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ABSTRACT

As software systems increase in complexity and operate with less
human supervision, it becomes more difficult to use traditional
techniques to detect when software is not behaving as intended.
Furthermore, many systems operating today are nondeterministic
and operate in unpredictable environments, making it difficult to
even define what constitutes correct behavior. I propose a family
of novel techniques to model the behavior of executing programs
using low-level signals collected during executions. The models
provide a basis for predicting whether an execution of the program
or program unit under test represents intended behavior. I have
demonstrated success with these techniques for detecting faulty
and unexpected behavior on small programs. I propose to extend
the work to smaller units of large, complex programs.
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1 INTRODUCTION AND MOTIVATION

Autonomous systems are big, complex, and difficult for humans
to supervise, and are an increasingly large portion of the systems
being developed and in use today. These systems are used in situ-
ations that can make it difficult for humans to observe them and
deliver commands to them — such as systems in space — and in
safety-critical situations, such as large, semi-autonomous vehicles
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operating in the presence of pedestrians. In these cases, it is im-
portant to figure out if there is a failure in the software execution
as soon as possible. Software failures, for example the storage of
a NaN instead of a value, may occur long before their results are
easily observed by traditional means. By detecting the failure early,
it may be possible to take corrective action before the possibly cata-
strophic result of that failure. For example, an arithmetic calculation
may cause a program unit to crash, which may cause problems in
other program units; or an autonomous vehicle may fail to detect a
pedestrian in its way.

It is difficult to figure out if programs are failing, especially when
the programs in question are big and complicated programs that
people do not supervise directly or if there are portions of the
program into which people do not see directly. Systems designed
to behave autonomously, reacting independently and without hu-
man supervision to various stimuli in the environment, present a
particular challenge in determining whether they are behaving as
intended. These systems grow extremely complex because they are
designed to react to all possible scenarios, including ones that the
humans designing the systems could not have anticipated. In many
circumstances, there is no precise definition of correct behavior,
beyond the broad guidelines that the designers intended to incorpo-
rate. For example, an autonomous robot may be designed to adhere
to broad safety principles, such as that it must not collide with an
object, but the idea of what constitutes a correct path for the robot
to take is much looser.

My key insight is that low-level information about the behavior
of an executing program gives a picture of the characteristics of
that execution. Aggregating the data over many executions of the
same code, allows a more complex and nuanced picture.

My primary hypothesis is:

o Low-level execution signals on multiple executions of a
program or portion thereof can be used to create a model to
predict whether signals from previously-unseen executions
represent usual or unusual behavior.

This work builds on earlier work in software testing, which ad-
dresses the problem of trying to figure out whether a program is
behaving as intended, the oracle problem. This problem has been
studied in a variety of contexts [1, 6, 11, 12, 14, 16]. Many of these
approaches attempt to determine what a program should do by
inferring invariants, generating a semantic notion of what the code
should do. Also, many of these approaches require source code,
which is often not available in complex or autonomous systems.
Even in the cases when the user does have source code available, it
is rare to have a user who understands the semantic intent and be-
havior of every portion of the source code. While these approaches
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may be useful in certain contexts, many future-generation systems
require a broadly-applicable approach that does not require source
code or a semantic understanding of what a program should do.
Others have also proposed creating models of execution correct-
ness [2, 4, 7, 8, 10, 15], but their techniques all differ from mine
in important respects. My technique uses a broader range of un-
derlying data and is more generalizable because the data I collect
can be collected on a broad range of programs. In addition, some
focus on building Markov models, which are powerful, but limited
in scalability. Additional work looks at anomaly and intrusion de-
tection in a security context, using related techniques [3, 5]. The
anomaly and intrusion detection work looks at different execution
properties than those I measure, some of which requires a more
detailed control- and data-flow analysis of the program under test.

