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ABSTRACT
The application of model transformations to the process of design
space exploration and multi-objective optimization allows for com-
prehensive exploration of an architectural trade space. For many
applications, such as the design of missions involving multiple
spacecraft, the resulting set of Pareto-optimal solution models can
be too large to be consumed directly, requiring additional analyses
in order to gain meaningful insights. In this paper, we investigate
the use of automated clustering techniques for grouping similar
solution models, and introduce and study a number of both generic
and domain-specific methods for measuring the similarity of the
solution models. We report results from applying our approach
to the exploration of the design space of a spacecraft-based inter-
ferometry array in a lunar orbit. For purposes of evaluation and
validation, results from the application to the case study are corre-
lated with the results from a study in which solution models were
clustered manually by groups of domain experts. The results show
tradeoffs in the granularity and extensibility of applying clustering
approaches to spacecraft mission architecture models. Also, what
humans consider to be relevant in assessing architectural similarity
varies and is often biased by their background and expertise. We
conclude that providing the subjects with a range of clustering
tools has the potential to strongly enhance the ability to explore
the complex design space of multi-spacecraft missions, and gain
deep insights into the trade space.
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1 INTRODUCTION
The recent trend in aerospace towards low-mass, low-cost space-
craft such as SmallSats and CubeSats [5] has the potential to make
new mission concepts involving multiple spacecraft feasible. While
mission concepts involving such swarms of spacecraft are generally
considered to have great scientific potential, their design is non-
trivial. Performance and acceptable risk must be carefully balanced
with cost. The limited performance of small spacecraft may also
require distributing tasks such as communication with Earth and
science data collection among different, specially designed space-
craft. Answering questions such as “How many spacecraft are in
the cluster?”, “Will the spacecraft in the constellation have homoge-
neous or heterogeneous configurations?”, and “Who communicates
with whom?” can lead to a large numbers of candidate solutions.
This paper investigates methods for gaining further insight into
complex, high-dimensional design spaces.

Previous work investigated the use of multi-objective evolu-
tionary optimization and model-transformation-based architecture
model synthesis to search for a set of Pareto-optimal designs [6].
This optimization-based approach narrows the set of candidate
solutions to the most preferred. As a potentially sensible method to
gain further insight into the solution space, this paper investigates
the use of clustering algorithms [7] to group similar architectures
together. The premise is that this will positively support a human
by allowing him / her to consider a small set of sample architecture
models that are sufficiently different from one another.

Clustering techniques group data such that data instances within
groups are more similar than data instances in other groups. Thus,
clustering algorithms are highly dependent on a dissimilarity mea-
sure, a method for computing the distance or similarity between
pairs of individuals to be clustered. Computing a similarity score
between mission architectures is a non-trivial task. We tried sev-
eral approaches for comparing architectures, finding tradeoffs in
the granularity and extensibility of applying clustering to mission
architectures. To understand how our techniques for comparing
architectures compare to human intuition, we also asked human
engineers to assess the dissimilarity of several pairs of architectures
to provide a point of comparison and allow us to learn how human
engineers approach the problem. We learned that what the humans
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Figure 1: A high-level overview of the proposed tool for assisting mission design. Prior work [6] focussed on architecture
synthesis. Here, we explore extending this tool with a clustering algorithm.

considered to be relevant in assessing architectural similarity var-
ied, and that providing them with a range of clustering tools has
the potential to enhance their ability to explore the complex design
space of multiple spacecraft missions.

The rest of the paper is organized as follows, Section 2 provides
background, including a description of a case study constellation
mission that will serve as a running example. Section 3 describes our
approach in applying clustering techniques tomission architectures,
including our dissimilarity measures. Section 4 discusses the results
of applying the clustering techniques to the case study mission, as
well as our comparison of the automated similarity approaches to
human intuition. Section 5 provides an overview of related work
involving applying clustering techniques to software architecture.
Finally, Section 6 summarizes our findings and conclusions.

2 BACKGROUND
This section describes the problem domain of space mission design
and networked constellation missions. We then describe current
efforts to explore the design space of networked constellation mis-
sions based on architecture synthesis. To provide a concrete exam-
ple, we introduce a specific multi-spacecraft mission. Lastly, we
provide an overview of machine learning and clustering algorithms
that will form the basis for our approach.

