
39

DIRE and its Data: Neural Decompiled Variable Renamings

with Respect to Software Class

LUKE DRAMKO, JEREMY LACOMIS, and PENGCHENG YIN, Carnegie Mellon University, USA

ED SCHWARTZ, Carnegie Mellon University Software Engineering Institute, USA

MILTIADIS ALLAMANIS, Microsoft Research, UK

GRAHAM NEUBIG, BOGDAN VASILESCU, and CLAIRE LE GOUES, Carnegie Mellon

University, USA

The decompiler is one of the most common tools for examining executable binaries without the corresponding

source code. It transforms binaries into high-level code, reversing the compilation process. Unfortunately, de-

compiler output is far from readable because the decompilation process is often incomplete. State-of-the-art

techniques use machine learning to predict missing information like variable names. While these approaches

are often able to suggest good variable names in context, no existing work examines how the selection of

training data influences these machine learning models. We investigate how data provenance and the qual-

ity of training data affect performance, and how well, if at all, trained models generalize across software

domains. We focus on the variable renaming problem using one such machine learning model, DIRE. We

first describe DIRE in detail and the accompanying technique used to generate training data from raw code.

We also evaluate DIRE’s overall performance without respect to data quality. Next, we show how training

on more popular, possibly higher quality code (measured using GitHub stars) leads to a more generalizable

model because popular code tends to have more diverse variable names. Finally, we evaluate how well DIRE

predicts domain-specific identifiers, propose a modification to incorporate domain information, and show

that it can predict identifiers in domain-specific scenarios 23% more frequently than the original DIRE model.

CCS Concepts: • Security and privacy→ Software reverse engineering; • Software and its engineering→
Software maintenance tools

Additional Key Words and Phrases: Machine learning, decompilation, data provenance

ACM Reference format:

Luke Dramko, Jeremy Lacomis, Pengcheng Yin, Ed Schwartz, Miltiadis Allamanis, Graham Neubig, Bogdan

Vasilescu, and Claire Le Goues. 2023. DIRE and its Data: Neural Decompiled Variable Renamings with Respect

to Software Class. ACM Trans. Softw. Eng. Methodol. 32, 2, Article 39 (March 2023), 34 pages.

https://doi.org/10.1145/3546946

This material is based upon work supported in part by the Software Engineering Institute and National Science Foundation

(NSF awards CCF-1815287 and CCF-1910067). We also gratefully acknowledge hardware support (Quadro P6000 GPU) from

the NVIDIA Corporation.

Authors’ addresses: L. Dramko, J. Lacomis, P. Yin, G. Neubig, B. Vasilescu, and C. Le Goues, Carnegie Mellon University,

5000 Forbes Ave., Pittsburgh, Pennsylvania, USA, 15213; emails: lukedram@andrew.cmu.edu, {jlacomis, pcyin, gneubig}@

cs.cmu.edu, vasilescu@cmu.edu, clegoues@cs.cmu.edu; E. Schwartz, Carnegie Mellon University Software Engineering

Institute, Pittsburgh, Pennsylvania, USA; email: eschwartz@cert.org; M. Allamanis, Microsoft Research, UK, Cambridge;

email: miallama@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1049-331X/2023/03-ART39 $15.00

https://doi.org/10.1145/3546946

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

https://orcid.org/0000-0002-5845-5628
https://orcid.org/0000-0003-0653-5738
https://orcid.org/0000-0003-2739-1032
https://orcid.org/0000-0003-0094-4805
https://orcid.org/0000-0002-5819-9900
https://orcid.org/0000-0002-2072-3789
https://orcid.org/0000-0003-4418-5783
https://orcid.org/0000-0002-3931-060X
https://doi.org/10.1145/3546946
https://doi.org/10.1145/3546946
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546946&domain=pdf&date_stamp=2023-03-29

39:2 L. Dramko et al.

1 INTRODUCTION

Decompilers, i.e., tools such as Hex-Rays [22] and Ghidra [17], which help translate binaries into
code that resembles high-level languages such as C, are essential for software reverse engineers
looking to predict the behavior of malware [14, 56, 57], discover vulnerabilities [48, 52, 57], and
patch bugs in legacy software [48, 52]. Decompilers use sophisticated program analysis and heuris-
tics to reconstruct information about a program’s variables, types, functions, and control flow
structure, effectively increasing program comprehension for reverse engineers who would other-
wise work directly with binaries or with assembly code.

Still, the output of all existing decompilers is far from readable, as decompilation is often incom-
plete. Compilers discard source-level information and lower its level of abstraction in the interest
of binary size, execution time, and even obfuscation. As a result, comments, variable names, user-
defined types, and idiomatic structure are all lost at compile time, and are typically unavailable
in decompiler output. In particular, variable names, which are highly important for code compre-
hension and readability [16, 31], become nothing more than arbitrary placeholders such as VAR1

and VAR2. While many compilers offer the option to include debugging information that preserves
variable names in the resulting executable, malware authors and commercial vendors typically set
compiler flags to prevent this in an effort to frustrate security researchers or protect corporate
intellectual property.

To improve on existing decompilers, researchers have been developing a suite of deep-learning
based techniques to automatically infer informative variable names (and in some cases also user-
defined types) in a given context, e.g., DIRE [30], DIRECT [39], and DIRTY [9]. Since programmers
tend to write similar code in similar contexts [13, 23], such techniques can learn to infer natural

names, even if not necessarily the original ones pre-compilation. These techniques can be applied
as a post-processing step to decompilation, taking the output of decompilers as input and automat-
ically refactoring it. While the specifics of the learning approaches vary, the key idea that enables
learning such models is that one can generate arbitrary amounts of parallel training data given
access to open-source software repositories and standard compilers and decompilers; these data
consist of pairs of original source, with presumably human-written variable names, and corre-
sponding decompiler output, with placeholder variable names.

However, while results from prior work [9, 30, 39] show that, on average, the performance of
existing techniques on decompiled open-source binaries is high, i.e., it is often possible to recover
the exact variable names chosen by the authors of that code pre compilation/decompilation, open
questions remain about how the provenance and quality of the training data affect performance,
and how well, if at all, trained models generalize across software domains. We argue that answers
to these questions are direly needed. Indeed, data quality is a universal issue that affects machine
learning models in all domains. In addition, closer to our problem, researchers have already raised
concerns about neural models of code, e.g., that they are negatively affected by code duplication
in the training data [1, 33], do not scale well on code completion tasks because of large vocabular-
ies and out-of-vocabulary issues [27], are not robust to semantic-preserving program transforma-
tions [42], and do not readily generalize to other downstream tasks [26]. In essence, while much
work, including the original ASE ’19 paper [30], has focused on increasing the power of models of
operations on code, here we focus on the orthogonal, underexplored issue of better selecting and
harnessing the data used to train these models to increase performance.

Specifically, in this paper we investigate how data quantity, quality, and software domain prove-
nance affect the performance of the neural identifier renaming technique DIRE [30]. Issues of data
quality and model robustness have, thus far, been underexplored by researchers interested in the
decompiled identifier renaming problem. Our work is an extension of an ASE 2019 paper [30]
where DIRE was originally presented, the technical details of which we reproduce verbatim here,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:3

for completeness. These include the technical description of DIRE and the approach used to gen-
erate its parallel training data, plus a data-provenance-agnostic evaluation of DIRE, all originally
reported in the ASE 2019 paper [30]. In addition, relative to the conference paper, in this paper
we make two major new contributions. First, we study how the performance of DIRE varies when
trained on decompiled binaries from more versus less popular repositories (using GitHub reposi-
tory stars, the measure of popularity, also as a loose proxy for code quality), and contribute empir-
ical results showing that training on highly-starred code leads to a more generalizable model be-
cause such code tends to be more diverse, i.e., it has a higher-entropy distribution of variable names.
Second, we evaluate how well DIRE learns to predict domain-specific identifiers, propose a mod-
ification to incorporate domain information, and show empirically that the modified version can
predict identifiers in domain-specific scenarios 23% more frequently than the original DIRE model.

Note that contemporaneously with our current work, two competing decompiler identifier re-
naming techniques have been proposed, DIRECT [39] and DIRTY [9]. The two use different learn-
ing approaches than DIRE (both use a transformer-based architecture [54]) and report higher ac-
curacy than DIRE when compared directly; however, neither addresses the data provenance and
model robustness research questions of interest here, although the approaches to train all three
systems are fundamentally similar. Therefore, our current work (i.e., the new research questions
and experiments relative to the ASE 2019 paper [30]) can be seen as orthogonal.

2 PAPER OVERVIEW

This paper is organized in three main parts, summarized in Figure 1.
In the first part, we cover the technical details of the DIRE approach. Specifically, in Section 3

we provide background on the decompilation process, the challenges it raises, and related work
to help address these challenges, as well as background on statistical models of source code. Next,
we present DIRE (the Decompiled Identifier Renaming Engine) in Section 4, our technique for
assigning meaningful names to decompiled variables. DIRE is an ensemble of two different ma-
chine learning models, one which captures sequential lexical information about the source code
and another which captures graphical structural information. Finally, in Section 5, we address the
challenges with obtaining and cleaning DIRE’s training data, a nontrivial task.

In the second part (Section 6), we answer our first set of research questions about the overall
efficacy of the DIRE technique, a breakdown by each of the two model components, and a com-
parison to its closest predecessor; these results were all part of the original ASE 2019 conference
paper [30].

Specifically, in RQ1 we establish a baseline for DIRE’s performance on our corpus, without
focusing on any dataset characteristics.

• RQ1: How effective is DIRE at assigning names to variables in decompiled code?

DIRE incorporates multiple streams of information when making predictions. Some ap-
proaches [25], inspired by natural language processing techniques, treat source code as a sequence
of tokens, as might be produced from a lexer. However, source code has a formally defined struc-
ture. In designing DIRE, we incorporated this structural information as well, using an enhanced
abstract syntax tree representation in addition to a lexical representation. In RQ2, we investigate
how each of these two components influences and contributes to DIRE’s overall performance.

• RQ2: How does each component of DIRE contribute to its efficacy?

In RQ3, we compare DIRE against its closest predecessor.

• RQ3: Is DIRE more effective than prior approaches?

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:4 L. Dramko et al.

Fig. 1. Overview of our paper.

Finally, in the third part (Section 7), which is almost entirely new relative to the conference
paper, we answer our second set of research questions about the impact of data provenance on the
performance of DIRE. Prior work has generally not focused on the curation of training data for
such models, instead implicitly treating all such data as equivalent. As discussed above, we hypoth-
esize that even if all training data for such models comes from one open source super-repository
like GitHub, because of the inherent diversity of projects hosted there, there are systematic dif-
ferences between data sampled in different ways that will significantly affect the behavior and
performance of decompiled variable renaming models.

To test this general hypothesis, we address research questions about how the characteristics
of the training set influence the performance of DIRE. Specifically, in RQ4, we investigate how
DIRE performs in data-constrained environments, given that training deep neural networks can
be computationally expensive, and it may not always be feasible to train DIRE on a large data set.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:5

• RQ4: How does the quantity of data influence the efficacy of DIRE?

In RQ5, we study to what extent there are noticeable differences in the performance and be-
havior of DIRE when trained on data coming from popular, “high-star” repositories compared to
data from unpopular, “no-star” repositories. On transparent, social coding platforms like GitHub,
project popularity as indicated by the number of repository stars indicates more community inter-
est, attention, and ultimately pressure on the project owners to follow software engineering best
practices, and to provide and maintain high-quality code [8].

• RQ5: How does the provenance of training data influence the efficacy of DIRE?

