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Abstract— We propose a method for detecting execution
anomalies in robotics and autonomy software. The algorithm
uses system monitoring techniques to obtain profiles of exe-
cutions. It uses a clustering algorithm to create clusters of
those executions, representing nominal execution. A distance
metric determines whether additional execution profiles belong
to the existing clusters or should be considered anomalies.
The method is suitable for identifying faults in robotics and
autonomy systems. We evaluate the technique in simulation on
two robotics systems, one of which is a real-world industrial
system. We find that our technique works well to detect possibly
unsafe behavior in autonomous systems.

I. INTRODUCTION

Robotics and autonomy systems are safety-critical, and
their failures can be expensive and sometimes deadly. The
risk of critical safety failures only increases as robotics
applications have expanded into contact with the public [1]–
[4], motivating increased testing, debugging, and Quality
Assurance (QA) support.

Existing approaches to assuring safe behavior in these
systems include formal verification and testing-based ap-
proaches, such as field testing [5], unit testing [6], robustness
testing [7], [8], and fuzz testing [9]. Formally verifying real
systems requires extraordinary investment of time and human
effort [10]–[12], making it impractical to apply to entire
systems [13], [14]. Bugs have been found in formally-verified
systems due to invalid assumptions [15].

Many QA techniques based in testing, debugging, and
program repair require an oracle [16] — a systematic ap-
proach for distinguishing between acceptable and unaccept-
able behaviors [17]. A human can act as an oracle, but human
effort is expensive [18]. Often, these QA techniques use a
simple automated oracle to detect obvious failures, such as
software crashes and tasks that take too long [19]. A more
sophisticated oracle can detect additional failures and unsafe
behaviors, as is needed for safety-critical systems. For highly
automated testing techniques – such as RIOT [8], [20] – the
amount of effort required to generate testing oracles has a
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large impact on the overall testing effort. Automation of this
part of the testing process can drastically reduce the needed
user effort and expertise.

Detecting errors in robotics and autonomous systems may
require a more involved process than in classical software [8],
for various reasons. Cyber-physical systems, such as robots,
must be safe at every point of execution, in contrast to
more traditional software which often only must produce
correct output. For evaluating system safety we focus on
robustness testing, which measures the sensitivity of the
system to environmental faults such as sensor failure or
network message corruption. The distributed and cyber-
physical nature of the systems can also mask errors when
different components perform different functions: the fail-
ure of a perception subsystem to detect a pedestrian may
be masked if the corresponding navigation subsystem had
coincidentally designated a route that did not collide with
the pedestrian. QA on autonomous and robotics systems is
further complicated because source code is not guaranteed to
be available for all parts of the system – for example, during
third party test and evaluation. [7], [21].

We present a novel technique that automatically detects
potentially unsafe behavior in robotics and autonomy system
software by monitoring low-level execution behavior and
performing anomaly detection on the results. Systems that
interact with the real world are well-suited to execution
monitoring because most of the overhead can be absorbed
into time the system would have otherwise been spent
waiting. Our work is based in the assumption that unusual
behavior is more likely to exhibit errors than typical behavior
and, therefore, that unusual behavior might represent un-
safe behavior [22]. We present a semi-supervised machine
learning approach based on clustering data points repre-
senting nominal executions; the resulting model serves as
a test oracle for data points representing additional unknown
executions. The approach uses low-level system monitoring
and detects a significant portion of faults on two simulated
robotics systems. We present initial experiments on robotics
in simulation, demonstrating the use and effectiveness of our
anomaly detection technique.

Section II outlines our method, combining low-level sys-
tem characterization techniques, clustering, and anomaly de-
tection. Section III discusses the evaluation of our technique,
including the Systems Under Test (SUTs) and test inputs.
Section III discusses experiment results. Section V highlights
implications and use cases of our technique. Section VI fits
our technique into context, and Section VII concludes.



Fig. 1. The architecture diagram for this testing approach, outlining the
setup and testing phases.

II. METHOD

Figure 1 illustrates our proposed technique for using
anomaly detection to find unexpected behaviors in robotics
systems in simulation. Our system assumes a System Under
Test (SUT) – a robotics system that can be executed with a
system characterization technique, either on real hardware
or in simulation [23], [24]. We also assume at least one
nominal system input – an input not known to cause any
safety violations or unintended behavior. Given this input,
the approach is comprised of two steps: setup, and testing.

