
Statistical Machine Translation is a Natural Fit for Automatic Identifier Renaming
in Software Source Code

Jeremy Lacomis,† Alan Jaffe,† Edward J. Schwartz,‡† Claire Le Goues,† and Bogdan Vasilescu†
†Carnegie Mellon University, ‡Software Engineering Institute, Pittsburgh, Pennsylvania

{jlacomis, apjaffe, clegoues, vasilescu}@cmu.edu, eschwartz@cert.org

Abstract

Advances in natural language processing have led to a vari-
ety of successful tools and techniques for solving problems
such as understanding, generating, and translating natural
languages. Given the success of these techniques, a natural
question is whether they can also be applied to programming
languages. However, the initial research has been mixed. Re-
searchers attempting to translate between programming lan-
guages by employing statistical machine translation (SMT)
found that a large percentage of the translated programs were
not syntactically valid. On the other hand, SMT has been
successfully employed to recover identifiers in obfuscated
JavaScript code. In this paper, we discuss several differences
between natural languages and programming languages that
can thwart successful application of NLP techniques to pro-
gram transformation. We also discuss several strategies to
cope with these differences in practice, using our own experi-
ences with using SMT to assign meaningful identifier names
to variables in decompiled C programs as an example.

1 Introduction
Natural language processing (NLP) is, by now, a very ma-
ture field, responsible for solutions to problems such as
translating, understanding, and generating natural language.
These successes, coupled with increasing availability of
large source code corpora from “Big Code” archives such as
GITHUB and STACK OVERFLOW, have inspired a plethora
of software engineering applications in recent years, e.g., to
program generation and transformation (Karaivanov, Ray-
chev, and Vechev 2014). The key ingredient that made these
applications possible is the “naturalness” property of source
code (Devanbu 2015), i.e., over a large corpus source code is
very repetitive (Gabel and Su 2010) (even more so than natu-
ral language), therefore predictable using statistical models.

A tempting NLP approach for software source code ap-
plications is statistical machine translation (SMT): Can
we “translate” programming languages the same way we
translate, say, between English and Korean? Early at-
tempts are promising, with notable examples in auto-
matic porting of source code between different program-
ming languages (Nguyen, Nguyen, and Nguyen 2013; 2014;
Karaivanov, Raychev, and Vechev 2014) and, more recently,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

automatic renaming of minified identifiers1 JavaScript
code (Vasilescu, Casalnuovo, and Devanbu 2017).

In this paper we argue that automatic renaming of source
code identifiers is a problem particularly well suited for
SMT, and we show that it has broader applicability beyond
obfuscated JavaScript code, e.g., assigning meaningful vari-
able names in decompiled C code. Our key insight is that
both obfuscated JavaScript and decompiled C code can be
seen as distortions (cf. the noisy channel model) of same-
language original code: Unlike “translating” between, say,
C# and Java, obfuscated JavaScript and decompiled C are
still JavaScript and C, respectively.

2 SMT for Identifier Name Recovery
What makes SMT an appropriate solution to the problem of
recovering natural identifier names in source code (e.g., in
obfuscated JavaScript (Vasilescu, Casalnuovo, and Devanbu
2017)), more so than for the more general problem of trans-
lating, say, between C# and Java? We identify several im-
portant properties:

• The “naturalness” of software: Due to the high degree
of predictable repetition in source code, if given sufficient
training data, SMT can successfully capture and exploit
contextual regularities to provide nuanced, useful transla-
tions: In general, identifier names are chosen by program-
mers to be natural, unsurprising, and well-suited to local
context (Devanbu 2015). Across a large corpus, names
tend to repeat in similar contexts, and this can be captured
by statistical language models.