Some identifiers occur more frequently in context of other identifiers. For example, a variable
named url is more likely to occur near a variable named http_request than in code in general. We
define a software domain as a collection of contexts like this that share a similar purpose. Examples
of software domains include networking and graphics. Software domains, however, can be very
unevenly distributed on GitHub, leading to potential bias — the model may learn to dispropor-
tionately suggest names from overrepresented domains. We account for this effect by modifying
DIRE to make it domain-aware and evaluate this modification.

• RQ6: How well can DIRE perform on diverse code from various domains if it is made aware
of its software domain?

The paper ends with a discussion of threats to validity in Section 8 and conclusions in Section 9.

3 BACKGROUND

Before diving into the technical details of our approach, we start with some background on decom-
pilation, statistical models of source code, and the two particular classes of deep learning models
we rely on, recurrent neural networks (RNNs) and gated-graph neural networks (GGNNs).

3.1 Decompilation

At a high level, a compiler generates binaries from source using a pipeline of processing stages,
and decompilers try to reverse this pipeline using various techniques [28]. Typically, a binary is
first passed through a platform-specific disassembler. Next, assembly code is typically lifted to a
platform-independent intermediate representation (IR) using a binary-to-IR lifter. The next
stage is the heart of the decompiler, and is where a number of program analyses are used to re-
cover variables, types, functions and control flow abstractions, which are ultimately combined to
reconstruct an abstract syntax tree (AST) corresponding to an idiomatic program. Finally, a code
generator converts the AST to the decompiled output.

Decompilation is more difficult than compilation, because each stage of a compiler loses infor-
mation about the original program. For example, the lexing/parsing stage of the compiler does not
propagate code comments to the AST. Similarly, converting from the AST to IR can lose additional
information. This loss of information allows multiple distinct source code programs to compile
to the same assembly code. For example, the two loops in Figure 2 are reduced to the same as-
sembly instructions. The decompiler cannot know which source code was the original, but it does
try to generate code that is idiomatic, using heuristics to increase code readability. For example,
high-level control flow structures such as while loops are preferred over goto statements.

The choice of which code to generate is largely heuristic, but can be informed by the inclu-
sion of DWARF debugging information [15]. This debugging information, which can optionally
be generated at compile-time, greatly assists the decompiler by identifying function offsets, types
of variables, identifier names, and user-defined structures and unions.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:6 L. Dramko et al.

Fig. 2. Two different C loops that compile to the same assembly code. Note the normalized structure and

names.

3.2 Statistical Models of Source Code

Identifiers play an important role in program comprehension [16, 31]. Researchers have employed
the renaming of identifiers as a way to ensure that they are consistently named within the pro-
gram [35] or are consistent with program semantics. However, the relationship between identi-
fiers and program semantics is complex and difficult to describe explicitly. Thus, researchers have
recently begun turning to statistical models of source code to capture these relationships, e.g., de-
termining if a method’s name is consistent with its body [36] or determining why an identifier
was changed when a given piece of code was refactored [7].

A wide variety of statistical models for representing source code have been proposed based on
the naturalness of software [13, 23]. This key property states that source code is highly repetitive
given context, and is therefore predictable. Statistical models capture the implicit knowledge hid-
den within code, and apply it to build new software development tools and program analyses, e.g.,
for code completion, documentation generation, and automated type annotation [4].

Predicting variable names is no exception. Work has shown that statistical models trained on
source code corpora can predict descriptive names for variables in a previously-unseen program,
given the contextual features of the code in which the variable is used. These naming models
can help to distill coding conventions [2] or analyze obfuscated code [43, 53]. Several classes of
statistical models have been used for renaming, including n-grams [2, 53], conditional random

fields (CRFs) [43], and deep learning models [3, 5, 6].
Two recent approaches aim to suggest informative variable names in decompiled code. Our prior

work [25] proposed a lexicaln-gram-based machine translation model that operates on decompiler
output. That approach used heuristics to align variables in the decompiler output and original
source, which are needed for training, and is able to exactly recover 12.7% of the original names
in the test set.

Contemporaneously, He et al. [21] proposed a two-step approach that operates on a stripped
binary rather than the decompiler output. First, the authors predict whether a low-level register
or a memory offset maps to a variable at the source-level. Then, using structured prediction with
CRFs, they predict names and types for the mapped variables. 63.5% of the variables in the test set
for which the first step succeeded could be recovered exactly.

3.3 Neural Network Models

Our approach builds on two advances in statistical models for representing source code: recurrent
neural networks (RNNs) and gated-graph neural networks (GGNNs).

3.3.1 Recurrent Neural Networks. RNNs are networks where connections between nodes form
a sequence [44]. They are typically used to process sequences of inputs by reading in one element

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:7

at a time, making them well-suited to modeling source code tokens. In this work, we use long

short-term memory (LSTM) models [24], a variant of RNNs widely used in text processing. For-

mally, an LSTM has the following structure: given a sequence of tokens {xi }ni=1, an LSTM
−→
f LSTM

processes them in order, maintaining a hidden state
−→
hi for each subsequence up to token xi us-

ing the recurrent function
−→
hi =

−→
f LSTM (emb(xi),

−→
hi−1), where emb(·) is an embedding function

mapping xi into a learnable vector of real numbers. As we will elaborate later in Section 4, we
use two types of LSTMs in DIRE: encoding LSTMs and decoding LSTMs. An encoder LSTM reads
the input sequence (e.g., a sequence of source code tokens, as in Section 4.2.1) and encodes it into
continuous vectors, while a decoder LSTM takes these vectors and generates the output sequence
(e.g., the sequence of predicted names for all identifiers, as in Section 4.3).

3.3.2 Gated-Graph Neural Networks. While LSTMs are useful for representing and generating
sequences, they do not capture any additional structural information. Within the decompilation
task, structured information provided by the AST is a natural information source about choice of
variable names. For this purpose, we also employ structural encoding of the code using GGNNs, a
class of neural models that map graphs to outputs [34, 47].

At a high level, GGNNs are neural networks over directed graphs. Initially, we associate each
vertex with a learned or computed hidden state containing information about the vertex. GGNNs
compute representations for each vertex based on the initial vertex information and the graph
structure.

Formally, let G = 〈V ,E〉 be a directed graph describing our problem, where V = {vi } is the
set of vertices and E = {(vi �→ vj ,T)} is the set of typed edges. Let NT (vi) denote the set of

vertices adjacent to vi with edge type T . In a GGNN, each vertex vi is associated with a state h
д

i,t

indexed by a time step t . At each time step t , the GGNN updates the state of all nodes in V via
neural message passing (NMP) [18]. Concurrently for each nodevi at time t , NMP is performed

as follows: First, for eachvj ∈ NT (vi) we compute a message vectorm
vj �→vi

T =WT ·hд

j,t−1, where

WT is a type-specific weight matrix. Then, all mv∗ �→vi
∗ are aggregated, and summarized into a

single vector x
д

i via element-wise mean (pooling):

x
д

i = MeanPool
({
m

vj �→vi

T : vj ∈ NT (vi),∀T
})
.

Finally, the state of every node vi is updated using a nonlinear activation function f : h
д

i,t =

f (x
д

i ,h
д

i,t−1). GGNNs use a Gated Recurrent Unit (GRU) update function, fGRU (·), introduced

by Cho et al. [12]. By repeatedly applying NMP forT steps, each node’s state gradually represents
information about that node and its context within the graph. The computed states can then be
used by a decoder, similarly to the LSTM-based decoder architectures. As in LSTMs, all GGNN
parameters (parameters fGRU (·) and theWT s) are optimized along with the rest of the model.

4 THE DIRE ARCHITECTURE

We start with an overview of our approach, then dive into the technical details of each component.

4.1 Overview

We designed DIRE to work on top of a decompiler as a plugin that can automatically suggest more
informative variable names. We use Hex-Rays, a state-of-the-art industry decompiler, though our
approach is not fundamentally coupled to Hex-Rays and can be adapted to other decompilers.

Figure 3 gives a high-level overview of our workflow. First, a binary is passed to a decompiler,
which decompiles each function in the binary. For each function, our plugin traverses the AST, in-
serting placeholders at variable nodes. This produces two outputs: the AST and the tokenized code.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:8 L. Dramko et al.

Fig. 3. High-level overview of our approach.

Fig. 4. Overview of DIRE’s neural architecture. For clarity, we omit the data-flow links in the AST in the

structural encoder.

These outputs are provided as input to our neural network model, DIRE, which generates unique
variable names for each placeholder in the input. The decompiler output can then be rewritten to
include the suggested variable names.

Figure 4 gives an overview of the neural architecture. DIRE follows an encoder-decoder archi-
tecture: An encoder neural network (Section 4.2) first encodes the decompiler’s output—both the
sequence of decompiled code tokens and its internal AST—and computes distributed representa-
tions (i.e., real-valued vectors, or embeddings) for each identifier and code element. These encoded
representations are then consumed by a decoder neural network (Section 4.3) that predicts mean-
ingful names for each identifier based on the contexts in which it is used.

The key takeaway is that DIRE uses both lexical information obtained from the tokenized code
as well as structural information obtained from the corresponding ASTs. This is achieved by using
two encoders—a lexical encoder (Section 4.2.1) and a structural encoder (Section 4.2.2)—to separately
capture the lexical and structural signals in the decompiled code. As we will show, this combination
of lexical and structural information allows DIRE to outperform techniques that rely on lexical
information alone [25].

4.2 The Encoder Network

Each encoder network in DIRE outputs two sets of real-valued vector representations:

• A code element representation for each element in the decompiler’s output. Depending on the
type of the encoder, a code element will either be a token in the surface code (for the lexical
encoder), or a node in the decompiler’s internal AST (for the structural encoder).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:9

• An identifier representation for each unique identifier defined in the input binary, which is a
real-valued vector that represents the identifier in the neural network.

The lexical and structural representations are then merged to generate a unified encoding of the
input binary (dashed boxes in Figure 4). By computing separate representations for code elements
and identifiers, the DIRE decoder can better incorporate the contextual information in the en-
codings of individual code elements to improve name predictions for the different identifiers; see
Section 4.3.

4.2.1 Lexical Code Encoder. The lexical encoder sequentially encodes the tokenized decompiled
code, projecting each token xi into a fixed-length vector encoding xi . Specifically, the lexical en-
coder uses the sub-tokenized code as the input, where a complex code token (e.g., the function
name mystrcopy) in Figure 4) is automatically broken down into sub-pieces (e.g., my, str, and copy)
using SentencePiece [29], based on sub-token frequency statistics. Sub-tokenization reduces the
size of the encoder’s vocabulary (and thus its training time), while also mitigating the problem of
rare or unknown tokens by decomposing them into more common subtokens. We treat the place-
holder and reserved variable names (e.g., VAR1, VAR2, and the decompiler-inferred name result) in
the decompiler’s output as special tokens that should not be sub-tokenized.

DIRE implements the lexical encoder using LSTMs (described in Section 3.3.1). We use a bidirec-

tional LSTM: The forward network
−→
f LSTM processes the tokenized code {xi }ni=1 sequentially. The

backward LSTM processes the input tokenized code in backward order, producing a backward

hidden state
←−
hi for each token xi . Intuitively, a bidirectional LSTM captures informative context

around a particular variable both before and after its sequential location. Element Representations

We encode a token xi by concatenating its associated state vectors, i.e., xi = [
−→
hi :
←−
hi], a common

strategy in source code representations using LSTMs [4]. For a particular token xi we compute
the forward (resp. backward) representation using both its embedding and the hidden states of
its preceding (resp. succeeding) tokens. This is important because the resulting encoding xi cap-
tures both the local and contextual information of the current token and its surrounding code. To
compute the identifier representation v for each unique identifier v , we collect the set of subto-
ken representations Hv of v , and perform an element-wise mean over Hv to get a fixed-length
representation:v = MeanPool(Hv).