2 KEY INSIGHT AND APPROACH

Low-level information about the behavior of an executing program
gives a picture of the characteristics of that execution. Low-level
information about many executions of the same program can pro-
vide the basis for a more complex model of the program’s possible
behaviors. I propose to collect relevant low-level information about
many executions, create a model based on the low-level data, and
use that model to predict whether a new execution fits into the
range of expected program behaviors or whether it represents an
unexpected or unintended behavior. While not all rare behaviors
are unintended, unintended behaviors are more likely to be rare.

I propose to use this technique to build models of intended and
unintended behavior — using supervised machine learning based on
known examples of intended and unintended behavior — and models
of usual and unusual behavior — using unsupervised machine learn-
ing for anomaly detection. When given similar execution data for
a previously-unseen execution, these models can predict whether
that execution corresponds to unintended or unusual behavior. This
knowledge can alert a human or an automated damage-control tool
that intervention may be required.

To gather the data to build these models, I collect many low-
level signals reflecting characteristics of program behavior for each
execution of a program or portion of a program.

3 PRELIMINARY WORK

To validate these insights, I conducted preliminary work on small
programs, to see if models built from low-level execution data could
predict whether executions passed or failed. I recorded runtime data
on various executions of each program, using several test inputs,
including at least one that corresponded to failing or unintended
behavior and at least one that corresponded to passing or intended
behavior. I included executions of multiple versions of each program
under test. I used the collected signals to build models of behavior.

I use Pin!, a dynamic binary instrumentation toolkit distributed
by Intel, to create tools to collect the low-level signals on running
programs. I collected data on several versions of each program, each
running with multiple test inputs. For each execution, I collected
165 low-level signals, later using feature extraction to choose 15 that

!https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool
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Table 1: Benchmark programs, from the Siemens SIR data
set. Lines of code is the number of lines of code in a cor-
rect variant; number of variants is the number of unique
versions of each program; and number of test cases is the
number of separate test cases we use for each.

Lines of Number of

Program Code Variants Test Cases
SIR artifacts
printtokens 475 8 4130
printtokens2 401 10 4115
replace 514 33 5542
schedule 292 10 2650
schedule2 297 11 2710
tcas 135 42 1608
totinfo 346 24 1052

were the most broadly relevant. I used the data for both supervised
and unsupervised machine learning.

Examples of the 15 most relevant signals include: the number of
unique instructions executed, the mean of all addresses read, the
address of the most frequent stack write, and the mean distance
between a read an the next write.

For supervised machine learning, I gave a portion of the data
points, along with labels indicating if each data point represented a
correct or incorrect execution, to a supervised learning algorithm,
which built a predictive model.? I then tested the predictive model
on the remaining held-out data, by giving the model unlabeled data
points and collecting the predictions of whether each data point
corresponded to a correct or incorrect execution. I repeated the
procedure using a standard 10-fold cross-validation technique.

For unsupervised machine learning, I built models without using
any labels. These models use simple outlier-detection techniques to
predict whether data points represent executions outside the realm
of what a program usually does.

I used several suites of small benchmark programs common in
testing research to validate the insights in this work. Here I present
results from the Software-artifact Infrastructure Repository (SIR)
Siemens objects.3 Table 1 lists the lines of code, numbers of test
cases, and number of variants for each program.

All experiments used a four core virtual machine running Ubuntu
14.04, without address space layout randomization. The experi-
ments use Pin 2.13 and the Scikit Learn 0.15.2* package for model
construction and evaluation [9, 13]. I compiled the programs un-
der test using gec version 4.8.2 for target x86_64-linux-gnu with
settings as defined by the programs’ makefiles.

Table 2 shows results for supervised learning on the data col-
lected from executions of these programs, using standard machine
learning assessment metrics.

