
DARTSim: An Exemplar for Evaluation and
Comparison of Self-Adaptation Approaches for

Smart Cyber-Physical Systems
Gabriel A. Moreno∗, Cody Kinneer†, Ashutosh Pandey† and David Garlan†
∗Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA
†School of Computer Science, Carnegie Mellon University, Pittsburgh, USA

gmoreno@sei.cmu.edu, ckinneer@cs.cmu.edu, ashutosp@cs.cmu.edu, garlan@cs.cmu.edu

Abstract—Motivated by the need for cyber-physical systems
(CPS) to perform in dynamic and uncertain environments, smart
CPS (sCPS) utilize self-adaptive capabilities to autonomously
manage uncertainties at the intersection of the cyber and physical
worlds. In this context, self-adaptation approaches face particular
challenges, including (i) environment monitoring that is sub-
ject to sensing errors; (ii) adaptation actions that take time,
sometimes due to physical movement; (iii) dire consequences
for not adapting in a timely manner; and (iv) incomparable
objectives that cannot be conflated into a single utility metric
(e.g., avoiding an accident vs. providing good service). To enable
researchers to evaluate and compare self-adaptation approaches
aiming to address these unique challenges of sCPS, we introduce
the DARTSim exemplar. DARTSim implements a high-level
simulation of a team of unmanned air vehicles (UAVs) performing
a reconnaissance mission in a hostile and unknown environment.
Designed to be easily used by researchers, DARTSim provides a
TCP-based interface for easy integration with external adaptation
managers, documentation, and a fast simulation capability.

Index Terms—simulation, self-adaptation, cyber-physical sys-
tem

I. INTRODUCTION

Motivated by the need for cyber-physical systems (CPS) to
perform in dynamic and uncertain environments, smart CPS
(sCPS) utilize self-adaptive capabilities to autonomously man-
age uncertainties at the intersection of the cyber and physical
worlds [1], [2]. In this context, self-adaptation approaches face
particular challenges, which are not often present in infor-
mation systems. First, monitoring the environment involves
monitoring the physical world through sensors that are not per-
fect. Handling this typically requires dealing with probability
distributions of the monitored states to capture the uncertainty
of the information collected by the systems [3]. Second, the
actions that the system can take to adapt—sometimes called
adaptation tactics [4]—can take time to execute. For example,
powering up a sensor after it was turned off to save power takes
time. Also, there are cases in which adaptation actions require
physical movement, which takes time given the dynamics of
the system (e.g., the speed at which it moves). The time that an
adaptation action takes to execute is known as tactic latency.
Previous work has shown that explicitly considering tactic
latency during the adaptation decision process improves the
effectiveness of self-adaptation. The third challenge is that in
some sCPS, there can be dire consequences if the system does

not adapt in a timely manner. While in an information system
a late adaptation may result in the violation of a service-
level agreement (SLA), in an sCPS the consequence could
involve physical damage to the system or elements of its
environment. When this is a concern, it may be necessary
to use proactive self-adaptation approaches [5]–[7], and even
consider tactic latency explicitly [8]–[10], unless the system is
conservative to compensate for the delayed reaction, resulting
in less effectiveness. Finally, some classes of sCPS have
incomparable objectives that have to be satisfied and cannot
be conflated into a single utility metric. For example, in many
cases it is not possible to put a value to the physical damage
to the system or third parties in a way that can be traded off
with the utility that the system provides, as we will show in
Section II.

To enable researchers to evaluate and compare self-
adaptation approaches aiming to address these unique chal-
lenges of sCPS, we introduce the DARTSim exemplar. This
system, developed in the context of the DART (Distributed
Adaptive Real-Time) Systems project at the Carnegie Mellon®

Software Engineering Institute [11], represents a simulated
team of unmanned aerial vehicles (UAVs) performing a recon-
naissance mission in a hostile environment. In this mission,
the team faces a trade-off between detecting targets on the
ground—the main purpose of the mission—and avoiding being
shot down by threats, which would result in the failure of
the mission. Pre-planning the execution of the mission is not
feasible because the environment (i.e., the location of targets
and threats) can only be discovered as the team flies during the
mission, and even then, with some uncertainty. In this cyber-
physical system, self-adaptation is required for the team to
deal with the uncertain environment, thus making it a smart
cyber-physical system.