Setup involves running an instrumented system on nom-
inal inputs and collecting summaries of system execution
(Section II-A). These summaries are — or are parsable to
— a collection of values (either fixed-length or time series).
We use the affinity propagation algorithm [25] to automati-
cally cluster these representations, with clusters representing
common modes, or statistical maxima, of nominal operation.
Affinity propagation works especially well when the number
of modes is not known a priori. The setup nominal data
set is relatively small, so this step does not impact overall
performance significantly.

In testing, we detect anomalies by comparing
instrumentation-produced execution summaries of previously
unseen inputs against the clusters of nominal behaviors.
The comparison uses Local Density Cluster-Based Outlier
Factor (LDCOF), a clustering-based anomaly detection
technique (Section II-B). LDCOF produces an outlier score
for a new input, representing how far the new execution is
from a nominal operation. A higher outlier score signifies
that a given execution may be indicative of unsafe system
behavior.

A. System Characterization Techniques

We use three system profiling techniques: two off-the-shelf
tools and one custom VALGRIND tool.

1) PS Utility: The PYTHON package PSUTIL1 collects
information on running processes by interacting with un-
derlying system services. The resulting data include: User
time – the amount of CPU time the system has spent in
the process, not the kernel; System time – the amount of
time spent in kernel mode; Resident set size – the amount
of RAM allocated to the process; and Virtual memory size –
the amount of virtual memory the process has access to. We
collect this data at a fixed frequency, resulting in a time series
describing system behavior over the course of execution.

2) VALGRIND MEMCHECK: A popular program profiling
method is VALGRIND,2 an instrumentation framework for
developing dynamic analysis tools. VALGRIND’s default tool,
MEMCHECK, tracks a program’s memory accesses, such as
memory initialization and freeing resources. It wraps most
instructions with instrumentation. We parse MEMCHECK’s
log file to extract values that summarize the system behavior.

3) Customized VALGRIND Tool: SIGNALSEER: We de-
signed a custom dynamic binary instrumentation tool on
the VALGRIND framework, to collect a broader set of low-
level data about the executions of an SUT. We call this tool
SIGNALSEER. It counts execution events and keeps track of
minima and maxima for certain values, such as: number of
machine instructions executed, number of memory stores,
and minimum and maximum memory addresses for each.

The tool is designed to have low overhead, the choice
of what to count inspired by VALGRIND’S instrumentation
structure. We add an instrumentation point to each instruction
and, at each of these points, only collect data that can be
gathered efficiently. The tool minimizes calls to libraries and
VALGRIND’s API at runtime. This tool provides a summary
of execution behavior that is ready to use for our analysis.

B. Detecting Anomalies in System Execution

To detect execution anomalies, we need a way of mea-
suring how anomalous a given execution is. We use Local
Density Cluster-Based Outlier Factor (LDCOF), an anomaly
detection algorithm that uses clustering to find outliers [26].

LDCOF works by applying a clustering algorithm to the
data, separating the clusters into large and small clusters, then
for each data point calculating an outlier score as follows:

LDCOF (p) = min
Ci∈large clusters

d(p, Ci)

avg_dist(Ci)

where d(p, Ci) is the distance between a point p and the
center of cluster Ci, and

avg_dist(Ci) =

∑
p∈Ci

d(p, Ci)

|Ci|
.

In our use case, we have separate training and target sets. We
adapt the algorithm to consider all clusters of the nominal

1https://pypi.org/project/psutil/
2http://valgrind.org/



data to be “large clusters”. This ensures that the outlier score
is calculated against every mode of nominal operation.

LDCOF suits our use case well because it accounts for
variance in operating modes. With LDCOF, a data point that
is X distance away from a cluster with a lot of variance
would be considered less anomalous than one that is the
same distance away from a cluster with little variance. This
behavior analogizes well to modes of system operation.

We use the estimate from LDCOF (p) of how much of an
outlier a given data point (and its corresponding execution)
is, as an oracle. Any execution with an LDCOF (p) greater
than some threshold, is sufficiently far away that it is likely
to represent an anomalous execution. We choose a threshold
equal to one.

a) Dynamic Time Warping: For system characterization
techniques – such as PSUTIL – that produce time series data,
we adjust the clustering algorithm to compare time series
data using Dynamic Time Warping (DTW) [27] instead of
Euclidean distance. DTW calculates the disparity between
two sequences under warping of the time axis by finding a
sequence of index pairs (i, j) that minimizes

end∑
k=1

|seq_a[ik]− seq_a[ik]|

subject to the following constraints.