• Similar structure between source and target lan-
guages: Programming languages require strict adherence
to syntactic and semantic rules and programs cannot be
interpreted or compiled when there is even a single er-
ror. This is much different from natural languages: hu-
mans can still makes sense of sentences that contain er-
rors in syntax or grammar (e.g., this sentence). In the
JavaScript reverse minification example, this problem is
avoided completely: The transformation between the ob-
fuscated and renamed code is an α-renaming that does

1Minification is a common form of obfuscation in JavaScript
code on the web, that involves replacing all identifiers with single-
letter tokens.



not alter the program structure. In the more general case
of translation between different programming languages,
this becomes more challenging, as probabilistic models
designed for natural languages are not meant to detect and
preserve the strict rules and properties that are specific to
programming languages.

• Acceptability of partial/approximate results: All
(translation) models are wrong, but some are useful.
Translations between natural languages are often imper-
fect, yet most people would arguably find them useful,
as they can at least point readers in the right direction.
Similarly, the goal of SMT for identifier renaming should
not be exact recovery of the original names in every sin-
gle context. Indeed, recovery of names that fit naturally
in similar contexts can be, arguably, just as informative.
For example, research has shown that programmers are
equally able to understand full-word identifiers such as
string and abbreviated identifiers such as str (Scan-
niello et al. 2017). Additionally, in reverse engineering
scenarios, even partial results can be useful: knowledge of
some of the variable names can give programmers useful
clues to decode the meaning of the remaining obfuscated
variables. For example, in code that operates on geom-
etry the code snippet var1 = len * width; gives
strong clues that var1 represents area.

• Arbitrary amounts of training data: Unlike transla-
tion between natural languages, arbitrary-sized training
corpora can be constructed for the identifier name recov-
ery problem: As long as one has access to the obfusca-
tor (or compiler), arbitrary amounts of input data, e.g.,
mined from open source archives, can be passed through.
Observing the transformation between the input and the
“noisy” output enables the creation of the needed SMT
parallel training corpora. In the case of natural languages,
parallel, sentence-aligned training data in different lan-
guages is relatively scarce. For the more general problem
of translating between different programming languages,
parallel data is relatively almost inexistent.

• Context-enhancing transformation: In most program-
ming languages, any semantic information contained by
identifiers is ignored by the compiler, and modifying iden-
tifier names does not change the meaning of the program.
This is very different from natural languages, where each
word carries meaning. Additionally, scoping rules in pro-
gramming languages do not have a natural language coun-
terpart. These scoping rules allow for the same identi-
fier name to be used in many semantically different con-
texts. The ability to generate arbitrary amounts of train-
ing data has the extra benefit of enabling transforma-
tions of the input such that more of a name’s context
is embedded in the name itself; the only requirement is
that this be done consistently, and both prior to training
the model and later during live decoding. In general,
the more context-specific a name, the better a translation
can be learned. Which strategy is optimal in which set-
tings is still unclear; we experimented with different hash-
based approaches to embed context into the name itself in
prior work on JavaScript deobfuscation (Vasilescu, Casal-

nuovo, and Devanbu 2017, Section 3.3).

With these properties in mind, we have begun investigat-
ing other program transformation problems that can be ad-
dressed using SMT tools. We believe that the problem of
assigning natural variable names to decompiled code is sim-
ilar to JavaScript deobfuscation, and that the challenges can
be addressed with similar strategies.

3 Renaming Identifiers in Decompiled Code
Security practitioners are often faced with the task of reverse
engineering executables without the corresponding source
code in order to investigate malware, perform legacy soft-
ware maintenance, or discover potential software vulnera-
bilities. Unfortunately, reading and understanding machine
code is an extremely difficult task, and reverse engineers of-
ten prefer to decompile the executable, which transforms the
executable semantics into a more abstract source code rep-
resentation. Although decompilation generally makes code
significantly easier to comprehend, there are still many fea-
tures that cannot be reliably recovered because information
is lost during the compilation process. For example, current
state-of-the-art decompilers such as Hex-Rays (Hex-Rays
2017), Phoenix (Schwartz et al. 2013), and DREAM (Yak-
dan et al. 2015) cannot recover comments or identifier
names unless debugging symbols are included with the bi-
nary, which is rare. Since researchers have demonstrated
that variable names help programmers comprehend source
code (Lawrie et al. 2006), it follows that recovering these
names would also help reverse engineers.