4.2.2 Structural Code Encoder. The lexical encoder only captures sequential information in
code tokens. To also learn from the rich structural information available in the decompiler AST,
DIRE employs a gated-graph neural network (GGNN) structural encoder over the AST (Sec-
tion 3.3.2). This requires a mechanism to compute initial node states, as well as design choices
of which AST edges to consider in the node encoding:

Initial Node States. The initial state of a node vi , h
д

i,t=0 is computed from three separate embed-

ding vectors, each capturing different types of information of vi : (1) An embedding of the node’s
syntactic type (e.g., the root node in the AST in Figure 4 has the syntactic type block). (2) For a
node that represents data (e.g., variables, constants) or an operation on data (e.g., mathematical
operators, type casts, function calls), an embedding of its data type, computed by averaging the
embeddings of its subtokenized type. For instance, the variable node VAR1 in Figure 4 has the data
type char *; its embedding is computed by averaging the embeddings of the type subtokens char

and *. (3) For named nodes, an embedding of the node’s name (e.g., the root node in Figure 4 has
a name mystrcopy), computed by averaging the embeddings of its content subtokens. The initial
state h

д

v,t=0 is then derived from a linear projection of the concatenation of the three separate

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:10 L. Dramko et al.

embedding vectors. For nodes without a data type or name, we use a zero-valued vector as the
respective embedding.

Graph Edges. Our structural encoder uses different types of edges to capture different types of
information in the AST. Besides the simple parent-child edges (solid arrows in the AST in Figure 4)
in the original AST, we also augment it with additional edges [5]:

• We add an edge from the root block node containing the function name to each identifier
node. The function name can inform names of identifiers in its body. In our running example
the two arguments VAR1 and VAR2 defined in the mystrcopy function might indicate the source
and destination of the copy. This type of link (“Function name to args.” in Figure 4) captures
these naming dependencies.
• To capture the dependency between neighboring code, we add an edge from each terminal

node to its lexical successor (“Successor terminal”).
• To propagate information among all mentions of an identifier, we add a virtual “supernode”

(rectangular node labeled VAR1) for each unique identifier vi , and edges from mentions of vi

to the supernode (“Super node link”) [18].
• Finally, we add a reverse edge for all edge types defined above, modeling bidirectional infor-

mation flow.

Representations. For the element representation, we use the final state of the GGNN for node
ni , h

д

i,T , as its representation: ni = h
д

i,T (the recurrent process unrolls T times; T = 8 for all

our experiments). For the identifier representation for each unique identifier vi , its representation
vi is defined as the final state of its supernode as the encoding of vi . Since the supernode has
bidirectional connections to all the mentions of vi , its state is computed using the states of all its
mentions. Therefore,vi captures information about the usage of vi in different occurrences.

4.2.3 Combining Outputs of Lexical and Structural Encoders. The lexical and the structural en-
coders output a set of representations for each identifier and code element. In the final phase of
encoding, we combine the two sets of outputs. Code element representations are computed by
unioning the lexical set (of code tokens) and structural set (of AST nodes) of element representa-
tions as the final encoding of each input code element; identifier representations are computed by
merging the lexical and structural representations of each identifierv using a linear transformation
as its representation.

4.3 The Decoder Network

The decoder network predicts names for identifiers using the representations given by the encoder.
As shown in Figure 4, the decoder predicts names based on both the representations of identifiers,
and contextual information in the encodings of code elements. Specifically, as with the encoder,
we assume an identifier name is composed of a sequence of sub-tokens (e.g., destAddr �→ dest, Addr;
see Section 4.2.1). The decoder factorizes the task of predicting idiomatic names to a sequence of
time-indexed decisions, where at each time step, it predicts a sub-token in the idiomatic name of
an identifier. For instance, the idiomatic name for VAR1, destAddr, is predicted in three time steps
(s1 through s3) using sub-tokens dest, Addr, and </i>, (the special token </i> denoting the end of
the token prediction process). Once a full identifier name is generated, the decoder continues to
predict other names following a pre-order traversal of the AST. As we will elaborate in Section 5,
not all identifiers in the decompiled code will be labeled with corresponding “ground-truth” id-
iomatic names, since the decompiler often generates variables not present in the original code.
DIRE therefore allows an identifier’s decompiler-assigned name to be preserved by predicting a
special </identity> token.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:11

The probability of generating a name is therefore factorized as the product of probabilities of
each local decision while generating a sub-token yt :

p (Y |X) =
T∏

t=1

p (yt |y<t ,X),

where X denotes the input code, and Y is the full sequence of sub-tokens for all identifiers, and
y<t denotes the sequence of sub-tokens before time step t .

We model p (yt |y<t ,X) using an LSTM decoder, following the parameterization proposed by
Luong et al. [37]. Specifically, to predict each sub-token yt , at each time step t , the decoder LSTM
maintains an internal state st defined by

st = fLSTM ([yt−1 : vt : ct], st−1),

where [:] denotes vector concatenation. The input to the decoder consists of two representations:
the embedding vector of the previously predicted name, yt−1; and the encoder’s representation of
the current identifier to be predicted,vt . Our decoder also uses attention [11] to compute a context
vector ct , generated by aggregating contextual information from representations of relevant code
elements. ct is computed by taking the weighted average over encodings of AST nodes and surface
code tokens, for each current sub-tokenized name yt . The decoder’s hidden state is then updated
using the context vector, incorporating the contextual information into the decoder’s state s̃t =

W · [st : ct], whereW is a weight matrix. Then, the probability of generating a sub-token (yt) is:

p (yt |·) =
exp
(
yᵀt s̃t

)

∑
y′ exp

(
y′ᵀs̃t

)

4.4 Training the Neural Network

Since DIRE is constructed from neural networks, training data is required to learn the weights for
each neural component. Our training corpus is a set D = {〈Xi ,Yi 〉}, consisting of pairs of code X
and sub-token sequences Y , denoting the decoder-predicted sequence of identifier names. DIRE is
optimized by maximizing the log-likelihood of predicting the gold sub-token sequence Yi for each
training example Xi :

∑

〈Xi ,Yi 〉
logp (Yi |Xi) =

∑

〈Xi ,Yi 〉

|Yi |∑

t=1

wt · logp (yi,t |Xi),

where Yi,t denotes the t-th sub-token in the decoder’s prediction sequence Yi . As discussed in Sec-
tion 4.3, there are intermediate variables in the decompiled code. To ensure the decoder network
will not be biased towards predicting </identity> for other identifiers, we use a tuning weight wi

and set it to 0.1 for sub-tokens that correspond to intermediate variables (and 1.0 otherwise).

5 DATA PREPARATION

In this section, we address the challenges surrounding the data: training DIRE requires a large
corpus of structure-rich, annotated data. We describe our technique to automatically generate
such data from C code at scale. With the ability to automatically generate training data this way,
we must choose appropriate projects from the large number of C-language repositories on social
coding platforms.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:12 L. Dramko et al.

Fig. 5. Entry in the training corpus. Each corresponds to a function and contains (a) tokenized code

(b) the AST, both with variables replaced with unique IDs, and (c) a lookup table containing decompiler-

and developer-assigned names.

5.1 Generating a Parallel Corpus

The scale of the structure-rich, annotated corpus needed to train DIRE practically necessitates a
technique to generate this corpus automatically. Fortunately, it is possible to do this starting from
a large repository of existing C code.

At a high level, each entry in our corpus corresponds to a source code function, and consists
of the information necessary to train our model. An entry in the training corpus is illustrated in
Figure 5. Each entry contains three elements: (a) the tokenized code, with variables replaced by
an ID that uniquely identifies the variable in the function; (b) the decompiler’s AST (Section 3.1)
modified to contain the same unique variable IDs; and (c) a lookup table mapping variable IDs
to both the decompiler- and developer-assigned names. It is important to assign a unique name
to each variable to disambiguate any shadowed variable definitions. The tokenized code and AST
representations are used in both the model’s input and output. The input representation uses the
decompiler-assigned names, while the output uses the developer-assigned names.

Generating the placeholders and decompiler-chosen names is relatively straightforward. First, a
binary is compiled normally and passed to the decompiler. Next, for each function, we traverse its
AST and replace each variable reference with a unique placeholder token. Finally, we instruct the
decompiler to generate decompiled C code from the modified AST, tokenizing the output. Thus,
we have tokenized code, an AST, and a table mapping variable IDs to decompiler-chosen names.
The remaining step, mapping developer-chosen names to variable IDs, is the core challenge in au-
tomatic corpus generation. Following our previous approach [25], we leverage the decompiler’s
ability to incorporate developer-chosen identifier names into decompiled code when DWARF de-
bugging symbols [15] are present in the binary. However, this alone is not sufficient to identify
which developer-chosen name maps to a particular variable ID generated in the first step.

Specifically, challenges arise because decompilers use debugging information to enrich the
decompiler output in a variety of ways, such as improving type information. Recall from Section 3
that decompilers often make choices between semantically-identical structures: the addition
of debugging information can change which structure is used. Unfortunately, this means that
the difference between code generated with and without debugging symbols is not always an
α-renaming. In practice, the format and structure of the code can greatly differ between the two
cases. An example is illustrated in Figure 6. In this example, the first pass of the decompiler is
run without debugging information, and the decompiler generates an AST for a while loop with

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:13

Fig. 6. Decompiler ASTs for the code in Figure 2. Hexadecimal numbers indicate the location of the disas-

sembled instruction used to generate the node. While the ASTs are different, operations on variables and

their offsets are the same, enabling mapping between variables (i.e., v1 �→i and v2�→z).

two automatically-generated variables named v1 and v2. Next, the decompiler is passed DWARF
debugging symbols and run a second time, generating the AST on the right. While the decompiler
is able to use the developer-selected variable names i and z, it generates a very different AST
corresponding to a for loop.

An additional challenge is that there is not always a complete mapping between the variables in
code generated with and without debugging information. Decompilers often generate more vari-
ables than were used in the original code. For example, return (x + 5); is commonly decompiled
to int v1; v1 = x + 5; return v1;. The decompiled code introduces a temporary variable v1 that
does not correspond to any variable in the original source code. In this case, there is no developer-
assigned name for v1, since it does not exist in the original code. The use of debugging information
can change how many of these additional variables are generated. One solution to these prob-
lems proposed by prior work is to post-process the decompiler output using heuristics to align

decompiler-assigned and developer-assigned names [25].
However, this technique can only correctly align 72.8% of variable names, therefore limiting

the overall accuracy of any subsequent model trained on this data. Instead, we developed a tech-
nique that directly integrates with the decompiler to generate an accurate alignment without using

heuristics. Our key insight is that while the AST and code generated by the decompiler may change
when debugging information is used, instruction offsets and operations on variables do not change.
As a result, each variable can be uniquely identified by the set of instruction offsets that access
that variable. For example, in Figure 6, although there is not an obvious mapping between the
nodes in the trees, the addresses of the variable nodes in the trees have not changed. This enables
us to uniquely identify each variable by creating a signature consisting of the set of all offsets
where it occurs. The variables v1 and i have the signature {492,49E,4A1,4A5}, while v2 and z have
the signature {49E}. Note that some uses of variables overlap, e.g., v1 (i) is summed with v2 (z) in
the instruction at offset 49E. This necessitates collecting the full set of variable offsets to disam-
biguate these instances.1

In summary, to generate our corpus we: (1) Decompile binaries containing debugging infor-
mation. (2) Collect signatures and corresponding developer-assigned names for each variable in

1While it is possible for two variable signatures to be identical, we found these collisions to occur very rarely in practice.

In these cases we do not attempt to assign names to variables.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:14 L. Dramko et al.

each function. (3) Strip debugging information and decompile the stripped binaries. (4) Identify
variables by their signature, and rename them in the AST, encoding both the decompiler- and
developer-assigned names. (5) Generate decompiled code from the updated AST. (6) Post-process
the updated AST and generated code to create a corpus entry. The final output is a per-binary file
containing each function’s AST and decompiled code with corresponding variable renamings.