(i1, j1) = (1, 1)

(ik+1, jk+1) ∈ {(ik + 1, jk), (ik, jk + 1), (ik + 1, jk + 1)}

(iend, jend) = (len(seq_a), len(seq_b))

.
In prose: it calculates the shortest distance between ele-

ments of two sequences, allowing adjustment of the relative
ordering of elements between the sequences, as long as the
ordering of elements within each sequence remains fixed.

DTW is not an actual distance function but instead a
distance-like function, which means that we cannot calcu-
late the center point of a cluster using DTW. Instead, we
approximate the distance d(p, C) as:

d(p, C) = avg
q∈Ci,q 6=p

d(p, q)

III. EXPERIMENT SETUP

Each experiment centers on one SUT (Section III-A) and
one system characterization technique (Section II-A). In the
setup phase, we repeatedly execute the SUT in simulation
with a nominal input under the chosen system characteri-
zation technique.3 For the testing phase, we use mutational
fuzzing on the nominal input to generate test inputs. For these
experiments the nominal input is an input file provided with
the SUT. We run the SUT under the system characterization
technique with each test input to generate a profiling result
and classify the result using our LDCOF-based anomaly de-
tection method. We compare detected anomalies against a set

3We run all simulations on machines with the following configuration:
Intel® Core™2 Duo CPU (E8500) 2 Cores @ 3.16GHz, 4 GB RAM

of manually written system invariants, a proxy (approximate
stand-in) for true safety. Here, an invariant is a rule that
must hold over the entire execution, covering anything from
message transmission frequency to speed limits. We describe
test and invariant construction in Section III-B and III-D.

A. Systems Under Test

We use two SUTs in these experiments: a research system
(including common robotics libraries) and a commercial
system. These systems were chosen for insight into real-
world factory robotics systems and the behavior of some
of the underlying libraries that are common in robotics
development.

We drew nominal inputs from simulations provided with
the robots, as demonstrations of intended system behavior.
The inputs take the form of ROSBAGS, files that contain a
series of messages of different types for a system. We replay
the ROSBAGS to exercise the system with the same input.

We use the GAZEBO simulator for system execution,
following the instructions in the SUT documentation. This
gives us a consistent environment in which to exercise the
SUTs while applying the nominal and test inputs.

1) BenchMark Bot (BMB): an artificial system our team
designed for research on the Robot Operating System (ROS),
common libraries, and interactions. It is a lightweight wrap-
per for key ROS functionalities, including path planning and
switching between sources of control. The robot is designed
to compute a path based on waypoints and what it senses
in its environment. Because BMB is modular, it can be
configured to use any of several planning algorithms.

We tested BMB using a recording of a simple exploration
scenario. To do this, we only ran one node, rather than the
entire system. The node we tested was Global Planner which
takes in a point and outputs a likely path.

2) Fetch Robotics’ Fetch: commercially-available “au-
tonomous mobile robots that operate safely in commercial
and industrial environments shared by people.”4 They pick up
and transport heavy payloads, such as items in a warehouse
environment. They have a mobile base and an arm for
manipulation. The robots are built on ROS. Fetch Robotics
provided simulation and the disco dance scenario, which we
tested. Disco dance demonstrates the movement planners,
taking the robot through a range of arm motions, with
dummy “collision objects” for the arm to avoid.

B. Test Inputs

We use mutational fuzzing to create test inputs likely to in-
duce safety failures. Changing values in inputs to exceptional
values (such as MAX_INT, NAN, or -1) has been shown
to effectively induce robotics systems failures [8], [19].
Specifically, for each selected message type in a nominal
input file, we inject roughly ten exceptional values using a
randomized value injection technique. We generate at least
six test inputs per message type.

4http://fetchrobotics.com/automated-material-
transport-v3/



1 i f " t o r s o _ l i f t _ j o i n t " in j o i n t :
2 i f abs ( j o i n t _ v e l ) > 0 . 1 :
3 re turn True
4 i f abs ( j o i n t _ e f f o r t ) > 450 :
5 re turn True
6 i f j o i n t _ p o s < 0 or j o i n t _ p o s > . 4 :
7 re turn True

Fig. 2. Code listing for a sample FETCH invariant.

These test inputs give a variety of input patterns, some of
which cause safety violations, providing a data set on which
to measure false positives and negatives. We determined
whether each input contained faults by inputing it to the
robot in simulation with no instrumentation and evaluating
whether the simulation violated any invariants.