Why SMT? We contend that this problem features the
properties we identified in Section 2, and as a result, that
we can apply SMT techniques to help solve it. First, we can
observe the transformation ourselves (we have access to dif-
ferent compilers and decompilers), therefore we can gener-
ate arbitrary amounts of training data. Second, the language
transformation we perform preserves program structure and
thus syntactic and semantic validity is not a relevant concern.
We also find that partial or approximate results are accept-
able: if there is not an appropriate translation for a specific
identifier in the decompiled code, our SMT approach can
use the original identifier. In addition, research shows that
there is little difference between the use of full-word identi-
fiers and abbreviations (Scanniello et al. 2017), which sug-
gests that our technique can still provide value without al-
ways recovering the exact original name. Finally, we should
be able to employ artificial renaming techniques similar to
those used for JavaScript deobfuscation (Vasilescu, Casaln-
uovo, and Devanbu 2017) to capture more of each name’s
context prior to training, therefore improving our results.

Challenges. Despite the similarities to renaming obfus-
cated JavaScript code, there are some challenges specific
to decompiled code. One major complication is identify-
ing which variables in the decompiler output correspond to
those in the original source code, and vice versa, which is
essential for constructing the parallel training corpus. This



problem is exacerbated by the fact that there is not always
a one-to-one relationship, e.g., decompilers often generate
extra variables that do not correspond to any variable in the
original source code. It is also possible for decompiled code
to be syntactically very different from the original source
code, yet still be semantically equivalent. For example, for
loops can be written as while loops. This means that we
cannot simply look for the original context of a variable to
determine its position in the decompiled code.

To improve corpus generation and facilitate automatic
evaluation, we have developed several algorithms that at-
tempt to match original variable names with variable names
in the decompiled code. These techniques use several dif-
ferent heuristics to align variable names. One heuristic is to
compare the uses of a variable in the original code (e.g., the
variable is read inside a doubly nested loop) to the uses of
the variables in the decompiled code and compute the closest
matching usage signature. Another heuristic is to compare
how the variables are used in function calls, including their
use as return values and their argument position (which is
generally preserved by the decompiler). We evaluated this
alignment procedure by compiling executables with debug-
ging information so that the decompiler can recover the orig-
inal variable names. We then manually stripped these names
and compared the output of the alignment tool to the origi-
nal decompiler output. Our best heuristic is able to correctly
align 68% of the original variable names.

Although this alignment might seem unnecessary when
we can generate debugging information that the decompiler
can use to recover variable names, we found this to be an
ineffective way to generate a corpus: The decompiler uses
additional debugging information, e.g., types, and generates
different code when this is available. We found that generat-
ing a corpus in this manner hurt our results, likely because of
the different surrounding context than is generated when it
is not available. We are currently experimenting with using
this debugging information to improve our alignment tech-
nique, and generate better training corpora.

4 First Results
To evaluate our renaming technique, we collected 1.2 ter-
abytes of C source code from over 20,000 GITHUB projects
(identified using GHTorrent (Gousios 2013)), which we split
into a testing and training set. We generated a training
corpus by compiling using gcc with the -O0 compilation
flag to disable optimizations, then decompiling the code us-
ing the Hex-Rays decompiler (Hex-Rays 2017), applying
context-enhancing hash renamings to variable names, and
then using our alignment heuristics to match hashed variable
names with the original variable names. We then used this
corpus to train MOSES, an open-source SMT toolkit (Koehn
et al. 2007). MOSES generates a ranked list of possible
translations for each line of source code. Following JS-
NAUGHTY (Vasilescu, Casalnuovo, and Devanbu 2017), we
renamed each variable in each line with the top suggested
name from MOSES, computed its log-probability using a
language model, and selected the highest-probability renam-
ing for every variable, following C-specific scoping rules.