%1 conducted experiments both with the raw data set — which contained many more
passing executions than failing executions — and an artificially balanced data set —
built by leaving out data points in the set of passing executions. While I achieved
comparable results for both techniques, I report the balanced results here.
Shttp://sir.unl.edu/portal/index.php

*http://scikit-learn.org/
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Table 2: Left side: results of decision tree model using 165-feature set. Center: results of decision tree model using 15-feature

set. Right side: results of SVM model using the 15-feature set.
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Full feature set (DT) Core feature set (DT) Core feature set (SVM)
program Acc Prec Rec FM ‘ Acc  Prec Rec FM ‘ Acc  Prec Rec FM
printtokens | 0.79 1.00 0.79 0.88 | 0.76 0.99 0.77 0.87 | 0.80 1.00 0.81 0.89
printtokens2 | 0.83 0.99 0.83 0.90 | 0.80 099 0.81 0.89 | 0.80 0.99 0.80 0.88
replace 0.85 1.00 085 092|085 1.00 085 092 | 0.67 0.99 0.67 0.80
schedule 0.76 099 076 0.86 | 074 099 0.74 085 0.56 0.99 055 0.71
schedule2 0.86 1.00 086 092 | 0.81 1.00 081 090 | 0.57 1.00 0.57 0.72
tcas 0.83 1.00 0.83 090 | 0.80 1.00 0.80 0.89 | 0.66 0.99 0.66 0.79
totinfo 090 099 090 094|091 099 091 095]|0.77 0.98 0.77 0.86

True Positives (TP) correct predictions of errors

True Negatives (TN) correct predictions of no errors

False Positives (FP) incorrect predictions of errors

False Negatives (FN) incorrect predictions of no errors

Accuracy (Acc) The portion of samples predicted correctly

Precision (Prec) The ratio of returned labels that are cor-

rect: TP/(TP + FP).

e Recall (Rec) The ratio of true labels that are returned:
TP/(TP + FN).

e F-Measure (FM) The harmonic mean of precision and re-

call.

The results are fairly comparable between the 15 feature set
and the full 165 feature set, with the full feature set performing
slightly better for many programs. The right side of Table 2 shows
the outcomes on the fifteen reduced signals with a support vector
machine classifier instead of a decision tree. The classifier is Scikit
Learn’s SVC classifier with cache size 1000 and all other parameters
set to their defaults. As one can see by comparing the right side of
Table 2 to the center, the decision tree classifier outperforms the
support vector machine classifier for most programs. It is possible
that the SVM classifier could be made to perform better with proper
tuning but I leave that to future work.

4 PROPOSED FUTURE WORK

My preliminary results validate that the technique of building mod-
els of low-level execution characteristics has predictive power for
distinguishing correct from incorrect executions. The preliminary
work also brings up challenges in how to develop these techniques
into practical analyses.

I am currently working to extend these techniques in a variety
of ways. The major thrust is an extension to small units of large,
real systems. In addition, I am working to make the predictions
more useful to humans and automated systems that might use them;
to get a better picture of what low-level information is useful in
different circumstances; and to gain more information about the
nature of program behavior, building on the same base data.

4.1 Extending to Large, Real Systems

The techniques I propose require several modifications to be useful
in the larger programs that are commonly in use today and that are
in most need of assistance in detecting when unintended behavior
has occurred.

For example, in a large, complex program, the variety of control
flow possibilities means that measurements of low-level data over
the whole program in different executions will be vastly different,
depending on the control flow that the program follows. The diver-
sity of data values for reasons unrelated to correctness reduces the
predictive power of any model built from that data.

Therefore, instead of instrumenting a whole program, I propose
to isolate portions of programs for instrumentation and modeling.
One way to do this is to leverage Pin’s ability to identify routines
and limit instrumentation to specific routines. By recording infor-
mation separately for every execution of a particular routine, each
execution becomes its own data point, and I can develop a model
of intended behavior based on these data points.

Similarly, I can choose units of code to analyze, based on an
address range in the binary. I can record data whenever those
instructions are executed. Each execution of those instructions (or
a portion thereof) becomes a data point on which to build a model.

