be dedicated to helping developers correctly use the sandbox.

9. ACKNOWLEDGEMENTS
This material is based upon work supported by the U.S. De-

partment of Defense through the Office of the Assistant Sec-
retary of Defense for Research and Engineering (ASD(R&E))
under Contract HQ0034-13-D-0004, the National Security
Agency under Lablet Contract H98230-14-C-0140, and the
National Science Foundation Graduate Research Fellowship
Program under Grant No. DGE-1252522. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of ASD(R&E), NSA, or NSF.

10. REFERENCES
[1] L. Gong, M. Mueller, H. Prafullchandra, and

R. Schemers, “Going beyond the sandbox: An overview
of the new security architecture in the Java
Development Kit 1.2.,” in USENIX Symposium on
Internet Technologies and Systems, pp. 103–112, 1997.

[2] L. Gong and G. Ellison, Inside Java (TM) 2 Platform
Security: Architecture, API Design, and
Implementation. Pearson Education, 2003.

[3] IBM Security Systems, “IBM X-Force threat
intelligence report.”
http://www.ibm.com/security/xforce/, February 2014.

[4] L. Garber, “Have Java’s Security Issues Gotten out of
Hand?,” in 2012 IEEE Technology News, pp. 18–21,



2012.

[5] A. Singh and S. Kapoor, “Get Set Null Java Security.”
http://www.fireeye.com/blog/technical/2013/06/
get-set-null-java-security.html, June 2013.

[6] D. Svoboda, “Anatomy of Java Exploits.” http:
//www.cert.org/blogs/certcc/post.cfm?EntryID=136.

[7] A. Gowdiak, “Security Vulnerabilities in Java SE,” Tech.
Rep. SE-2012-01 Project, Security Explorations, 2012.

[8] J. W. Oh, “Recent Java exploitation trends and
malware,” Tech. Rep. BH-US-12, Black Hat, 2012.

[9] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li,
M. Lumpe, H. Melton, and J. Noble, “Qualitas corpus:
A curated collection of java code for empirical studies,”
in Asia Pacific Software Engineering Conference
(APSEC), pp. 336–345, Dec. 2010.

[10] “Permissions in the JDK.”
http://docs.oracle.com/javase/7/docs/technotes/
guides/security/permissions.html, 2014.

[11] “Default Policy Implementation and Policy File
Syntax.” http://docs.oracle.com/javase/7/docs/
technotes/guides/security/PolicyFiles.html.

[12] A. Banerjee and D. A. Naumann, “Stack-based access
control and secure information flow,” Journal of
Functional Programming, vol. 15, pp. 131–177, Mar.
2005.

[13] F. Besson, T. Blanc, C. Fournet, and A. Gordon,
“From stack inspection to access control: A security
analysis for libraries,” in Computer Security
Foundations Workshop, pp. 61–75, June 2004.

[14] D. S. Wallach and E. W. Felten, “Understanding Java
Stack Inspection,” in IEEE Symposium on Security and
Privacy, pp. 52–63, 1998.

[15] C. Fournet and A. D. Gordon, “Stack Inspection:
Theory and Variants,” in ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL), pp. 307–318, 2002.

[16] F. Long, D. Mohindra, R. C. Seacord, D. F. Sutherland,
and D. Svoboda, The CERT Oracle Secure Coding
Standard for Java. SEI Series in Software Engineering,
Addison-Wesley Professional, 1st ed., Sept. 2011.

[17] D. Svoboda and Y. Toda, “Anatomy of Another Java
Zero-Day Exploit.” https://oracleus.activeevents.com/
2014/connect/sessionDetail.ww?SESSION ID=2120,
Sept. 2014.

[18] “Vulnerability Summary for CVE-2012-0507.”
https://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2012-0507, June 2012.

[19] N. Hardy, “The Confused Deputy: (or Why
Capabilities Might Have Been Invented),” SIGOPS
Oper. Syst. Rev., vol. 22, pp. 36–38, Oct. 1988.

[20] “Vulnerability Summary for CVE-2012-4681.”
http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2012-4681, Oct. 2013.

[21] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”
SIGPLAN Not., vol. 39, pp. 92–106, Dec. 2004.

[22] “Java Virtual Machine Tool Interface.” https://docs.
oracle.com/javase/7/docs/technotes/guides/jvmti/.

[23] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
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