Hash Renaming Recovered Names (%)
Exact Approx.

None 22.1 24.1
Type 21.8 25.2
Type + Position 24.0 27.2
Type + Entropy 22.1 25.4
Type + Position + Entropy 23.5 26.6

Table 1: Initial results for our name recovery technique.

To evaluate each experiment, the renamed variables were
compared to the names the alignment algorithm assigned.
Although the alignment algorithm is not 100% accurate, we
justify this comparison by noting that the different structure
of the decompiled code means that there is not necessarily
a “correct” assignment of the original variable names to the
variables in the decompiled code.

We also considered an alternative evaluation technique in
which we recovered the proper variable renamings by de-
compiling executables that contained debugging informa-
tion, since the decompiler is able to use the original names
from the debugging symbols. However, our decompiler,
Hex-Rays (2017), leveraged type information from the de-
bug symbols to generated code with a more readable struc-
ture. This difference in code structure unfortunately means
that there is no straightforward α-renaming between the de-
compiled versions of the executables with and without de-
bug symbols, which is why our alignment procedure is nec-
essary.

We stress that recovering exact original variable names
is unnecessary to improve the comprehensability of decom-
piled source code: abbreviated identifiers can be just as ef-
fective (Scanniello et al. 2017). Thus, we also consider it to
be a success when our techniques recover an approximation
of the original name. We consider a match to be an approxi-
mation of the original when any of the following holds:

• One variable name is a prefix of the other, and at least half
as long (e.g., str and string).

• Both variables are a string of letters followed by a string
of numbers, and the non-numeric portions are identical
and at least half of the length of the longer identifier (e.g.,
sum1 and sum10).

• Special cases that we manually identified (e.g., format
and fmt).

Although this method is likely to miss some abbreviations
(e.g., s is not considered an abbreviation of str), it is a con-
servative approach that we believe yields few false positives.
We are investigating better techniques and human studies to
more accurately define approximate matches.

Table 1 shows the results of our initial experiments. The
“Hash Renaming” column identifies the type of informa-
tion we include in the hash renaming of each variable,
cf. (Vasilescu, Casalnuovo, and Devanbu 2017, Section 3.3).
The “Recovered Names” columns identify the amount of
variable names assigned by our SMT toolchain that match



the variable names aligned with the original source code us-
ing our alignment algorithms. The “Exact” column refers
to identical matches, while the “Approx.” column includes
both identical and approximate matches. Without any hash
renaming strategy our toolchain is able to recover 22.1% of
variable names exactly, and 24.1% of variable names ap-
proximately. When we use both variable types and argument
positions to hash the variable names, our recovery rates in-
crease to 24.0% and 27.2% respectively.

These results show that SMT is a viable strategy for im-
proving the understandability of decompiled source code.
Although an identifier recovery rate of 27.2% seems low, re-
call that current state-of-the-art identifier naming techniques
only assign meaningful names in very specific cases (e.g.,
using i as an iterator in for loops), and no attempt is made
at a general naming solution. As a convenient way to evalu-
ate our models at scale, we count how many of the original
names present in the source code prior to compilation and
decompilation our models can recover exactly. However,
it is likely that different meaningful names are assigned to
identifiers. A more nuanced, human-based evaluation is left
for future work.

5 Conclusions and Future Work
Our exploration into the use of SMT techniques for auto-
matic identifier renaming shows that despite the challenges
in their application to the general translation of program-
ming languages, they can still be successfully used to solve
more constrained program transformation problems. The
properties of the specific problem of renaming identifiers al-
low us to restrict the transformations that can be performed
by SMT techniques in such a way that the output will always
compile, and will always be semantically equivalent to the
input program. We do not believe that these properties are
unique to identifier renaming, and that there are many other
program transformations that should be addressable using
SMT and other NLP techniques.