The approach of instrumenting smaller units has the benefit of
scalability. It can gather meaningful data on complex programs
and has less overhead than instrumenting entire programs. There
are also challenges. To meaningfully restrict instrumentation, you
need to know which portion of the binary is relevant to possible
unintended behavior. I have been working with portions of pro-
grams that are known to have problems, for proof-of-concept work.
While it is much easier to identify the relevant binary if you have
access to source code and can compile the programs with debug
symbols, it is possible to use other techniques that do not require
such visibility. I am also facing and addressing issues that arise
because many large, complex programs have timing assumptions
and may exhibit different behaviors when portions of the program
run more slowly under instrumentation. I am working on solutions
to mitigate these challenges in a generalizable and scalable way.

4.2 Other Directions for Extending the Work

4.2.1 Categorizing Program Behavior. My initial experiments
focus on identifying unintended or anomalous behavior. However,
programs exhibit many different behavior patterns. The data for
many executions of the same program or program section show
clustering or other patterns. I would like to investigate whether
these clusters or patterns represent any particular types of behav-
iors. For example, can we use clusters to identify different types of
errors in executions? (e.g., memory leak, infinite loop, calculation
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outside of usual range) Can we identify when a program unit is
exercising different types of intended behaviors?

4.2.2  Usability of Output. In general, my techniques predict
whether a given instrumented execution fits the pattern of earlier
instrumented executions. I have been using anomalous behavior
as a proxy for unintended behavior. However, not all anomalous
executions are actually incorrect — they may simply execute an
uncommon but correct behavior. I would like to investigate how
to improve the usefulness of the information presented to the de-
veloper or automated tool when my models predict unintended
behavior. This might include confidence that the behavior is un-
intended, the possible type of error indicated, the region of the
program that manifested the error, and other relevant data.

4.2.3 Identifying Important Low-level Information. My initial
experiments have found that different signals are important to
determining whether a program is behaving as intended, depending
on the program analyzed. I would like to examine which signals
are most important for different programs and program portions,
to try to draw conclusions about which signals are most important
to collect in different circumstances. Because data collection at the
binary level involves significant overhead, limiting data collection
to only the most useful signals may improve efficiency.

5 EVALUATION STRATEGIES

My goal is to make useful predictions of incorrect behavior on
complex systems before the incorrect behavior causes problems.
I am currently expanding the work to test open-source robotics
projects, usually based on the ROS platform, for example the ROS-
based Husky project®. These projects present many interesting
complexities, such as time-sensitivity, reliance on message passing
and distributed state, and nondeterminism. I am beginning by vali-
dating the technique on units known to contain errors, exhibited
in some but not all executions. When my technique can detect
with reasonable accuracy whether an execution exhibited incorrect
behavior on the units known to contain errors, I will expand to
analyzing units not known to contain errors, to see if the technique
can find errors or anomalies where none were known before.

To evaluate success on units with known errors, I compare
whether my model predicts that the executions where the error
occurred were erroneous. More broadly, I collect true positives,
true negatives, false positives, false negatives, precision, recall, and
F-measure, as explained in Section 3.

For situations where it is unknown whether a particular portion
of a program contains an error and under which circumstances
it may manifest, I will subjectively assess the executions that my
model determines to be unusual behavior, to see if they represent
unintended behavior. I will also present these assessments to de-
velopers familiar with the project under test to see if they can
determine if the execution was correct. I will use any input from
these assessments to refine my model building technique, so that
the output is more useful.

In addition, I will use the machine learning techniques of feature
selection, clustering, and dimensionality-reduction to gain more
knowledge of the behavior of the programs under test, such as

Shttp://wiki.ros.org/Robots/Husky
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which signals are most indicative of different kinds of errors, which
signals are most important to collect in different circumstances,
and whether program behavior can be classified into categories,
based on the clustering it exhibits.

6 CONCLUSIONS

In conclusion, I propose a novel technique for detecting runtime
errors in difficult to understand systems. This approach has benefits
particularly applicable to the types of complex and autonomous
software systems that are becoming more prevalent. These benefits
include early detection of potential issues not immediately obvious
to humans in complex systems, so that corrective action is possible.
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