2.1 Space Mission Design
Space mission design is the process of specifying a space system
that pursues some (typically scientific) objective given technical
and resource constraints [10]. Multi-objective, optimization-based
design allows mission designers to make tradeoffs between the
scientific return, cost, and risk. Failing to consider alternatives can
result in converging on a suboptimal design.

Networked constellation missions are space missions that in-
volve more than one spacecraft. Often deemed infeasible due to the
high cost of designing and launching multiple spacecraft, recent ad-
vances in aerospace towards small, light, and cheap spacecraft such
as CubeSats [5] that are built primarily using commercial off-the
shelf parts have been perceived as enablers to implement cost-
effective multi-asset missions. While networked constellations can
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Figure 2: Pareto frontier of optimal architectures with re-
spect to cost, coverage (proxy for value of performed sci-
ence), and mission duration (from prior work [6]). Each dot
represents one unique architecture in the space of candidate
solutions.

enable novel mission concepts, they also bring new challenges: for
instance, increasing the number of spacecraft can increase physical
redundancy, but the limited performance of small spacecraft may re-
quire distribution of functions (such as communicating with Earth,
collecting scientific data, etc.). This greatly increases the space of
possible candidate mission architectures. Figure 2 shows the space
of identified Pareto-optimal architectures for a multi-spacecraft
space-based radio interferometer (from previous work [6]).

2.2 Model-Transformation-Based Mission
Architecture Synthesis

To address the problem of exploring a very large architectural de-
sign space, priorwork introduced amethod for synthesizingmission
architectures for networked constellation missions using a combi-
nation of model-transformations and evolutionary algorithms [6].
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Figure 3: Meta-model for the case study problem (from prior work [6]).

The method is intended to support designers by (a) capturing de-
sign knowledge formally, (b) support the creative process, and (c)
provide insights into major trade-offs as early as possible in the
design process. A meta-model describes the space of legal designs.
In-place endogenous model-transformation rules [13] are used for
the purpose of generating solutions in this design space. Sequences
of these rules represent individuals in a population that is evolved
using genetic algorithms. The search is guided by user specified de-
sign objectives, such as minimizing the cost of the overall mission,
maximizing scientific return, and minimizing the time needed to
complete the mission. This approach is enabled by a stack of tools in
the Eclipse Modeling Framework (EMF) [16] ecosystem, including
Ecore for specifying a meta-model (or domain model), Henshin [2]
for specifying exploration rules as model transformation rules, and
MOMoT [4] which provides a framework for integrating model
transformations with search-based optimization algorithms. Cost,
scientific return, and other objectives, performance measures and
desired traits of candidate solutions are computed using application-
or domain-specific analysis models. The output is a set of mission
architectures that are Pareto-optimal with respect to the specified
design objectives. The set of generated candidate mission architec-
ture can then be analyzed further by mission designers, e.g., for
the purpose of gaining insights into major trade-offs and possible
technical solutions.

2.3 Case Study
To develop and evaluate our approach, we use the motivating case
study from previous work [6]. This case study encompasses the
design of amulti-spacecraft-based interferometer (an array of anten-
nas simulating a single, larger antenna) that is capable of observing
distant radio galaxies at frequencies below 30Mhz.A space-based
application is required, since signals below 30Mhz are blocked by
the Earth’s ionosphere. To gain sufficient distance from Earth, all
spacecraft are placed in an orbit around the Moon.

To fulfill the mission objectives, the cluster must collect scientific
data and send this data back to Earth. Prior work [6] investigated
an approach to automatically generating Pareto-optimal mission
architectures for this case study that specify the number of assets to
deploy, their capabilities, and configuration to maximize scientific
return while minimizing cost and the amount of time it takes to
complete the mission. Several simplifying assumptions are made
to reduce the complexity of the example. An excerpt of the meta-
model used for the case study is shown in Figure 3. Not shown
are concrete sub-classes of Transceiver and Antenna. Only three,
discrete types of spacecraft are considered for implementing the