5.2 Selecting Data

As with any machine learning model, the characteristics of the data used to train DIRE can have
a large impact on its performance. We consider multiple different classes of data and how each
affects DIRE. We sort data into classes by mining metadata from GitHub and selecting reposito-
ries according to some signal for the desired characteristic. In particular, we look at two ways of
partitioning GitHub repositories into classes:

• by GitHub stars, an indicator of popularity.
• by use case that the software is intended for (i.e., the software’s domain).

5.2.1 Stars. We use GitHub stars as a signal for level of popularity. On the GitHub platform,
users can “star” a repository that they appreciate, find useful, or find interesting (similar to a “like”
on social media platforms). The star count is thus a crowd-sourced measure for popularity, but it
also tends to correlate with improved maintenance activities and other software engineering best
practices [8, 51].

We partition code into classes based on stars because of what popularity and maintenance might
mean for identifiers. Source code which is popular or well-maintained is more frequently read and
understood, sometimes for the purpose of correcting errors or otherwise making modifications.
Descriptive identifier names are critical to these processes [46], so out of necessity, the identifiers
from highly-starred projects are likely to be useful to developers. In contrast, identifiers from
poorly maintained projects with few stars may not be useful. Note that for our purposes, the
project need not be actively maintained nor currently popular; rather, it needs only to have been
actively maintained at some point, so that it is more likely that the variables names have been
subjected to scrutiny.

In our evaluation, we use two star-related classes of software on either end of the star count
spectrum. We created the high-star dataset by sampling repositories sorted by the number of
stars in descending order. The minimum number of stars of any selected high-star repository was
50 stars, the maximum, 76301 (from torvalds/linux), the median, 155, and the mean, 589.2.

The no-star dataset consists of all repositories which have no stars at all. We sample repositories
randomly with uniform probability when we select from this dataset.

We ascertain star information from the GHTorrent database [19] which contains snapshots of
metadata for all publicly-available GitHub projects at certain intervals; we used the version from
June, 2019.

5.2.2 Software Domain. DIRE works best when predicting general, common variable names
like len, value, and buf as discussed in Section 6. However, DIRE can struggle on identifiers that
are more rare and unique to a particular software domain. For example, an identifier named lexeme
likely occurs most frequently in compilers, and less often in unrelated domains like graphics. This
motivates the construction of a corpus of domain classes.

We can mine software domains from repository metadata, though not all repositories have the
requisite metadata, nor do binaries found in the wild without context. We built a simple classifier to
assign domain class to binaries for which we have no explicit domain classification and to check
our expectation that binaries contain domain information. The classifier is an amalgamation of

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:15

Fig. 7. Dimensionality-reduced visualizations of the embeddings generated by our model. Note how the

different domains tend to form separable clusters.

two models in sequence: doc2vec [32], which converts a piece of text of arbitrary size into an
embedding (with 64 dimensions in our case), and a support vector machine (SVM) with a radial

basis function (RBF) kernel.
To develop our classifier, we iterated on a smaller and easier to use set of data drawn from the De-

bian ALLSTAR dataset [50] with domain class assignments drawn from the Ultimate Debian Data-
base [40]. In this dataset, domain classes are scientific and technical disciplines (e.g., biology and
geography). To localize which parts of the code contained significant amounts information, we ex-
perimented with removing different code features. We found that the collective string literals from
a given binary are often sufficient to correctly identify that binary’s domain using our classifier.

We applied the classifier to our GitHub data, excluding some very small object files contain-
ing only a few functions functions and no string literals (artifacts of the automated compilation
process). Here, we use the repository’s topic labels to assign repositories to domains. Topic labels
are tags voluntarily assigned by project maintainers to give viewers of the project a rough idea of
the project’s characteristics at a glance. Not all repository maintainers elect to supply topic labels,
and not all topic labels are software domains (perhaps unsurprisingly, c is the most common topic
label in our dataset). For the purposes of demonstration, we hand-selected seven of the most com-
mon topic labels that corresponded to software domains: kernel, game, shell, compiler, network,
embedded, graphics.

Our domain classifier is able to correctly classify binaries 96.53% of the time on the Debian
dataset and 83.54% of the time on the GitHub dataset. Figure 7 shows a plot of embeddings
generated by our model after we dimensionality-reduced each via the t-distributed stochastic

neighbor embedding (t-SNE) method into two dimensions for viewing. While it is impossible
to perfectly represent a 64 dimensional space in just two dimensions, it is still possible to see how
different domains form distinct, separable clusters.

Embeddings from a structural model may perform better on the source code itself, but we leave
this to future work.

5.2.3 Data Cleaning and Deduplication. We performed several types of data cleaning on
our large GitHub stars corpus. We excluded all binaries written in languages other than
C (our decompiler’s target language); it is common to find C++ and other languages in
majority-C repositories. We also removed automatically generated code, the repetitive struc-
ture and machine-generated names of which undermines the naturalness hypothesis. We used

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:16 L. Dramko et al.

Fig. 8. Clustering algorithm for deduplication. Shown on the right is one pass through the while loop with

a threshold of 0.5. The repositories that are merged to form each cluster are also tracked; as the members of

each cluster constitute duplicates, only one member repository is sampled from each cluster when selecting

data for a given model.

a simple heuristic to exclude these repositories: any repository for which any of the strings
"generated code", "autogenerated", "auto-generated", "automatically generated", or
"automatically-generated" appeared was excluded. This is a rather harsh criterion, but due
to the abundance of data available on GitHub, we opted to potentially exclude some acceptable
training data to prevent unnatural code from infiltrating our corpus.

We also performed deduplication on our corpus. Duplicate projects abound on GitHub, and can
be detrimental to the model’s ability to generalize [1]. We used a multi-layer deduplication strategy.
The first layer applies the gh-dedup dataset [49], which lists duplicate repositories along with their
parent repositories, excluding any duplicate repositories whose parents were also in the data set.
While this dataset is able to identify some duplicates, it does not identify all of them. We hashed
each binary, and ensured only one copy of each binary occurred in our dataset. Unfortunately,
this approach is very sensitive to any changes in the binary. It does not detect common situations
which result in large numbers of duplicate functions, such as when slightly different versions of a
project appear in our dataset.

To help address these concerns, we performed a clustering-based deduplication step. See Figure 8
for an illustration of and pseudocode for our clustering algorithm. We initialize the algorithm with
one cluster for each repository; the elements of each cluster are the hashes for each binary from
that repository. The goal of performing clustering is to form groups of repositories that differ
slightly, perhaps by a few versions; that is, most binaries in the project are the same and only a few
differ. Clusters are stored sequentially in an arbitrary order. We attempt to merge the first cluster
with each other in the sequence; when a merge occurs, we continue attempting to merge until

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:17

we have attempted (successfully or not) to merge against all other clusters in the sequence. This
cluster is then placed at the end of the sequence. A merge occurs when the size of the intersection
between two clusters exceeds some threshold percentage of either of the two clusters involved.
We do this repeatedly until no more merges can occur. The result is a set of repository clusters
which represent groups of near-identical repositories.

Repositories can share binaries if they are duplicates, but also if they use the same libraries. Thus,
any choice of threshold incurs a trade-off. Too low a threshold produces clusters or repositories
that happen to use the same library. Too high a threshold clusters fewer true duplicates.

To choose the threshold, we manually evaluated a sample of the dataset. We consider two
projects duplicates if they meet one of the following criteria:

• the names of the repositories are the same.
• the project’s README indicates the projects are the same or based on the same source.
• the intersection of the sets of folder names make up at least 90% of the folder names of at

least one of the two repositories under consideration. This method is especially useful for
identifying duplicates that are missing READMEs or projects for which one is heavily based
on another but without acknowledgement in the README.

We sampled ten clusters repositories from each threshold level (every 5%) and chose two reposito-
ries from those clusters evaluating how many were duplicates using the above criteria. We chose
the lowest threshold level for which 90% or more of these were duplicates on each of the high-star
and no-star partitions of our corpus. This method resulted in a threshold of 50%.

When we sample from these data sets, we sample one repository from each cluster.

6 EFFECTIVENESS

In this section, we establish the efficacy of DIRE as a technique and compare it to prior work. These
results are reproduced from the original presentation of DIRE [30].

• RQ1: How effective is DIRE at assigning names to variables in decompiled code?
• RQ2: How does each component of DIRE contribute to its efficacy?
• RQ3: Is DIRE more effective than prior approaches?

Data Preprocessing. To answer our first two research questions, we trained DIRE on 3,195,962
decompiled functions extracted from 164,632 binaries mined from GitHub. First, we automatically
scraped GitHub for projects written in C. Next, we modified project build scripts to include debug
information when compiling the project, and collected all successfully generated 64-bit x86 binary
files. We then hashed each binary to remove any duplicates. We then passed these binaries through
our automated corpus generation system. Finally, we filtered out any functions that did not have
any renamed variables and, for practical reasons, any functions with more than 300 AST nodes.
After filtering, 1,259,935 functions with an average AST size of 77 nodes remained. These functions
were randomly split per-binary into training, development and testing sets with a ratio of 80:10:10.
Splitting the sets per-binary ensures that binary-specific identifiers are not included in both the
training and test sets.

Evaluation Methodology. After training, we ran DIRE to generate name suggestions on the test
data. We evaluate the accuracy of these predictions, comparing the predicted variable names to
names used in the original code (i.e., names contained in the debugging information) counting a
successful prediction as one that exactly matches the original name. However, there can be mul-
tiple, equally acceptable names (e.g., file_name, fname, filename) for a given identifier. An accuracy
metric based on exact match cannot detect these cases. We therefore use character error rate

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:18 L. Dramko et al.

Table 1. Evaluation of DIRE

DIRE Lexical Enc. Structural Enc.
Acc. CER Acc. CER Acc. CER

Overall 74.3 28.3 72.9 28.5 64.6 37.5
Body in Train 85.5 16.1 84.3 16.3 75.7 25.5
Body not in Train 35.3 67.2 33.5 67.7 26.3 76.1

Values are percentages, higher accuracy and lower character error rate (CER) are

better.

(CER), a metric that calculates the edit distance between the original and predicted names, then
normalizes by the length of the original name [55], assigning partial credit to near misses.

Recall from Section 5.1 that there are often many more variables in the decompiled code than
in the original source; these variables will not have a corresponding original name. In our corpora,
the median number of variables in each function is 5, with 3 having a corresponding original name.
Although DIRE generates predictions for all variables, we do not evaluate predictions on variables
that do not have a developer assigned name. We do this because it is not necessarily incorrect for
a renaming system to assign names to variables not present in the original source code. Recall
the example where return (x + 5); is decompiled to int v1; v1 = x + 5; return v1;. The name sum

is likely more informative than v1, and it would be unhelpful to penalize a system that suggests
this renaming. However, although renaming in these cases could be helpful, we do not want to
overapproximate the effectiveness of our system by claiming any renaming of these variables as
correct: it is also possible to assign variables a misleading name that decreases the readability of
code by obfuscating the purpose of a variable. For example, suggesting the name filename to replace
v1 in the above code would be misleading.

Neural Network Configuration. For our experiments we replicate the neural network configura-
tion of Allamanis et al. [5]. We set the size of word embedding layers to be 128. The dimensionality
of the hidden states for the recurrent neural networks used in the encoders is 128, while the hid-
den size for the decoder LSTM is 256. For both the sequential and structural encoders, we use two
layers of recurrent computation, adding another identical recurrent network to process the de-
compiled code using the output hidden states of the first layer. For both DIRE and the baseline
neural systems, we train each model for 60 epochs. At test time, we use beam search to predict the
sequence of sub-tokenized names for each identifier (Section 4.3), with a beam size of 5.