C. Metrics

To evaluate the effectiveness of our anomaly detection
based oracle, we find the False Detection Rate (FDR) and
sensitivity (a.k.a. recall). FDR is related to precision in that
FDR equals one minus precision. We assign the positive label
to safety violations, so the FDR represents the portion of
detected anomalies that are not safety violations. Lower is
better because false discovery results in unnecessary testing
effort.

Sensitivity represents the proportion of test cases contain-
ing safety violations that were correctly detected. Ideally,
this should be one, catching every safety-violating test input.
Sensitivity is not influenced by the populations of safety
violations in our test inputs, reducing the impact of our
choice of testing method and parameters.

While we lack an absolute ground truth for safety vi-
olations, we evaluate anomaly detection performance by
calculating FDR and sensitivity against a proxy for ground
truth: a set of invariants, as described in Section III-D. To
provide context, we also evaluate a reference oracle —
detection of crashes via core dump.

D. Invariants

The evaluation uses an explicitly-written set of invariants
as a proxy for ground truth. Invariants are rules which
must hold true over the execution of the program. Here, the
invariants represent safety constraints: a violation means that
the system has become unsafe.

Specifically, the invariants in this experiment are PYTHON
functions, human coded from portions of the system docu-
mentation. These functions are evaluated over the output log
from a test input to determine if the rules were violated. An
example of a subset of the invariants in FETCH is in Fig-
ure 2. This subset of invariants represents restrictions on the
allowable values for properties of the TORSO_LIFT_JOINT.

Invariants provide a more in-depth analysis of system
behavior and can help find faults beyond those that cause
core dumps [8]. Invariants can closely approximate the real

world safety of the system, but they require substantial effort
and expertise to create a comprehensive set.

E. Core Dumps

For additional context, we evaluate a simple core dumps
oracle — whether or not an execution crashes and produces
a core dump. This very basic restriction on system behavior
(that it should not crash) provides a bare minimum of fault
detection in testing scenarios. Crash rate is often used as a
simple oracle for system safety in robustness testing [28],
[29].

IV. EXPERIMENT RESULTS

For evaluation, we compare our technique’s detected vi-
olations against the ground truth proxy. A positive label
indicates a safety violation (detected behavioral anomaly or
invariant violation). A negative label means no violation
is found (no anomaly is detected or invariant violated,
respectively). We calculate accuracy metrics by comparing
labels from our technique against our ground truth proxy.

A. Results

Experiment results are in Table I. Each row represents
one of the SUTs. For each system, the table gives FDR
and Sensitivity against manually written invariants for each
system characterization technique. The table also reports
FDR and Sensitivity of core dumps against manually written
invariants. The FDR of core dumps against manually written
invariants is zero by definition because a check for core
dumps is included in the manually written invariants.

1) False Detection Rate: FDR highlights the number of
test inputs identified as anomalies that were not actual safety
violations. These false alarms can consume testing budgets
because they lead to investigation of test inputs that are not
actual faults. The false detection rate varied from 0.00 to
0.50, over two systems and three system characterization
techniques: up to half of detected anomalies were not safety
violations. SIGNALSEER performed best, with a maximum
FDR of 0.25, meaning that 1 in 4 detection is incorrect.

2) Sensitivity: The sensitivity metric captures the propor-
tion of safety violations that were detected as anomalies.
Our sensitivity was high, reaching 100% when analyzing
the behavior of BenchMark Bot with SIGNALSEER. For
Fetch, a commercially available test system, the worst case
sensitivity of the anomaly detection oracles (PSMON: 0.11)
is double that of the reference oracle (0.06). In the best case,
SIGNALSEER gives a nearly 6 fold improvement.

B. Experiment Discussion

The anomaly detection oracles achieved sensitivity that
was as good as or, more often, better than that of the
reference oracle. The reference oracle only detects system
crashes, but there are many other kinds of potential safety
violations, such as the example invariant for Fetch discussed
in Section III-D. The higher sensitivity represents the ability
to detect safety violations beyond system crashes.

However, sensitivity is also far from perfect, never reach-
ing above 50% on Fetch. We believe that one reason is that



TABLE I
FALSE DETECTION RATE (“FDR”) AND SENSITIVITY (“SENS.") VS. MANUALLY-WRITTEN INVARIANTS USING PROCESS MONITORING (“PS"),

MEMCHECK, AND SIGNALSEER. (CORE DUMPS ARE ALSO EVALUATED VS. INVARIANTS, FOR CONTEXT. CORE DUMPS FDR IS 0 BY DEFINITION.)

PS MEMCHECK SIGNALSEER Core
System Scenario FDR Sens. FDR Sens. FDR Sens. FDR* Sens.