DeepSpaceNetwork

SmallSat

HK

CubeSat3U

MX

CubeSat3U

MX

Figure 4: A mission architecture consisting of a ground station and three
spacecraft. The top CubeSat3U communicates to a SmallSat using a medium
gain antenna (M) over X-band (X). The SmallSat communicates using a high
gain antenna (H ) over K-band (K). The third spacecraft is a similarly con-
figured CubeSat3U that communicates directly to the ground. All spacecraft
carry the scientific payload (not shown).
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mission: 3U and 6U CubeSats (small, light 4kg and 12 kg satellites
respectively), and a heavier and more costly, but more capable and
performant 100kg Small Satellite. Each asset can have up to two
separate communication subsystems, where each communication
subsystem consists of an antenna and a transceiver. Assets can be
equipped with a high (25 dBi), medium (10 dBi), or low gain (1
dBi) antenna, and an Ultra High Frequency, X-band, or Ka-band
transceiver. The choice of communication components affects the
speed of data transmission, which in turn affects how long it takes
to downlink the collected data to ground. The choice of antennae
and transceivers also affects the mission cost and power usage. Each
spacecraft can also optionally carry an interferometry payload for
observing the target, or not carry a payload and serve as a commu-
nication relay only. The science value obtained by the mission is
influenced by how many assets with the interferometry payload
observe the target, and for how long. Assets can transmit science
data collected from the payload directly to the ground station, or to
other spacecraft to be relayed to ground. To simplify the problem,
the launch system, orbit, and much of the details concerning space-
craft operations are not included in the scope of the specification
of the design problem.

Candidate mission architectures are models conforming to the
meta-model illustrated in Figure 3. An example candidate mission
architecture is shown in Figure 4. Given a candidate mission archi-
tecture, the cost, mission duration, and scientific return (measured
as coverage) can be calculated based on performance analysis mod-
els developed in prior work [6].

3 APPROACH
Architecture synthesis has the potential to aid mission designers in
exploring large design spaces for architectural alternatives, yet it
remains difficult for humans to make sense of the large number of
optimal architectures that are generated. To address this problem,
we apply clustering algorithms to mission architectures to allow
humans to more easily explore the design space.

Mission designers do not gainmuch additional insight into the de-
sign space by inspecting architectures that are very similar to those
that they have already seen. Since many automatically generated
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Figure 5: Pareto space of optimal architectures clustered by
feature selection.

candidate architectures are similar to one another, this means that
human experts must waste time sifting through many variations
of similar architectural concepts to make use of the architectural
synthesis product.

Clustering offers a way to automatically perform this time ex-
pensive process for human mission designers. By placing similar
architectures into groups, mission designers can quickly get an
overview of the design space by examining representative architec-
tures from each group.

3.1 Clustering Algorithm
Clustering is an unsupervised machine learning technique [1].
Given a dataset of unlabeled data instances, a clustering algorithm
attempts to find patterns in the data by grouping similar instances
together. The goal of clustering is to produce groups, or clusters,
where data instances within the cluster are more similar to one
another, and less similar to instances outside.

We used the Partitioning Around Medoids [7] (PAM) algorithm.
PAM is a partitional clustering algorithm related to the k-means
algorithm. PAM distinguishes itself from k-means by taking k data
instances to be the centers of clusters, or medoids, rather than
using centroids (points that need not be data instances). Data in-
stances are clustered based on the nearest medoid (according to
least distance). The PAM algorithm minimizes the sum of pairwise
dissimilarity between each data instance and its closest medoid.
Using data instances as the centers of clusters makes PAM more
robust than k-means. PAM also has the advantage of accepting a
dissimilarity matrix as input, allowing arbitrary similarity measures.
Selecting data instances as medoids rather than centroids makes the
results of clustering easier to evaluate, as the evaluator can examine
the medoid architectures. The number of clusters k is determined
automatically by the optimum average silhouette width, which is a
higher-is-better indicator of how well a point fits into a cluster.

3.2 Similarity Measures
To enable clustering, a suitable similarity measure must exist to
measure the dissimilarity between objects. The results of clustering
are heavily influenced by the similarity measure [18], and determin-
ing architectural similarity is a non-trivial problem. Some aspects
of the architecture are primarily structural, such as the number of
spacecraft of a given class, or the network topology of the mission.
Other properties of the architecture describe what the mission does,
such as the resulting science value of a mission. We also observed
that architectural similarity can be considered in ways that are
generalizable to many types of networked constellation missions,
for example, all networked constellations have a network topology.
Alternatively, considering mission specific concepts like whether
an asset is equipped with an interferometry payload can allow for a
more fine grained analysis of dissimilarity, at the cost of not being
as easily applied to other missions.