6.1 RQ1: Overall Effectiveness

Experimental results are summarized in Table 1. The “Overall” row shows the performance of our
technique on the full test set and the leftmost column shows the accuracy of DIRE. From this, we
can see that DIRE can recover 74.3% of the original variable names in decompiled code, demon-
strating that it is effective in assigning contextually meaningful names to identifiers in decompiled
code.

Figure 9 shows an example renaming generated by DIRE. Here, DIRE generates the variable
names shown in the “DIRE” column of the table. The developer-chosen names are shown in the
“Dev.” column. Two of three names suggested by DIRE exactly match those chosen by the developer.
Though DIRE suggests buf instead of ret as the replacement for V3, the name is not entirely mislead-
ing: mmap returns a pointer to a mapped area of memory that can be written to or read from. Work
has shown that large code corpora may contain near-duplicate code across training and testing
sets, which can cause evaluation metrics to be artificially inflated [1]. Though our corpus contains
no duplicate binaries, splitting test and training sets per-binary still results in functions appearing

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:19

Fig. 9. Decompiled function (simplified for presentation), DIRE variable names, and developer-assigned

names.

Table 2. Example Identifiers from the Body not in Train Testing

Partition and DIRE’s Top-5 Most Frequent Predictions

len value new_node bytes_read

len (60%) value (28%) node (48%) size (38%)
n (6%) data (7%) child (31%) bytes_read (13%)
size (5%) val (3%) treea (0.3%) len (13%)
length (1%) name (3%) tree (0.3%) cmd_code (13%)
l (1%) key (2%) root (0.3%) read (13%)

in both. A common cause of duplicate functions in different binaries is the use of libraries. We
argue that it is reasonable to allow such duplication since reverse-engineering binaries that link
against known (e.g., open source) libraries is a realistic use case.

Nevertheless, to better understand the performance of our system, we partition the test examples
into two sub-categories: Body in Train and Body not in Train. The Body in Train partition
includes all functions whose entire body matches at least one function in the training set; similarly,
the Body not in Train set includes only functions whose body does not appear in the training
set. The last two rows in Table 1 show the performance on these partitions. DIRE performs well
on the Body in Train test partition (85.5%). This indicates that DIRE is particularly accurate at name
prediction when code has appeared in its training set (e.g., libraries, or code copied from another
project). DIRE is still able to exactly match 35.3% of variable names in the Body not in Train set,
indicating that it still generalizes to unseen functions.

We note that it is possible to perform better on the body-in-train portion by storing the training
data in a dictionary indexed by the canonicalized decompiled code and checking the dictionary
before using the model to make variable name predictions. The pseudocode for this experiment is
as follows:

if decompiled_code is in dictionary:
variable_names = get_names_from_dictionary(decompiled_code)

else:
variable_names = DIRE(decompiled_code)

Because the test set is 77.6% body-in-train, this approach achieves an overall accuracy of 85.5%.
The cost of this improvement is storing and loading this large dictionary in addition to the model
at test time. A more nuanced approach might involve curating a set of library functions that occur
frequently in decompiled code for use in the dictionary instead. We leave this to future work.

Table 2 contains example identifiers from the Body not in Train test set, along with DIRE’s most
frequent predictions. We observe that inexact suggested names are often semantically similar to the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:20 L. Dramko et al.

Fig. 10. Decompiled function (simplified for presentation), suggested names, and developer-assigned names.

The lexical and structural models are unable to correctly predict the name filename for variable 1, but DIRE

can by combining them.

original names. DIRE also performs best on simple identifiers such as len and value. This is because
it is difficult to predict the exact name for long, complex identifiers with compositional names. Each
subtoken in the variable name is predicted with a probability of correctness less than one. Thus,
probability of predicting an entirely correct name generally decreases with length. In addition, any
given long, complex identifier will likely occur relatively infrequently in the dataset. This means
the model has less chance to adjust to the context around these variable names. However, DIRE is
still often able to suggest semantically relevant identifiers (e.g., node, child).

RQ1 Answer: We find that on average DIRE is able to suggest variable names identical to
those chosen by the original developers 74.3% of the time, in a best case scenario that does
not explicitly deduplicate functions between the training and test sets.

6.2 RQ2: Component Contributions

Table 1 also shows the results for models using only our lexical or structural encoders. We find
that the lexical encoder is able to correctly predict 72.9% of the original variable names, while a
model using the structural encoder is able to correctly predict 64.6% of the original variable names.
These simpler models still perform well, but by combining them in DIRE we are able to achieve
even better performance.

Figure 10 illustrates how DIRE can effectively combine these models to improve suggestions.
Here, the placeholders V1, V2, and V3 are variables which should be assigned names. The “Lexical”,
“Structural”, and “DIRE” columns show the predictions from each model, and the “Developer” col-
umn shows the name originally assigned by the developer. In this example, the lexical and the
structural models are unable to predict any of the original variable names, while DIRE is able to
correctly predict two of the three names. This example also shows the contributions from each
of the submodels. For example, for V1, the lexical model predicts file while the structural model
predicts fname. Combining the predicted subtokens generates filename, the same name chosen by
the developer. For V2, the lexical and structural models both fail to predict mode, but note that the
lexical model does predict mode for V3. By combining the models, DIRE instead correctly predicts
mode for V2.

RQ2 Answer: Each component of DIRE contributes uniquely to its overall accuracy.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:21

Fig. 11. Effects of incorrect debugging information on decompiler output. The gray function computes the

Gray code of a1 in a2 bytes [41]. On the left, (a) is the output of Hex-Rays without debugging symbols; it

is able to correctly identify the arguments and return type. On the right, (b) is the output with incorrect

DWARF information generated by Debin: note missing arguments, return statements, and incorrect type.

6.3 RQ3: Comparison to Prior Work

To answer RQ3, we compare to our prior work [25] and to Debin [21], the state-of-the-art tech-
nique for predicting debug information directly from binaries. In our earlier work, which used a
purely-lexical model based on statistical machine translation (SMT), we were able to exactly
recover 12.7% of the original variable names chosen by developers. In contrast, DIRE is able to
suggest identical variable names 74.3% of the time. We attribute this improvement to two factors:
(1) the improved accuracy of our corpus generation technique, and (2) the use of a model that incor-
porates both lexical and structural information. To better understand the performance of DIRE, we
also compare to Debin, a different approach to generating more understandable decompiler output.
Debin uses CRFs to learn models of binaries and directly generate DWARF debugging information
for a binary, which can be used by a decompiler such as Hex-Rays. The debugging information
generated by Debin contains predicted identifiers, types, and names. To choose a variable name,
Debin proceeds in two stages: it predicts which memory locations correspond to function-local
arguments and variables, and then predicts names for the variables it identified. In contrast, DIRE
leverages the decompiler to identify function offsets and local variables. Building on top of the de-
compiler helps DIRE maintain the quality of pseudocode output. An example is shown in Figure 11,
which contains a C function for converting between a number a1 and its Gray code representation
in a2 bits [41]. Figure 11(a) shows the output of Hex-Rays when passed a binary with no debug
information. Although these variables do not have meaningful names, it is clear that gray is a func-
tion that takes two arguments and returns a long. Figure 11(b) information was generated using
Debin’s bundled model.2 We observe that Debin does not accurately recover variable names in
this case, perhaps since its model was trained on a different set of code. However, this example
also surfaces a fundamental limitation of the Debin approach: both the inferred structure and the
types of the variables in the program have changed. This occurs because Hex-Rays prioritizes de-
bugging information over its own analyses and heuristics. In this case, the debugging information

2https://files.sri.inf.ethz.ch/debin_models.tar.gz, accessed April 10, 2019.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

https://files.sri.inf.ethz.ch/debin_models.tar.gz

39:22 L. Dramko et al.

Table 3. Comparison of DIRE and Debin Trained on 1% and 3% of Our

Full Corpus of 164,632 Binaries

1% of corpus 3% of corpus
DIRE Debin DIRE Debin

Training Time (h) 1.8 13.3 6.1 17.2

Accuracy – Overall 32.2 2.4 38.4 3.9
Accuracy – Body in Train 40.0 3.0 47.2 4.8
Accuracy – Body not in Train 5.3 0.6 8.6 0.7

All accuracy values are percentages, higher accuracy is better.

generated by Debin does not indicate a return value of the gray function nor any arguments, mis-
leading the decompiler. By starting at the point shown in Figure 11 DIRE maintains structure and
typing even in the presence of incorrect predictions. To evaluate our performance compared to
Debin, we trained it on binaries in our dataset. Due to time restrictions, we found it impractical
to train Debin on the full dataset. For a fair comparison, we instead subsampled our training set
at 1% and 3% and trained both Debin and DIRE on these sets.3 After training, we ran Debin on
binaries in our test set, extracted names using our corpus generation pipeline, and measured the
accuracy of predictions. Our results are shown in Table 3. We find that DIRE is able to outperform
Debin at all sampling sizes. When trained on 1% of the corpus DIRE is able to exactly recover 32.2%
of all identifiers, while Debin recovers 2.4%. On the 3% partition, DIRE is able to recover 38.4% of
names, while Debin is able to recover 3.9%. The lower performance of Debin we observed could be
attributed to compound error: in addition to variable names themselves, Debin must predict what
memory locations correspond to variables. If a memory location is not predicted to be a variable,
Debin cannot assign it a name. We also note that we were able to train DIRE much faster than
Debin, although DIRE is GPU-accelerated, while Debin as distributed is limited to execution on
the CPU.

RQ3 Answer: DIRE is a more accurate and more scalable technique for variable name selec-
tion than other state-of-the-art approaches.

7 THE EFFECT OF DATA

Any machine learning system’s performance is related to both the model’s structure and the data
used to train it. Here, we investigate the impact that data has on DIRE. Training a model is com-
putationally expensive, and it may not always be feasible to train DIRE on a large data set. This
motivates investigating the performance of DIRE on data quantity. Data can also encode biases,
which in turn become encoded in machine learning models [38]. This motivates our investigation
of the impact of data provenance on DIRE. We show that models of source code tend to strengthen
biases towards common, generic variable names. This motivates us to modify DIRE to better pre-
dict uncommon domain-specific variable names which nonetheless provide important context.

We ask the following research questions. Only RQ4 is reproduced from the original presentation
of DIRE [30].

• RQ4: How does the quantity of data influence the efficacy of DIRE?
• RQ5: How does the provenance of training data influence the efficacy of DIRE?

3The 3% subsampling we used is a slightly larger training set than the 3,000 binaries used to train Debin in the original

paper [21].

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:23

Fig. 12. The impact of training corpus size on the performance of DIRE. Figures (a) and (b) show how in-

creasing the amount of training data improves the performance of DIRE; (c) shows the performance of each

of the submodel as training size changes.

• RQ6: How well can DIRE perform on diverse code from various domains if it is made aware
of its software domain?

7.1 RQ4: Effect of Data Quantity

To answer RQ4, we varied the size of the training data and measured the change in performance
of our models. Training data was subsampled at rates of 1%, 3%, 10%, 20%, and 40% (equivalent to
31,960, 95,879, 319,596, 639,192, and 1,278,385 functions, respectively). The results of these exper-
iments are shown in Figure 12. Figures 12(a) and 12(b) show the change in accuracy and CER of
DIRE, respectively. The size of the training data is plotted on the x-axes, while accuracy and CER
are plotted on the y-axes. While DIRE has low accuracy on the Body not in Train set at the lowest
sampling rates, at a 1% sampling rate it is still able to correctly select names over 40% of the time
for the Body in Train test set, suggesting that it is possible to use much less data to train a model if
the target application is reverse engineering of libraries rather than binaries in general. Note how-
ever, that the CER of DIRE is still high at low sampling rates. This implies that in the cases where
DIRE selects an incorrect variable name the chosen name is quite different from the correct name.
Sampling at a higher rate dramatically decreases the CER, allowing for namings that are closer
the developers’ choices. At a sampling rate of 40%, DIRE comes quite close to the performance of
the model trained on the full training set, with an overall accuracy of 68.2% (vs. 74.2%) and a CER
of 33.6% (vs. 28.2%). Figure 12(c) shows the effect of training set size on the performance of DIRE
and its component neural models on the Body not in Train test set. Note how at sampling rates
at or below 10% the models have similar performance. In cases where there is little training data,
training time can be further reduced by using only one of the two submodels.