Designed to be easily used by researchers, DARTSim pro-
vides a TCP-based interface for easy integration with external
adaptation managers regardless of the language they are writ-
ten in. Furthermore, it includes a Java class that encapsulates
the interaction with DARTSim through TCP, making it even
easier to integrate adaptation managers written in Java. When
interacting with the simulator using TCP, it runs as a process
separate from the adaptation manager. However, DARTSim
can also be linked as a library with adaptation managers

written in C++. This is not only convenient, but also improves
the overall performance by eliminating the use of TCP to
interact with the simulator. Regardless of the method used to
connect to the simulator, the adaptation manager controls when
the simulation has to execute a simulation step, which happens
in simulation time—not wall-clock time. Thus, simulations are
fast because there is virtually no wait for events to happen.
Example adaptation managers using both kinds of connection
are included.

Although several aspects of the mission, such as sensing
errors and the locations of threats and targets, are random, the
random number generators are seeded, thus allowing the repli-
cation of the same conditions multiple times. This supports
using DARTSim to compare different adaptation managers
under the same conditions.

DARTSim has been used for evaluating and comparing self-
adaptation approaches [9], [10], and for evaluating an input
attribution approach for statistical model checking [12]. Fol-
lowing the proposal of Cito and Gall to use Docker containers
for artifacts supporting software engineering research [13], we
are now making this exemplar available as a Docker image for
easy deployment on different operating systems.1

The rest of the paper is organized as follows. Section II gives
an overview of DARTSim and the mission being simulated.
Section III explains how adaptation managers can interact with
DARTSim to do monitoring and execute adaptation actions
on the system. Section IV shows how to run simulation and
interpret the results.

II. OVERVIEW OF DARTSIM

DARTSim simulates an autonomous team of UAVs carry-
ing out a reconnaissance mission in a hostile and unknown
environment. As depicted in Figure 1, the team has to detect
targets on the ground using a downward-looking sensor as
it flies a planned route at constant speed. However, there are
threats on the ground along the route that can destroy the team.
The closer the UVAs fly to the ground, the more likely they
are to detect the targets, but also the higher the probability
of being destroyed by a threat. This poses a trade-off for
the team, which is complicated by the uncertainty about the
environment. Even though both targets and threats are static,
neither their number nor their location is known a priori. The
team can use tactics that include changing altitude, changing
formation, and using electronic countermeasures (ECM) in
order to maximize the number of targets detected, taking
into account that if the team is lost to a threat, the mission
fails. Mission success is defined as surviving the mission and
detecting at least half of the targets.

DARTSim is a high-level simulation of this mission. The
whole team of UVAs is considered as a single system with
no distinction between its members. For example, what in
DARTSim is simulated as a single downward-looking sensor,
in reality would be composed of cameras in each UAV whose
images are fused. The physics of the flying UAVs is not

1Available at https://hub.docker.com/r/gabrielmoreno/dartsim/.

route segment altitude level

threat target

UAVs

downward-looking
target sensor

forward-looking
target/threat sensor

Fig. 1. Simulation overview.

simulated either. The focus of DARTSim is on the high-level
self-adaptation decisions that the system must make to achieve
mission success. The adaptation manager making these de-
cisions is what gives this sCPS the “smartness” required to
execute the mission autonomously.

Time and space are discretized in the simulation. Vertically,
the simulator deals with altitude levels, and horizontally, the
route is divided into segments2 of equal length. With the team
of UAVs flying at constant speed, time is discretized so that
the team traverses one route segment in each simulation time
step.3 The adaptation manager can collect monitoring informa-
tion, make an adaptation decision, and execute an adaptation
if necessary at the boundaries between route segments.

The following subsections describe the monitoring informa-
tion that the system provides, the adaptation tactics that can
be used to change the team configuration, and the effect the
team configuration has in its ability to detect targets and avoid
being destroyed by threats.

A. Monitoring the System and the Environment

The state of the system is defined by variables divided into
two groups: those that the can be controlled through adaptation
tactics, and those that cannot be controlled. The former are
known as the team configuration, and include the altitude
level, the formation (i.e., tight or loose), whether ECM is being
used, and variables that indicate the time to complete (TTC)
in periods for each tactic with latency, which are described
in Section II-B. When TTC is 0, the tactic is not currently
being executed. The variables that cannot be controlled are
the position of the team along the route and the direction of
travel, since the team follows a predefined route. By default,
the route of the UAVs is a straight line. However, the simulator
can be configured to use a square map, in which the route
covers every cell in the map following a lawnmower pattern.
This presents the challenge of the forward-looking sensors not
being able to sense the route ahead as the team is making a
turn at the end of each horizontal run across the map.