With these tradeoffs in mind, we chose three similarity mea-
surement approaches to apply to the case study mission, including
feature selection, the EMF Compare tool from the EMF ecosystem,
and a graph-edit distance approach. The remainder of this section
will explain each similarity measure in detail.
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Table 1: Features used for clustering.

Name Unit Description
CubeSat3U count CubeSat3Us in the mission.
CubeSat6U count CubeSat6Us in the mission.
SmallSat count SmallSats in the mission.
Observation Time hours Hours spent measuring the target.
Mission Duration hours Hours before results are returned.
Cost dollars The total cost of the mission.
Coverage percent A proxy for scientific value.

3.2.1 Feature Selection. One common technique for clustering
complex entities is called feature selection [18], where each entity
to be clustered is converted into a numeric vector of features. To
compute a dissimilarity matrix from a set of feature vectors, the
distance between each pair of features is computed. The sum of
these distances then becomes the distance for that pair of individ-
uals. The features can be scaled and normalized so each features
contributes equally to the distance value. Optionally, features can
be weighted such that some features affect the distance more or
less than others.

The feature selection approach has the advantage of being flex-
ible, as it is easy to add and remove features to the process. The
extensibility of the approach can also be affected by the choice
of features. Some features might be applicable to all networked
constellation missions, such as the number of assets present. Other
might be specific to certain missions, such as the number of assets
equipped with an interferometry payload.

Figure 5 shows an example clustering of the generated mission
architectures. Each color denotes a separate group. In this case, the
clustering algorithm separated the space into three regions, the
green architectures are cheap and complete the mission quickly,
but sacrifice scientific return. The blue architectures are also cheap,
but tradeoff mission duration in exchange for increased science
value. The red architectures are more expensive, in exchange for
increased science and fast mission completion.

We identified a number of features for candidate architectures of
the case study mission. We selected features based on the character-
istics that a human designer would use to evaluate the architectures.
Table 1 shows the features. Some features, like the number of assets
in a mission, are helpful for evaluating an architecture, but do not
directly correspond to the mission’s objectives. Other features, like
cost, are directly relevant to the missions objectives, but do not
tell us much about the mission architecture. It is not immediately
apparent whether clustering based one type of feature or a com-
bination thereof would be most helpful to a human evaluator, so
we tried clustering using all features, only the structural features
(the number of assets of each class), and only the design objectives
(cost, coverage, and mission duration).

3.2.2 EMF Compare. We also applied EMF Compare to measure
the difference between architectures. EMF Compare is a tool for the
Eclipse Modeling Framework for performing model matching. This
tool can compute the number of edits necessary to transform one
EMF model into another, which can serve as a similarity measure.
This approach is highly generalizable, since it can be applied to any
EMF models as long as they correspond to the same meta-model.

Figure 6: Computing dissimilarity by graph-edit distance.

The generality of the technique however comes at the price of low
granularity, the tool only counts the number of changes in the UML
model, without taking into account domain specific information
(such as some elements in the model being more important, or some
elements needing custom distance functions).

3.2.3 Graph-edit Distance. Another technique for measuring
architecture similarity is to represent mission architectures as a
labeled graph, and compute the cost of transforming one graph into
another. Figure 6 shows how missions and edits are represented in
graphs. The ground station and spacecrafts are represented as nodes.
Each node is labeled with the asset class (in the case of spacecraft),
or with the name of the ground station. Data flow between assets is
represented as directed edges, with the direction corresponding to
the direction of data flow. The edges are labeled with the antenna
and transceiver type used by the assets to communicate.

Computing the edit distance between graphs is a well known
NP-complete problem, but there are heuristic algorithms that offer
an approximation in a reasonable amount of time. We implemented
the heuristic-A*-beamsearch algorithm [14] for computing the dif-
ference. This version of the algorithm trades off the guarantee of
optimality in exchange for a performance speedup by only con-
sidering some S number of promising paths at a time, instead of
performing an exhaustive search. In practice, the solutions obtained
are often “good enough”. Even with a heuristic algorithm, calculat-
ing the pairwise graph-edit distance can be expensive. For mission
architectures that can be represented as trees, computing the tree-
edit distance instead can reduce the amount of time needed to
perform the comparisons [15].