We are considering the use of more advanced machine
learning techniques. Neural network methods are now be-
ing adapted to NLP problems, including machine transla-
tion (Goldberg 2017). We also do not yet use advanced clas-
sifier techniques such as boosting (Schapire 2003), which
would likely improve our results.

We also believe that the addition of more programming
language-specific information should allow us to perform
more powerful transformations using SMT techniques. Pro-
gram analysis techniques could be combined with SMT to
add the ability to reason about semantics, improving the
quality of generated code or allowing for semantic transfor-
mations. There has also been research into improving the
grammatical correctness of the output of machine transla-
tion techniques through the addition of a context-free gram-
mar for the target language (Wu and Wong 1998) that may
be a good fit for programming languages.

References
Devanbu, P. 2015. New initiative: The naturalness of soft-
ware. In International Conference on Software Engineering,

543–546.
Gabel, M., and Su, Z. 2010. A study of the uniqueness of
source code. In International Conference on the Founda-
tions of Software Engineering, 147–156.
Goldberg, Y. 2017. Neural network methods for natural lan-
guage processing. Synthesis Lectures on Human Language
Technologies 10(1):1–309.
Gousios, G. 2013. The GHTorrent dataset and tool suite. In
Working Conference on Mining Software Repositories, 233–
236.
Hex-Rays. 2017. Hex-rays 2.4.
Karaivanov, S.; Raychev, V.; and Vechev, M. 2014. Phrase-
based statistical translation of programming languages. In
International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, 173–184.
Koehn, P.; Hoang, H.; Birch, A.; Callison-Burch, C.; Fed-
erico, M.; Bertoldi, N.; Cowan, B.; Shen, W.; Moran, C.;
Zens, R.; Dyer, C.; Bojar, O.; Constantin, A.; and Herbst,
E. 2007. Moses: Open source toolkit for statistical machine
translation. In Association for Computational Linguistics
Interactive Poster and Demonstration Sessions, ACL ’07,
177–180.
Lawrie, D.; Morrell, C.; Feild, H.; and Binkley, D. 2006.
What’s in a name? A study of identifiers. In International
Conference on Program Comprehension, ICPC ’06, 3–12.
Nguyen, A. T.; Nguyen, T. T.; and Nguyen, T. N. 2013. Lex-
ical statistical machine translation for language migration.
In Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), 651–654.
Nguyen, A. T.; Nguyen, T. T.; and Nguyen, T. N. 2014.
Migrating code with statistical machine translation. In In-
ternational Conference on Software Engineering, 544–547.
Scanniello, G.; Risi, M.; Tramontana, P.; and Romano, S.
2017. Fixing faults in c and java source code. Transactions
on Software Engineering and Methodology 26(2):1–43.
Schapire, R. E. 2003. The boosting approach to machine
learning: An overview. In Nonlinear Estimation and Clas-
sification. Springer New York. 149–171.
Schwartz, E. J.; Lee, J.; Woo, M.; and Brumley, D. 2013.
Native x86 decompilation using semantics-preserving struc-
tural analysis and iterative control-flow structuring. In
USENIX Conference on Security, SEC ’13, 353–368.
Vasilescu, B.; Casalnuovo, C.; and Devanbu, P. 2017.
Recovering clear, natural identifiers from obfuscated
JavaScript names. In Joint Meeting on Foundations of Soft-
ware Engineering (ESEC/FSE), 683–693.
Wu, D., and Wong, H. 1998. Machine translation with a
stochastic grammatical channel. In Meeting of the Associ-
ation for Computational Linguistics and the International
Conference on Computational Linguistics, COLING-ACL
’98. Association for Computational Linguistics.
Yakdan, K.; Eschweiler, S.; Gerhards-Padilla, E.; and
Smith, M. 2015. No more gotos: Decompilation using
pattern-independent control-flow structuring and semantic-
preserving transformations. In NDSS.