RQ4 Answer: DIRE is data-efficient, performing competitively using only 40% of the train-
ing data. DIRE is also robust, outperforming the lexical and structural models in most sub-
sampling cases.

7.2 RQ5: Effect of Data Provenance

Biased selection of training data may impact the performance of the model trained on that data.
Given that unpopular projects far outnumber popular ones, a random sample of data from GitHub
is likely to contain mostly unpopular projects. However, as popular projects are better maintained
and subjected more scrutiny, variable names from popular projects may be systematically different
from unpopular projects’ variable names.

We analyze the impact of project popularity on DIRE’s predictions.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:24 L. Dramko et al.

7.2.1 Methodology. We train two versions of the DIRE model, one on our high-star corpus and
another on our no-star corpus.

We prepare the datasets for training and testing each model by sampling roughly the same
number of functions from each of the high and no-star partitions portions of the corpus (2,739,098
and 2,737,104, respectively), following the same data preparation steps described in Section 6. Thus,
we have two training sets, two development sets, and two test sets, one for the high-star portion
and one for the no-star portion, respectively. We train two models: one on the high-star training
set, and another on the no-star training set. We evaluate each model on each test set, resulting in
four evaluations: the model trained on the high-star training set (henceforth the high-star model)
on the high-star test set, the high-star model on the no-star test set, the no-star model on the
high-star test set, and the no-star model on the no-star test set.

As in RQ4, we report accuracy and character error rate on predictions. These metrics have
some weaknesses: accuracy is sensitive to semantic-preserving differences (for example, predicting
length instead of len) and character-error rate will grade misses of different lengths differently.
We use the VarCLR technique [10] as a third metric. VarCLR uses contrastive learning to put
similar variable names, that is, those that can be substituted for one another, close to each other
in an embedding space, while pushing names that are opposite farther away. A VarCLR score
is generated by computing the cosine similarity between embeddings for two variable names. A
higher score indicates a stronger degree of similarity.

VarCLR scores provide a notion of similarity, but the score is symmetric and thus does not
indicate which variable name is more descriptive, if either. Thus, we present three additional ways
to characterize the quality of DIRE’s predictions:

• Length: more information can be contained in a longer message, meaning the variable is
potentially more useful.
• Fluency: Given a byte-pair-encoding (BPE) from SentencePiece [29] as discussed in Sec-

tion 4.2.1 based on the developer variable names in the corpus, the fluency score is the length
of the longest subword when the name is broken up into subwords. This metric rewards
longer names and those that are common among developers. A higher score indicates that
the model’s predictions are more “fluent” in the developers’ vernacular. Because the high-
star and no-star corpora do not have identical vocabularies, we report the average fluency
value for each prediction.
• Recognizability: The fraction of the variable name that consists of words from an English

dictionary (GNU aspell), along with a short list of 127 common abbreviations in computing
(such as str for string and lib for library). With the exception of a and i, we remove
single letters from the dictionary. Single letter “words” communicate little information in the
context of identifiers; rather, acronyms and full words are most useful to developers [31].

Examples of all three variable name quality characterizations are shown in Table 4. We expect that
high-star code will score higher on these metrics.

In addition, we reason that better maintained code may be more likely to contain more descrip-
tive variables customized for specific use cases; that is, we expect high-star code and thus the
predictions of models trained on it to be more diverse. To quantify variable diversity, we calcu-
late Shannon’s Entropy on the variable name frequency distribution. Entropy is measured in bits
and quantifies how skewed a distribution is towards common names. Entropy captures both the
number of variable names that occur and the frequency at which each variable name occurs. Low
entropy indicates low variable diversity. At the lowest possible entropy, zero bits, one variable
name has probability one and all others have probability zero; that is, every variable name is the
same. At the other extreme, the maximum possible entropy occurs when every variable name that

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:25

Table 4. Examples of the Variable Name Quality Characterizations on Variable Names

Drawn from Our Corpus

Fluency Recognizability
Name Length Tokenization Value English Words Value

nofile_limit 12 no file _ limit 5 no file _ limit 1.000
phmmap_map 10 ph mmap _ map 4 hmm a _ map 0.800
wpid 4 w pid 3 id 0.500
gstring 7 gstring 7 string 0.857
tdbRef 6 tdb Ref 3 db Ref 0.833
x 1 x 1 0.000

For all characterizations, higher is better.

Table 5. DIRE’s Performance when Trained and Tested on Each Permutation of High or Low Star Training

Data and Tested on High or Low Star Test Data

Training Test Overall Body in Train Body not in Train
Data Data Acc CER VarCLR Acc CER VarCLR Acc CER VarCLR

High Stars High Stars 62.8 40.0 82.2 74.5 27.1 89.2 33.6 72.3 70.8
High Stars No Stars 50.9 53.2 76.4 68.7 36.1 86.4 36.6 66.5 71.9
No Stars High Stars 31.8 71.8 66.2 69.6 32.9 86.9 15.6 87.1 62.2
No Stars No Stars 73.5 28.5 87.5 81.9 19.3 92.2 39.6 62.9 73.4

Values are percentages. Higher accuracy, lower character error rate (CER), and higher VarCLR scores are better.

Table 6. The Percentage of All Test-Set Variables that

are in Body-in-Train Functions

Training Data Test Set Percent Body-in-Train

High Stars High Stars 71.4
High Stars No Stars 44.3
No Stars High Stars 30.0
No Stars No Stars 80.3

occurs does so with equal probability; that is, every variable name occurs the same number of
times.

7.2.2 Results. We show results in Table 5. It is difficult to compare overall accuracy directly
because the fraction of variables that are body-in-train varies considerably among the four training
data/test set combinations, as shown in Table 6. Instead, we examine both the body-in-train and
body-not-in-train portions separately.

In all four cases, the model performs well on the body-in-train portion, with accuracies of nearly
70% or above. The “cross testing” scenarios—where models trained on the high-star data is eval-
uated on the no-star test set and vice versa—receive lower overall accuracies and slightly lower
VarCLR scores than the other two trials. This suggests that there are systematic differences in
variables between high-and-low star code, though in all cases the model is often able to select a
variable name that is appropriately similar. One cause for the existence of a body-in-train portion
for the high-star model’s predictions on the low star test set and vice versa is libraries. For exam-
ple, the open-source libavcodec library, which helps encode and decode video content, is used in
multiple projects across the high-star and no-star data sets related to multimedia.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:26 L. Dramko et al.

Table 7. The Entropies of the High-Star and No-Star Data Sets with Respect to the Original Variable

Names as well as with Respect to the Predicted Names

Training Data Test Set Entropy: Entropy: Predicted Entropy: Predicted Names
Developer Names Names (Overall) (Body not in Train)

High-Star High-Star 11.487 10.470 9.966
High-Star No-Star 10.784 9.695 9.248
No-Star High-Star 11.487 9.629 9.246
No-Star No-Star 10.784 10.046 9.663

Entropy values are calculated based on a normalized frequency distribution of variable names in each test set. Lower

entropy values indicate that the distribution is more skewed towards a few frequently used variable names. Entropies

are measured in bits.

Fig. 13. The table on the left shows the entropy loss. Entropy loss is calculated by subtracting the entropy

of the distribution of developers’ names from the entropy of the distribution of the predictions. Entropy loss

is highly correlated with accuracy as shown right. While overall accuracy is shown, this holds true for other

types of accuracy as well.

The body-not-in-train, however, is different. The model trained on the high-star data yields fairly
even results across all three metrics. However, while the model trained on no-star data performs
very well on the no-star dataset, it performs especially poorly on the high-star dataset, with an
accuracy of just 15.6%, under half any other body-not-in-train accuracy. Similarly, the CER is much
higher and VarCLR score is much lower. This suggests that high-star data leads to models which
are more generalizable.

The differences in performance can be attributed to a distribution mismatch between high-star
and no-star datasets. We show the entropies of the high and no-star test sets with respect to the
original developer names as well as with respect to the predicted names in Table 7. The high-star
test set has significantly higher entropy than the no-star test set with respect to the developer-
given variable names, indicating that high-star code uses a greater variety of variable names more
often. Both overall and on the body-not-in-train portion, the entropies of the predictions by both
models are lower than the original entropy for that test set; DIRE tends to predict common variables
disproportionally often. In effect, the training process results in a narrowing of the distribution,
skewing it towards common variable names at the expense of less common ones. Because the
high-star distribution starts from a position of higher entropy, it is in a better position after the
narrowing effect of training occurs.

We can measure the narrowing of the distribution by calculating the amount of entropy lost as
shown in Figure 13. No-star data has has a lower entropy (and thus is less diverse) than high-star

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:27

Fig. 14. Each bar in the bar graphs represents the number of variables for which that distribution has a

higher probability value than the other distribution. The high-star distribution is more diverse; density of

the high-star distribution is better spread over a wider variety of variable names, while much of the density

of the no-star distribution is concentrated in the most common types of variable names.

data. After training’s narrowing effect, the no-star model’s predictions are even less diverse, lead-
ing to especially poor performance. Figure 14 shows how the high-star model is more likely to
predict a wider variety of variable names. Ultimately, such a higher-entropy, more diverse distri-
bution helps the high-star model generalize better than its no-star counterpart.

However, we find that while high-star code is more diverse, the differences in the quality of vari-
able names from high-star and no-star code is much less pronounced. We consider six collections
of variables:

• The high-star developer-given names (High/Dev)
• The no-star developer-given names (No/Dev)
• The high-star model’s predictions on the high-star test set (High/High)
• The no-star model’s predictions on the high-star test set (No/High)
• The high-star model’s predictions on the no-star test set (High/No)
• The no-star model’s predictions on the no-star test set (No/No)

Distributions in variable quality on each metric are shown in Table 8. The distributions are largely
identical for five of the six collections of variables. The outlier is the no-star model’s predictions
on the high-star test set (the No/High set). Table 9 quantifies these differences with the Cohen’s
d scaled differences between the means. All differences are negligible (<0.20) except when the
No/High set (the lowest entropy of the sets of variables) is compared with the highest-entropy
sets of variables on length and fluency (bolded in Table 9). The no-star model performs poorly on
variable names from the more diverse high-star test set and often chooses shorter, more generic
variable names for many of the names it fails to predict correctly. Indeed, the predictions of the
no-star model on variable names it predicts incorrectly are shorter on average (3.50 vs. 4.10) and
less fluent (2.98 vs. 3.62) than those it predicts correctly (Cohen’s d 0.125 and 0.327, respectively).
Thus, although high-star and no-star code don’t have meaningfully different variable name quality,
models trained on no-star code may have somewhat lower quality names.

RQ5 Answer: Training DIRE on data with higher variable-name distribution entropies leads
to a more generalizable model. High-star code has a higher entropy distribution of variable
names than no-star code.

7.3 RQ6: Effects of Software Domain

In Section 7.2 we show that training causes the model to “narrow” its distribution, making it less
likely to predict variable names which are already relatively unlikely. Unfortunately, sometimes
these rare variable names play important roles. This is the case for domain-specific identifiers,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:28 L. Dramko et al.

Table 8. Values of the Three Quality Metrics Both on the Original Developer-given Variable

Names as well as on the Predictions of the No-Star Model on the High-Star Training Set

None of the distributions of any quality characterization for any predictions are meaningfully different

from one another, except the predictions of the No-Star distribution on the High-Star test set, shown in

the last row.

which can provide crucial context for some functions. To help DIRE account for this effect and
predict domain-specific identifiers more accurately, we modify DIRE to make it domain-aware.