BMB Global 0.00 0.44 0.45 0.66 0.00 1.00 0.00 0.44
Fetch Disco 0.50 0.11 0.25 0.35 0.25 0.50 0.00 0.06

we used monitoring tools that do not track data values, only
execution behavior. It cannot detect a safety violation that
only manifests in data, such as a speed limit violation. Given
that limitation, we think the results are quite promising.

Likewise, we consider that 0.50 and below to be excellent
results for FDR given that this technique is highly automated.
It does not require the domain-specific knowledge, such as
that needed to write invariants.

The effect of using a proxy for system safety: Invariants
are an imperfect proxy for ground truth system safety. The
expressiveness of the invariant checker is limited, and there
can be human error in encoding. A larger issue is that it is
difficult to ensure a set of invariants is complete. Human
operators are very bad at writing accurate and complete
invariants, as we have observed in our experience with testing
robots and is noted in the literature [30]. For this reason, we
expect the invariants to incorrectly label some executions
negative (in which there is a safety violation not found by
the invariants).

Because we are using invariants as a proxy for real-world
safety, it is possible that some False Detections — in which
anomaly detection finds an issue not found by the invariants
— are actually valid real-world safety violations, in which
case the real-world FDR of these oracles would be lower.

The effect of this uncertain ground truth proxy on our
sensitivity results is much more difficult to reason about.
We do not know which trials the proxy mislabels, so we
are unsure whether they were detected as anomalous. False
positives from the proxy translate to uncertainty in sensitivity.

V. DISCUSSION

In this section, we discuss several interesting features of
the approach and outline threats to the validity of our study.

A. Monitoring Techniques Can Be Used Together

We suspect that designing a different custom monitoring
tool or combining the outputs of different monitoring tools
may allow the technique to detect violations the current
setup misses. In our experiments, we observed that a portion
of the execution anomalies were detected when using one
monitoring approach and not others. Because the overall
technique is general, it is possible to create composite inputs
to the anomaly detection algorithm that incorporate the
outputs (profiling results) from more than one monitoring
technique. Such an approach may lead to improved detection.
We also suspect that adding additional low-level elements
to be tracked by the customized tool — such as elements

that capture data values — may result in finding additional
anomalies.

B. Manually-Written Invariants are an Imperfect Proxy for
Real-world System Safety

While we use explicit invariants taken from system doc-
umentation as ground truth, these invariants are far from
perfect. In fact, they were even sometimes violated by normal
system behavior. For example, one of the designer-provided
invariants for BMB specified a minimum transmit frequency
of 5Hz, while the code (and associated comments) set the
target transmit frequency at 1Hz. In such cases, we chose to
modify our invariants because labeling the nominal behavior
of the system as faulty would make further analysis difficult.

These conflicts between documented and implemented be-
havior are not uncommon [30] and are one of the difficulties
of creating explicit testing oracles.

C. Case Study — “False Positive" May Reveal Actual Fault

Because invariants represent an imperfect ground truth, it
is possible for our technique to detect an anomaly that we
erroneously define as a false positive, when the invariants
are incapable of identifying the anomaly.

In fact, we found such a case, in BMB, for executions
for which anomaly detection with MEMCHECK identified
anomalies but there were no invariant violations. By man-
ually examining the mutated inputs corresponding to these
executions, we found that each perturbed the /PERCEP-
TION/MAP field. Manual inspection revealed that improper
values in this field may lead to memory corruption, even
when they do not cause a core dump. The invariants only
detected a problem when there was a core dump. The
anomalies detected using our technique with MEMCHECK
are genuine faults not found by invariants, even though our
analysis labels them as false positives.

D. Use in Debugging Techniques

One primary area of application for this work is in use
with other software testing and debugging tools. Anomaly
detection techniques, such as those described here, can serve
as an automated oracle for these tools.

Automated testing and debugging tools can provide impor-
tant information to the developer, but they typically require
an oracle that describes if a system behaved correctly or not
during a test. Using the approach described in this paper
increases the amount of automation provided by these tools
by removing the need for users to write oracles.



For highly automated tool chains such as RIOT [20]
– a testing framework for the robotics and autonomous
systems robustness domain – where many testing features are
already automated, an automated oracle drastically reduces
the amount of user involvement and expertise required.

E. Threats to Validity

Certain anomalies may occur in simulation that would not
occur on actual robotics system hardware and vice versa.
However, testing in simulation is a valid approach to discov-
ering real bugs in autonomy systems [23], [24]. Additionally,
the faults detected typically trace to code defects that exist
regardless of platform, such as memory faults due to lack of
bounds checking or CPU spikes due to busy loops.