The graph-edit distance method is similar to the EMF Compare
approach since both compute distance based on the number of edits
it takes to transform one model to another. The difference is that
representing architectures as a graph allows increased granularity,
since the properties of the architecture to consider are specified
outright (as opposed to considering everything in the EMF model).
Additionally, the graph-edit distance approach allows the semantics
of distance to be customized where appropriate, as opposed to EMF
Compare which provides its own weightings.
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4 RESULTS
To evaluate our approach for making the results of architecture
synthesis more understandable to human mission designers, we
performed clustering using each similarity measure from Section 3
on over 1000 candidate architectures for the space-based interferom-
etry mission from prior work [6]. Section 4.1 discusses the resulting
clusterings, and provides box and whisker plots showing summary
statistics. We showed the results of clustering to engineers involved
in mission design at JPL and received positive feedback.

To evaluate how closely our dissimilarity measures matched
with human intuition about comparing architectural similarity, we
also asked two groups of engineers at JPL to assess the similarity
between pairs of mission architectures, and then compared the
output of our similarity measures to the humans’ judgement.

4.1 Applying Clustering
Box and whisker plots showing summary statistics for each result-
ing clustering using feature selection are shown in Figures 7, 8, and
9 respectively. In all figures, each color corresponds to a cluster.
Subplots show the range of values occurring in each cluster for the
number of assets of each class, the time the assets spend observing
the target, how long the mission takes to complete, the mission
cost, and the coverage proxy for scientific value. A final size subplot
show the number of individuals in each cluster.

Figure 7 shows the results of clustering based on using all of the
features in Table 1. The clustering algorithm divided the candidate
architectures into three groups. Group one has fewer CubSat3Us
than the other two groups, but more CubeSat6U and SmallSats.
Group one is also much more expensive, gets the highest coverage,
and a mission duration that is in between the other two groups.
Group two has a number of CubeSat3Us in between groups one
and three, fewer CubeSat6Us and SmallSats than group one and
about equal to group three. Group two has the lowest mission
duration and cost, but also the lowest coverage. The third group has
the most CubeSat3Us, and about an equal number of CubeSat6Us
and SmallSats as group two. Group three has the highest mission
duration, but its cost is only slightly higher than group two’s, and
its coverage is nearly as good as group three’s.

Figure 8 shows the results of clustering based only on the number
of assets in each architecture. In this case, the algorithm chose
to make four clusters. Group one contains missions that have a
mix of all three spacecraft type, group two contains missions with
CubeSat3Us and SmallSats, group three consists of missions with
CubeSat3Us and CubeSat6Us when there are more CubeSat3Us
than CubeSat6Us, and group four also contains architectures with
CubeSat3Us and CubeSat6Us, but are more equal in number.

Figure 9 shows the results of clustering based only on the features
that capture mission objectives. PAM produced two clusters for
these features. The first group has long mission duration, high cost,
and high coverage, while the second group has shorter mission
duration, lower cost, but also lower coverage.

While clustering based on feature selection obtained good results,
the feature selection process necessitates some information loss. To
keep more information, we also tried clustering based on the results
of the EMF Compare tool, which reports the number of differences
between two EMF models. We computed a dissimilarity matrix

Table 2: Expert Topics

Keyword Group 1 Group 2
relay 2 5
bands 2 3
layers / levels 2 6
SmallSats 2 2
threads 0 2

by using EMF Compare [9] to measure the number of differences
between every pair of candidate architectures. We then passed the
dissimilarity matrix to the PAM algorithm. Aggregate statistics for
the resulting clustering are shown in Figure 10.

Figure 10 shows the ten clusters produced by using EMF Com-
pare. One noticeable pattern is that groups 4–10 all have a distinct
observation time. As the observation time increases, they also have
increasing mission duration, cost, and coverage. This is an inter-
esting result, since the algorithm was not given these features as
input, showing that clustering based on even a coarse similarity
measure can capture interesting patterns.

Figure 11 shows aggregate stats resulting from the graph-edit
distance clustering method. Like the EMF Compare approach, an
interesting result is that there are clear differences in the objective
values between clusters, despite the algorithm not having this infor-
mation during clustering. This is likely because the objective values
are closely connected to the structural features of the architectures.