7.3.1 Methodology. We performed several interventions on DIRE to incorporate domain
information:

• Borrowing a technique from natural language processing, we added domain labels as ap-
propriate to each member of each class. Labels consisted of the domain name surrounded
by angle brackets, as in <kernel> or <shell>. For consistency, all of the additional data
with indeterminate domain were given the label <unknown>. Domain labels were added to
the vocabulary as special tokens. To incorporate domain labels into the sequence model, we
prepended them to the input token sequence; to incorporate them into the graph model, we
added an additional “label” node with edges to every AST node. The goal of this process is to
create an association between a particular domain and identifiers common in that domain.
• Recall from Section 4.2.2 that the names of named AST nodes are incorporated into the model

through an embedding computed by averaging the subtokens of that name. By default, DIRE

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:29

Table 9. Cohen’s d Differences in the Means of Each Distribution of Each Set

of Variables for Each Quality Metric

(a) Length

High/Dev No/Dev High/High No/High High/No No/No

High/Dev 0.00 0.10 0.05 0.28 0.16 0.20

No/Dev 0.00 0.00 0.21 0.10 0.11

High/High 0.00 0.12 0.06 0.05

No/High 0.00 0.07 0.12

High/No 0.00 0.02

No/No 0.00

(b) Fluency

High/Dev No/Dev High/High No/High High/No No/No

High/Dev 0.00 0.02 0.09 0.32 0.15 0.10

No/Dev 0.00 0.07 0.31 0.14 0.08

High/High 0.00 0.23 0.06 0.01

No/High 0.00 0.16 0.22

High/No 0.00 0.05

No/No 0.00

(c) Recognizability

High/Dev No/Dev High/High No/High High/No No/No

High/Dev 0.00 0.00 0.05 0.16 0.09 0.08

No/Dev 0.00 0.05 0.16 0.09 0.08

High/High 0.00 0.12 0.05 0.04

No/High 0.00 0.07 0.08

High/No 0.00 0.01

No/No 0.00

In the tables below, High/Dev represents the high-star code’s developer names, High/No

represents the high star model’s predictions on the no-star test set, and so on. All differences

are negligible (<0.20) except when comparing to the no star model’s predictions on the

high-star test set, for which the difference is small (<0.50) when compared with the original

developers’ names of both high-star and no-star code in terms of both length and fluency. The

difference of the no-star model’s predictions on high-star test set compared to the high-star

model’s predictions on its own test set is also small in terms of fluency.

considers the name of a constant to be a generic placeholder value based on that constant’s
type, meaning all constants of the same type have identical nodes in the AST. Similarly, all
constants are replaced with generic placeholders based on their types in the lexical encoder
as well. Due to our earlier finding that string literals are indicative of domain, we opted to
not replace string literals with these generic placeholders and instead leave them in. This
necessitated increasing the model’s vocabulary size to include words that appear in string
literals but not identifiers.

Unfortunately, domain-specific data is relatively scarce because many GitHub project maintain-
ers do not elect to tag their repositories. To address this challenge, we sampled additional data from
a pool of data with indeterminate domain. This “unknown” data allows DIRE to learn about com-
mon patterns in code, while the tagged domain-specific data help DIRE adjust to the idiosyncrasies
of particular domains.

We created train/development/test splits for each domain and the unknown data separately.
We trained the model on a pool of all training data from all domains and the unknown data, but

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:30 L. Dramko et al.

Table 10. A Comparison of the Original DIRE Model vs. the Domain-Aware Version

(a) Overall
Lexical Model DIRE

Original Original Domain-Aware Original Original Domain-Aware
Domain (10K Vocab) (30K Vocab) (30K Vocab) (10K Vocab) (30K Vocab) (30K Vocab)
unknown 73.92% 76.85% 80.16% 72.38% 74.22% 75.90%
kernel 69.73% 72.28% 78.64% 67.84% 68.87% 71.70%
game 34.92% 42.48% 49.46% 34.77% 38.30% 40.77%
shell 33.69% 37.22% 43.25% 32.71% 33.85% 35.24%
compiler 43.70% 46.90% 51.35% 42.89% 43.49% 47.38%
network 57.77% 61.30% 64.00% 56.45% 58.99% 57.72%
embedded 76.33% 75.84% 84.84% 72.29% 72.57% 75.86%
graphics 22.97% 23.18% 31.80% 21.12% 18.50% 23.74%
Mean (Domains) 48.44% 51.31% 57.62% 46.87% 47.80% 50.34%
Performance Rank 4 2 1 6 5 3

(b) Body not in Train
Lexical Model DIRE

Original Original Domain-Aware Original Original Domain-Aware
Domain (10K Vocab) (30K Vocab) (30K Vocab) (10K Vocab) (30K Vocab) (30K Vocab)
unknown 35.89% 38.55% 43.85% 32.88% 35.51% 37.09%
kernel 39.99% 39.94% 46.07% 36.21% 38.65% 38.86%
game 22.40% 26.84% 32.51% 21.46% 23.23% 24.34%
shell 19.63% 20.90% 24.49% 19.10% 17.73% 19.20%
compiler 22.97% 24.93% 27.42% 21.97% 21.51% 24.68%
network 20.13% 23.03% 25.60% 20.77% 17.55% 18.84%
embedded 46.19% 48.13% 54.33% 43.87% 43.83% 46.26%
graphics 18.58% 18.28% 26.67% 16.57% 13.14% 18.40%
Mean (Domains) 27.13% 28.86% 33.87% 25.71% 25.09% 27.23%
Performance Rank 4 2 1 5 6 3

Results for both DIRE and its lexical component are shown. Accuracy information for each domain and for

performance on the “unknown” data set sampled from the data used in RQ1 are shown. Domain-Aware DIRE requires a

larger vocabulary size than the original version of DIRE because it must handle tokens in string literals. Increasing the

vocabulary size improves the performance of the lexical component of DIRE; therefore, results for the original version

of DIRE are shown at both the original (10,000 subtokens) and expanded (30,000 subtokens) vocabulary sizes. Across all

domains, the lexical component of DIRE with interventions applied outperforms the model as a whole.

kept each test set separate. To evaluate our model, we report accuracy numbers for each test set
separately—one for each of the seven domains, and one for the unknown data—for a total of eight.

In addition, we trained two control models following the same process (and using the same data
with the same train/development/test splits), but without any of the interventions. Thus, the con-
trol trials had no domain labels and had placeholders instead of string literals. The two control
models varied in vocabulary size. Vocabulary size incurs a trade off: a larger vocabulary increases
memory consumption and can become a computational bottleneck [20], but a larger vocabulary
can boost accuracy as the model needs to predict fewer subwords per variable name on aver-
age [45]. We trained one model with the same vocabulary size as used in the evaluation of RQ1
(10,000) and another with the same vocabulary size as used in the domain-aware version of DIRE
(30,000). All other hyperparameters were held constant, though embedding sizes were increased
by 50% (on all models) to give the model additional capacity to store domain information. We re-
port results for both DIRE and its lexical component of DIRE alone, which performed almost as
well as DIRE—within 2%—in the evaluation of RQ1 (see Table 1).

7.3.2 Results. Table 10 shows the results. With the interventions applied, the lexical component
of DIRE alone performed the best with an average accuracy score of 57.62% across all seven domain-
specific data sets. Then next-best performing model, the lexical model with expanded vocabulary
size, had an accuracy of 51.31%. Increasing the vocabulary size alone impacted the lexical model’s

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

DIRE and its Data: Neural Decompiled Variable Renamings 39:31

performance, but not the performance of DIRE. Although the difficulty of different domains var-
ied significantly, gains across domains were fairly consistent. While the lexical model performed
better than DIRE, in both cases, applying the interventions lead to increased performance over the
controls. The performance of the lexical model with interventions applied improves the accuracy
on domain-specific test sets to an average of 57.62% from an average of 46.87% on the original base
DIRE model, a 22.94% increase.

RQ6 Answer: By applying domain-labelling techniques and harnessing the domain-rich in-
formation in string literals, DIRE can be made domain-aware and its best performing sub-
model alone can predict identifiers correctly in domain-specific scenarios 22.94% more fre-
quently than the base DIRE model.

8 THREATS TO VALIDITY

In answering research questions 1–4, when collecting code and binaries to generate our corpus,
we did no filtering of the repositories beyond ensuring that they were written in C and built.
In answering all of our research questions, it is possible that the code we collected does not ac-
curately represent the types of binaries that are typically targets of reverse-engineering efforts.
Additionally, we did not experiment with binaries compiled with optimization enabled, nor did
we experiment with intentionally obfuscated code. It is possible that DIRE does not perform as
well on these binaries. However, reverse engineering of these binaries is a general challenge for
decompilers, and we do not believe that our technique applies exclusively to the test code we
experimented with. Although we have found that it is possible to uniquely identify variables in
Hex-Rays based on the code offsets where it is accessed, we have found that other decompilers
do not have this property. In particular, our approach did not work well with the newly released
Ghidra decompiler [17]. One of the primary causes is the way that Hex-Rays and Ghidra use debug
symbols to name variables. Hex-Rays uses debug symbols in a very straight-forward manner, and
generally does not propagate local names outside of their function. Ghidra, however, will actually
propagate variable names at some function calls. For example, if an unnamed variable is passed
as an argument to a function whose parameter has a name, in some cases Ghidra will rename
the variable to match the parameter’s name. This behavior is problematic for corpus generation
because it does not reflect the developer’s intended names. A new approach for corpus generation
would be required for compatibility with Ghidra, but Ghidra’s open-source nature (as opposed to
Hex-Rays’ closed model) allows potential modification of the decompiler, including disabling the
problematic propagation of names at function calls. We leave Ghidra integration to future work.

In answering research question 5, we selected a set of metrics to characterize variable names in
various corpora. Determining what counts as a “good” variable name is a difficult problem and is
often both subjective and context dependent. We acknowledge that there may be other ways to
characterize variable name quality that we did not consider.

Ultimately, all of the metrics used to evaluate DIRE are imperfect proxies for the quality that is
most important: how useful the variable names generated by DIRE are to reverse engineers. We
leave a study on how reverse engineers interact with DIRE to future work.

Finally, while we evaluate DIRE against prior state-of-the-art approaches in Section 6.3, we only
do so with a random sample from the entire dataset. It is possible that some techniques perform
best in specific circumstances. We leave this to future work.

9 CONCLUSION

Semantically meaningful variable names are known to increase code understandability, but they
generally cannot be recovered by decompilers. In this paper, we presented the Decompiled

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

39:32 L. Dramko et al.

Identifier Renaming Engine (DIRE), a probabilistic technique for variable name recovery which
uses both lexical and structural information. We also presented a technique for generating corpora
suitable for training DIRE, which we used to generate a corpus from 164,632 unique x86-64 binaries.

In addition, we extended the work originally published at ASE 2019 [30] to demonstrate that the
choice of data used to train DIRE can have a profound impact on the resulting model. In particular,
we find that models trained on data with more diverse, higher-entropy variable-name distributions
tend to generalize better, and that the training process concentrates probability towards variable
names which were already more common in the original distribution.

As another novel contribution in this extended paper, we modify DIRE to incorporate software
domain information to help alleviate the impact of the latter effect on rare but important domain-
specific variable names. In other words, we find that we can improve generalizability and perfor-
mance by better selecting and augmenting the training data. While we performed our experiments
on DIRE, the principle is not fundamentally tied to DIRE and we expect it to be generally applicable
to machine learning models on code.

Our findings suggest that it may be possible to predict the performance of a model trained on
a specific class of data on a specific test set without training. Assuming most of the probability
in each variable name probability distribution falls on the intersection of the supports, it may be
possible to use regression as in Figure 13 to predict accuracy if the “narrowing” effect of training
is taken into account. We leave this to future work.