In addition, the technique may not generalize beyond the
systems we tested, or beyond the context of mutational input
testing; the oracles are thus specific to this context and less
general than, e.g., explicit invariants. However, the math
behind our approach does not depend on this setup and could
work with input data generated in different ways, without
any requirement for labeling which executions exhibit correct
behavior. We also evaluate on more than one system to
provide evidence of potential generalizability.

Another threat is that system monitoring may introduce
errors, such as timing errors, due to overhead; this would be
exacerbated for testing on hardware, as real-world robotics
processors have limited capacity. We advocate that the ora-
cles created using this technique be used primarily in testing,
rather than deployment. This threat is partially mitigated
because we measure core dumps and explicit invariants
on uninstrumented systems; thus, any problem in the SUT
behavior detected by those techniques cannot be due to
instrumentation, and instrumentation-induced failures will
manifest as false positives. Finally, we observe that dis-
tributed systems that operate in real time, such as our target
systems, spend a lot of time waiting. In practice, we have
observed that much of the monitoring overhead can often be
absorbed into this wait time, with little observable overhead.

VI. RELATED WORK

This approach fits in a body of software testing work on
the problem of determining whether a program behaves as
intended, known as the oracle problem. There are several
useful summaries of oracle problem research [31], [32].

Our technique is in the category of anomaly, novelty, and
outlier detection techniques that identify data points that are
unusual, appear to deviate markedly from, or be inconsistent
with patterns in the rest of the data [33]–[35]. It falls in a sub-
group, analogous to one-class classification in machine learn-
ing [33], in which normal (nominal) data provides the basis
for a model which is used to determine whether new data
fit [34]. Our approach extends these techniques to robotics
and autonomous systems, using monitoring techniques that
are particularly well-suited to these domains.

Clustering algorithms, which arrange similar data points
into groups [26], are the basis for many anomaly, novelty, and
outlier-detection approaches. Work has applied clustering to

identification of software failures in various contexts [36]–
[41]. We use off-the-shelf clustering algorithms [25], which
create the models on which we build our anomaly detection.

Other work on complex automated oracles automatically
detects invariants — which hold true over all correct execu-
tions — and identifies bugs by finding invariant violations.
These techniques automatically generate inferences about a
program’s semantics [22]. These techniques have various
limitations, such as source code requirements, restrictions to
particular languages or to detecting particular kinds of prop-
erties and can struggle to scale [42]–[46]. By contrast, our
approach can be language- and semantics-independent and is
not constrained by many of the factors that restrict scalability
in automated invariant detection, such as restrictions on the
number of invariants because of memory limitations.

Formal verification of cyber-physical systems, such as
robotics systems, is another approach for avoiding software
faults. However, there are many gaps in practical application
to entire real systems [10]–[12]. Because of these and
other challenges, formally-verified systems can still contain
bugs [15]. A significant drawback of formal verification is
that it requires extraordinary time and human effort [10],
[13], [14]. In contrast to formal techniques, our technique
does not require specialized expertise and human effort.

Testing autonomous vehicles and robotics systems presents
problems unique to those domains [8], [21], [47]–[50].
Prior work has demonstrated the usefulness of testing these
systems in simulation [24], [51], [52].

A related technique involving clustering analysis of sys-
tem execution in autonomous vehicles is Range Adversarial
Planning Tool (RAPT) [53]. RAPT is an active sampling ap-
proach for guiding testing. RAPT demonstrates the feasibility
and utility of clustering behavior in autonomy systems.

VII. CONCLUSIONS

We have presented a method that uses anomaly detection
to detect unsafe behavior in robotics systems. The algorithm
uses system monitoring techniques to obtain profiles of
executions. It uses a clustering algorithm to create clusters of
those executions, representing nominal execution. A distance
metric (LDCOF) determines whether additional execution
profiles belong to the existing clusters or should be consid-
ered anomalies. The method is suitable for identifying faults
in robotics and autonomy systems.

In future work, we would like to evaluate our technique
on situations in which the initial training data is derived
from more diverse executions. We evaluated our system by
building a model based on data derived from executions
not known to have errors, data for which no core dumps
or invariant violations are detected. In theory and with
small modifications, this technique could derive a model
from executions that are not all nominal, without necessarily
needing labels identifying nominal executions. We would like
to try the approach on this kind of data. We would also like
to extend the approach to situations in which the input data
is derived from more varied execution behavior.
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