As a preliminary effort to validate the usefulness of our clustering
techniques to mission design, we showed the results of clustering
to NASA engineers involved in early mission design, explained
the case-study scenario, and showed the result of the clustering
algorithms. They indicated that the results were interesting and
thought that the results of clustering would be useful in evaluating
the architectures. This preliminary evaluation builds confidence
that our approach is useful to mission designers.

4.2 Expert Opinion
To evaluate how closely our dissimilarity measures matched with
human intuition about comparing architectural similarity, we per-
formed a study asking two groups of 2–3 engineers at JPL to assess
the similarity between pairs of mission architectures. Each group
was given 31 pairs of randomly selected mission architectures from
the set of generated architectures. The architectures were repre-
sented as graphs in the format of Figure 4, with the addition of
the mission cost, coverage, and duration included as a caption. Fig-
ure 12 shows an example pair of mission architectures shown to the
human engineers. For each pair, the engineers were instructed to,
as a group, rate the similarity between architectures on a six point
Likert scale (completely different, mostly dissimilar, somewhat dis-
similar, somewhat similar, mostly similar, practically identical). We
were intentionally vague in our instructions about what criteria
they should use when assessing similarity to avoid biasing them,
asking that they rate the similarity based on their own intuition
and experience in designing missions. We had the engineers work
in small groups to enable us to listen to their discussions and learn
more about how they approach the problem. To recruit the engi-
neers, we sent emails to engineers who work on mission design and
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Figure 7: Clustering by structural and design objectives.
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Figure 8: Clustering by structural features.

might be potential users of a future clustering tool. The engineers
were grouped based on schedule availability. For each group, we
explained the case study scenario, how to interpret the architecture
diagrams, and instructed them to discuss aloud as much as possible
to enable us to follow their thoughts. The first two pairs of architec-
tures were considered to be practice, to allow the engineers to get

comfortable with the process and calibrate their sense of similarity,
as such they are not included in the analysis.

Table 3 shows Pearson correlations and P values between pairs
of dissimilarity metrics and the scores provided by each group of
engineers. Correlations are statistically significant at the P < 0.05
level, including the correlation between the two human groups,
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Figure 9: Clustering by design objectives.
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Figure 10: Clustering by EMFCompare difference count.

and between group two and using the asset count features. The
pairs between each human group and the all features dissimilarity
measure were on the threshold of significance with P values of 0.06
and 0.05. One interesting takeaway is the 0.5 correlation between
the two groups of engineers, indicating some level of agreement, but
also revealing that the two groups also disagreed. The first group

did not have a strong correlation to any of the dissimilarity measure
that we tried. There were weak correlations to most of the measures,
and no correlation to the results of using EMF Compare. The second
group showed similar results, but with a stronger correlation with
the assets similarity measure of 0.56. This means that group two
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Figure 11: Clustering by graph-edit distance.

Figure 12: An example pair of mission architectures shown to human experts. C refers to the missions coverage, the dollar
figure is the mission’s cost in millions of dollars, MD refers to mission duration in days, and OT is observation time in hours.

agreed with the results of the asset count similarity measure slightly
more than they agreed with the responses of the other group.

While watching the groups deliberate, we noticed that they
mostly ignored the mission’s objective values (cost, coverage, and
time) except occasionally when they decided that the missions were
already mostly similar, so the low correlation between the groups
and the objectives similarity measure is not surprising. Table 2
shows some commonly occurring topics in the discussion. We no-
ticed that the groupswould first take notice of the number of distinct
spacecraft types on each architecture. In particular, the presence
or absence of a SmallSat indicated different missions classes. The

groups also frequently discussed the layout of communication links
in the mission, and they took notice of the number of incoming and
outgoing connections between each asset, considering missions
with more levels of relays more complex. There was a big difference
between an asset that had one outgoing link, and an asset that had
one outgoing link and one incoming link, even if the assets were of
the same class. The number of communication links seemed to mat-
ter less after the first type, for example, an asset with one incoming
and one outgoing link is more similar to an asset with two incoming
and one outgoing links than with an asset with no outgoing links.
The participants also talked about how their assessments would
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Table 3: Pearson correlations (below the diagonal) and P values (above the diagonal) between dissimilarity metrics.