ACKNOWLEDGMENTS

Many thanks to Qibin Chen for suggestions throughout the project and to both Prem Devanbu
and members of the CERT Division at the Software Engineering Institute for helpful feedback on
earlier drafts.

REFERENCES

[1] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine learning models of code. In International

Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (SPLASH’19). ACM, 143–153.

[2] Miltiadis Allamanis, Earl Barr, Christian Bird, and Charles Sutton. 2014. Learning natural coding conventions. In

Symposium on the Foundations of Software Engineering (FSE’14). ACM, 281–293.

[3] Miltiadis Allamanis, Earl Barr, Christian Bird, and Charles Sutton. 2015. Suggesting accurate method and class names.

In Joint Meeting of the European Software Engineering Conference and the Symposium on the Foundations of Software

Engineering (ESEC/FSE’15). ACM, 38–49.

[4] Miltiadis Allamanis, Earl Barr, Premkumar Devanbu, and Charles Sutton. 2018. A survey of machine learning for big

code and naturalness. ACM Computing Surveys (CSUR) 51, 4 (2018), 1–37.

[5] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to represent programs with graphs.

In International Conference on Learning Representations (ICLR’18). openreview.net.

[6] Uri Alon, Omer Levy, and Eran Yahav. 2019. code2seq: Generating sequences from structured representations of code.

In International Conference on Learning Representations (ICLR’19). openreview.net.

[7] Venera Arnaoudova, Laleh Eshkevari, Massimiliano Di Penta, Rocco Oliveto, Giuliano Antoniol, and Yann-Gaël

Guéhéneuc. 2014. Repent: Analyzing the nature of identifier renamings. Transactions on Software Engineering 40,

5 (2014), 502–532.

[8] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub star? Understanding repository starring practices

in a social coding platform. Journal of Systems and Software 146 (2018), 112–129. https://doi.org/10.1016/j.jss.2018.09.

016

[9] Qibin Chen, Jeremy Lacomis, Edward Schwartz, Claire Le Goues, Graham Neubig, and Bogdan Vasilescu. 2022. Aug-

menting decompiler output with learned variable names and types. In USENIX Security Symposium (USENIXSEC’22).

USENIX Association.

[10] Qibin Chen, Jeremy Lacomis, Edward Schwartz, Graham Neubig, Bogdan Vasilescu, and Claire Le Goues. 2022. Var-

CLR: Variable semantic representation pre-training via contrastive learning. In International Conference on Software

Engineering (ICSE’22). IEEE.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

https://doi.org/10.1016/j.jss.2018.09.016

DIRE and its Data: Neural Decompiled Variable Renamings 39:33

[11] Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. 2015. Describing multimedia content using attention-based

encoder-decoder networks. Transactions on Multimedia 17, 11 (2015), 1875–1886.

[12] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation.

In Empirical Methods in Natural Language Processing (EMNLP’14). ACL, 1724–1734.

[13] Premkumar Devanbu. 2015. New initiative: The naturalness of software. In International Conference on Software

Engineering (ICSE’15). IEEE, 543–546.

[14] Lukas Durfina, Jakub Kroustek, and Petr Zemek. 2013. PsybOt malware: A step-by-step decompilation case study. In

Working Conference on Reverse Engineering (WCRE’13). IEEE, 449–456.

[15] Michael Eager. 2012. Introduction to the DWARF Debugging Format. (April 2012). http://www.dwarfstd.org/doc/

Debugging%20using%20DWARF-2012.pdf.

[16] Edward Gellenbeck and Curtis Cook. 1991. An Investigation of Procedure and Variable Names as Beacons During

Program Comprehension. Technical Report. Oregon State University.

[17] Ghidra. 2019. The Ghidra Decompiler. (2019). https://ghidra-sre.org/.

[18] Justin Gilmer, Samuel Schoenholz, Patrick Riley, Oriol Vinyals, and George Dahl. 2017. Neural message passing for

quantum chemistry. In International Conference on Machine Learning. JMLR, 1263–1272.

[19] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Working Conference on Mining Software Repositories

(MSR’13). IEEE, 233–236.

[20] Thamme Gowda and Jonathan May. 2020. Finding the optimal vocabulary size for neural machine translation. In

Empirical Methods in Natural Language Processing (EMNLP’20). ACL, 3955–3964.

[21] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev. 2018. Debin: Predicting debug

information in stripped binaries. In Conference on Computer and Communications Security (CCS’18). ACM, 1667–

1680.

[22] Hex-Rays. 2019. The Hex-Rays Decompiler. (2019). https://www.hex-rays.com/products/decompiler/.

[23] Abram Hindle, Earl Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. 2012. On the naturalness of software.

In International Conference on Software Engineering (ICSE’12). IEEE, 837–847.

[24] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–

1780.

[25] Alan Jaffe, Jeremy Lacomis, Edward Schwartz, Claire Le Goues, and Bogdan Vasilescu. 2018. Meaningful variable

names for decompiled code: A machine translation approach. In International Conference on Program Comprehension

(ICPC’18). ACM, 20–30.

[26] Hong Jin Kang, Tegawendé Bissyandé, and David Lo. 2019. Assessing the generalizability of code2vec token embed-

dings. In International Conference on Automated Software Engineering (ASE’19). IEEE, 1–12.

[27] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. 2020. Big code != Big

vocabulary: Open-vocabulary models for source code. In International Conference on Software Engineering (ICSE’20).

IEEE, 1073–1085.

[28] Deborah Katz, Jason Ruchti, and Eric Schulte. 2018. Using recurrent neural networks for decompilation. In Interna-

tional Conference on Software Analysis, Evolution and Reengineering (SANER’18). 346–356.

[29] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language independent subword tokenizer

and detokenizer for neural text processing. In Conference on Empirical Methods in Natural Language Processing

(EMNLP’18). ACL, 66–71.

[30] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis, Claire Le Goues, Graham Neubig, and Bog-

dan Vasilescu. 2019. DIRE: A neural approach to decompiled identifier renaming. In International Conference on

Automated Software Engineering (ASE’19). IEEE, San Diego, California, 628–639.

[31] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s in a name? A study of identifiers.

In International Conference on Program Comprehension (ICPC’06). IEEE, 3–12.

[32] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In International Confer-

ence on Machine Learning (ICML’14). JMLR, 1188–1196.

[33] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas

Carlini. 2022. Deduplicating training data makes language models better. (2022), 8424–8445. https://doi.org/10.18653/

v1/2022.acl-long.577

[34] Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. 2016. Gated graph sequence neural networks. In

International Conference on Learning Representations (ICLR’16). openreview.net.

[35] Hui Liu, Qiurong Liu, Yang Liu, and Zhouding Wang. 2015. Identifying renaming opportunities by expanding con-

ducted rename refactorings. Transactions on Software Engineering 41, 9 (2015), 887–900.

[36] Kui Liu, Dongsun Kim, Tegawendé Bissyandé, Taeyoung Kim, Kisub Kim, Anil Koyuncu, Suntae Kim, and Yves

Le Traon. 2019. Learning to spot and refactor inconsistent method names. In International Conference on Software

Engineering (ICSE’19). IEEE, 1–12.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

http://www.dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://ghidra-sre.org/
https://www.hex-rays.com/products/decompiler/
https://doi.org/10.18653/v1/2022.acl-long.577

39:34 L. Dramko et al.

[37] Thang Luong, Hieu Pham, and Christopher Manning. 2015. Effective approaches to attention-based neural machine

translation. In Empirical Methods in Natural Language Processing (EMNLP’15). ACL, 1412–1421.

[38] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2021. A survey on bias

and fairness in machine learning. Comput. Surveys 54, 6 (2021), 1–35.

[39] Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail Kaiser. 2021. DIRECT: A transformer-based model for de-

compiled variable name recovery. (2021), 48.

[40] Lucas Nussbaum and Stefano Zacchiroli. 2010. The Ultimate Debian Database: Consolidating bazaar metadata for

quality assurance and data mining. In Working Conference on Mining Software Repositories (MSR’10). IEEE, 52–61.

https://doi.org/10.1109/MSR.2010.5463277

[41] William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. 1992. Numerical Recipes in C: The Art of

Scientific Computing (2nd ed.). Cambridge University Press, Chapter 20.2 Gray Codes, 896.

[42] Md. Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and Mohammad Amin Alipour. 2021.

On the generalizability of neural program models with respect to semantic-preserving program transformations.

Information and Software Technology 135 (2021), 106552.

[43] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program properties from “big code”. In Sym-

posium on Principles of Programming Languages (POPL’15). ACM, 111–124.

[44] David Rumelhart, Geoffrey Hinton, and Ronald Williams. 1986. Learning representations by back-propagating errors.

Nature 323, 6088 (1986), 533–536.

[45] Elizabeth Salesky, Andrew Runge, Alex Coda, Jan Niehues, and Graham Neubig. 2020. Optimizing segmentation

granularity for neural machine translation. Machine Translation 34, 1 (2020), 41–59.

[46] Felice Salviulo and Giuseppe Scanniello. 2014. Dealing with identifiers and comments in source code comprehension

and maintenance: Results from an ethnographically-informed study with students and professionals. In International

Conference on Evaluation and Assessment in Software Engineering (EASE’14). ACM, New York, NY, USA, Article 48,

10 pages. https://doi.org/10.1145/2601248.2601251

[47] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2009. The graph

neural network model. Transactions on Neural Networks 20, 1 (2009), 61–80.

[48] Edward Schwartz, JongHyup Lee, Maverick Woo, and David Brumley. 2013. Native x86 decompilation using

semantics-preserving structural analysis and iterative control-flow structuring. In USENIX Security Symposium

(USENIXSEC’13). USENIX Association, 353–368.

[49] Diomidis Spinellis, Zoe Kotti, and Audris Mockus. 2020. A dataset for GitHub repository deduplication. In Interna-

tional Conference on Mining Software Repositories (MSR’20). ACM, New York, NY, USA, 523–527. https://doi.org/10.

1145/3379597.3387496

[50] JHU/APL Staff. 2019. Assembled Labeled Library for Static Analysis Research (ALLSTAR) Dataset. (Dec. 2019). http:

//allstar.jhuapl.edu/.

[51] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018. Adding sparkle to social coding: An

empirical study of repository badges in the npm ecosystem. In International Conference on Software Engineering

(ICSE’18). IEEE, 511–522.

[52] Michael James van Emmerik. 2007. Static Single Assignment for Decompilation. Ph.D. Dissertation. University of

Queensland.

[53] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recovering clear, natural identifiers from

obfuscated JavaScript names. In Joint Meeting of the European Software Engineering Conference and the Symposium

on the Foundations of Software Engineering (ESEC/FSE’17). 683–693.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In Conference on Neural Information Processing Systems (NeurIPS’17).

Curran Associates Inc., 6000–6010.

[55] Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl, and Hermann Ney. 2016. CharacTer: Translation edit rate on

character level. In Workshop on Statistical Machine Translation (WMT’16). ACL, 505–510.

[56] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith. 2016. Helping Johnny to analyze mal-

ware: A usability-optimized decompiler and malware analysis user study. In Symposium on Security and Privacy

(SP’16). IEEE, 158–177.

[57] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew Smith. 2015. No more Gotos: Decom-

pilation using pattern-independent control-flow structuring and semantics-preserving transformations. In Network

and Distributed System Security Symposium (NDSS’15). Internet Society.

Received 30 October 2021; revised 22 May 2022; accepted 1 June 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 39. Pub. date: March 2023.

https://doi.org/10.1109/MSR.2010.5463277
https://doi.org/10.1145/2601248.2601251
https://doi.org/10.1145/3379597.3387496
http://allstar.jhuapl.edu/