Group 1 Group 2 Features
(All)

Features
(Assets)

Features
(Objectives) Graph-Edit Distance EMF Compare

Group 1 1 0.01 0.06 0.19 0.12 0.16 0.88
Group 2 0.501 1 0.05 0.00 0.26 0.28 0.54
Features (All) 0.364 0.386 1 0.02 0.00 0.01 0.00
Features (Assets) 0.263 0.560 0.436 1 0.08 0.14 0.46
Features (Objectives) 0.304 0.223 0.869 0.341 1 0.03 0.03
Graph-Edit Distance 0.276 0.217 0.464 0.289 0.429 1 0.00
EMF Compare 0.029 0.123 0.536 0.147 0.424 0.789 1

change based on what task they needed to perform, suggesting that
a scientist might only care about looking at the objective values,
while when working on the mission communications the number
of incoming and outgoing links is the most important.

We expected after the emphasis on the communication links that
the graph-edit distance approach would have a stronger correla-
tion to the humans’ intuition, but this turned out not to be true.
We suspect that this is because our graph-edit distance approach
considers all edits to be of equal weight, while the humans placed
much greater emphasis on certain kinds of changes. For example,
an asset changing from a sender of data to a relay for other assets
is a large change, while an asset that is already a relay receiving
data from another asset is a minor change.

5 RELATEDWORK
In the systems engineering and spacecraft system engineering com-
munities, such work has not yet been performed. There are several
examples in the literature of applying clustering techniques to soft-
ware architectures. Architecture reconstruction is one problem that
clustering has been applied to. The goal of architecture reconstruc-
tion is to solve the common issue that the architecture for a software
system is not available, either because it has not been documented
or the software has evolved to the point that the architectural
documentation is no longer correct. Architecture reconstruction
seeks to discover the architecture given the software’s source code.
Mancoridis et al. [11] developed a technique to group software
modules together based on on a module dependency graph. They
cluster modules hierarchically to obtain a high-level subsystem
structure. Maqbool and Babri provide a survey of hierarchical clus-
tering approaches for software architecture recovery [12]. These
works are different from our approach because they seek to recon-
struct an architecture where none exists, while we are interested in
understanding existing architectures. Additionally, the hierarchical
reconstruction work typically clusters components within a single
architecture, while we cluster at the level of entire architectures.

Software architectures can also be reconstructed or verified using
clustering on artifacts other than source code. Kim and Chang [8]
identify software components by clustering use cases based on
computing a matrix of function dependency between use cases,
derived from UMLmodels. Yu et al. [19] used hierarchical clustering
to verify software designs according to a matrix computed based
on the number of interactions between components.

Other work has clustered software artifacts based on software
metrics in order to lower the cost of testing [20], grouped virtual

machine instances by their resource utilization to reduce manage-
ment burden [3], and investigated distance metrics for software
system decompositions [17].

6 CONCLUSION
Model-transformation-based synthesis of spacecraft mission archi-
tectures is a promising enabler for a more comprehensive explo-
ration of architectural variants and trades. However, due to the
typically large number of Pareto-optimal solutions (stemming from
the combinatorial complexity), analysis of the solution space is
non-trivial. In the paper, we introduce an approach which uses
Partitioning Around Medoids (PAM) clustering to gain more in-
sight into shared qualities among the candidate solutions. Several
means for measuring the similarity of architectural models were
studied, including domain- and application-agnostic measures such
as graph-edit distance, and problem-specific measures such as the
number of spacecraft in each solution. We found that choosing
sensible similarity measurements for mission architectures is a
nontrivial problem, with trade-offs in technique generality, gran-
ularity, and choosing between semantic and syntactic properties.
However, we also discovered that even coarse-grained similarity
measures can result in clusters that provide potentially valuable
insights. Results from the clustering were shown to several domain
experts who were enthusiastic about the potential for the technique
to provide insights during design. We also compared expert judg-
ment to our automated similarity measures, and found that what
humans consider to be relevant in assessing architectural similarity
varied strongly, showing the usefulness of providing them with
a range of clustering tools to enhance their ability to explore the
complex design space of multiple spacecraft missions. Our prelimi-
nary evaluation indicated that the technique could be helpful for
designing networked constellation missions. Future work should
include evaluating more complex measures that look for specific
architectural patterns. The evaluation of the technique should also
be expanded upon by involving a larger group of domain experts.
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