2Since DARTSim also supports a square map, the term cell is also used.
3Since the decision period of the adaptation manager is equal to a

simulation step, we use the two terms interchangeably.

TABLE I
ADAPTATION TACTICS.

Tactic Code Description Latency

IncAlt Climb one altitude level 1 period
DecAlt Descend one altitude level 1 period
IncAlt2 Climb two altitude levels 1 period
DecAlt2 Descend two altitude levels 1 period
GoTight Change to tight formation immediate
GoLoose Change to loose formation immediate
EcmOn Turn ECM on immediate
EcmOff Turn ECM off immediate

The team has two long-range forward-looking sensors to
monitor the state of the environment ahead of the team.
One is used to sense the presence of targets and the other
is used for threats. For each cell or route segment in front
of the sensor, the sensor reports whether it detects a target
or threat, depending on the sensor. However, due to sensing
errors, these reports can be false positive or false negative. An
adaptation manager can get multiple observations to construct
a probability distribution of threat or target presence in a cell.

B. Adaptation Tactics

DARTSim provides a number of tactics that an adaptation
manager can use to change the team configuration. Table I lists
the adaptation tactics including whether they have latency or
are immediate. An immediate tactic produces its effect without
delay. For example, if the adaptation manager uses the tactic
GoTight at the beginning of a simulation step, the team
will be in tight formation while flying over the route segment
covered by that step. If a tactic with latency is used, the effect
of the tactic will have a 1 period delay.4 It is not necessary for
an adaptation manager to use the complete tactic repertoire.
For example, an adaptation manager may only use tactics to
change altitude by one level and change formation. Adding
tactics to the set of used tactics can be used to change the size
of the adaptation space handled by the adaptation manager.

C. Effect of Team Configuration

The team configuration has an effect on the probability of
being destroyed by a threat and the probability of detecting a
target, which is important when deciding how to adapt.

A threat can destroy the team only if both are in the same
segment. However, a threat has range rT , and its effectiveness
is inversely proportional to the altitude of the team, denoted by
a. In addition, the formation of the team affects the probability
of it being destroyed. The team can be in two different
formations: loose (φ = 0), and tight (φ = 1). The latter
reduces the probability of being destroyed [14] by a factor
of ψ. When the team uses ECM (E = 1), the probability of
being destroyed is reduced by a factor of 4. Taking altitude,
formation, and the use of ECM into account, the probability
of the team being destroyed, d is given by (1).

4The latency of the change altitude tactics can be configured.

d =
max

(
0, rT − a

)
rT

(
(1− φ) +

φ

ψ

)(
(1− E) +

E

4

)
(1)

The probability of detecting a target with the downward-
looking sensor given that the target is in the segment being
traversed by the UAVs is inversely proportional to the altitude
of the team [15]. Furthermore, flying in tight formation reduces
the detection probability due to sensor occlusion or overlap,
and the use of ECM also affects target detection, reducing the
probability of detection by a factor of 4. The probability g of
detecting a target is given by (2).

g =
max

(
0, rS − a

)
rS

(
(1− φ) +

φ

σ

)(
(1− E) +

E

4

)
(2)

where rS is the range of the sensor (i.e., at an altitude of rS or
higher, it is not possible to detect targets), and σ is the factor
by which the detection probability is reduced due to flying in
tight formation.

These performance characteristics can be leveraged by an
adaptation manager to decide how to adapt. Whether they are
used qualitatively or quantitatively depends on the decision-
making approach used by the adaptation manager. The simple
example described in Section III uses the knowledge of these
characteristics qualitatively in a heuristic decision-making
approach. More principled approaches attempting to use them
quantitatively are faced with the problem of trading off two
measures that are incomparable in principle, the survival of the
team vs. the maximization of targets detected. For example,
mission success requires that the UAVs survive the mission,
whereas only half of the targets have to be found. Even though
this implies that surviving the mission has higher priority, a
decision approach that favors survival may be too conservative
to detect enough targets. A more balanced trade-off could be
guided by assigning value to surviving the mission and to
the targets, so that they become comparable. However, given
that the number of targets present in the route is unknown,
doing this is not trivial. This is a challenge in many sCPS
that this exemplar presents as well.5 DARTSim includes a
more complex example that uses these performance char-
acteristics quantitatively with the PLA-SDP self-adaptation
approach [10].

III. IMPLEMENTING ADAPTATION MANAGERS

Adaptation managers can interact with DARTSim in two
ways. One is using it as a C++ library linked with the program
implementing the adaptation manager. The other is running
DARTSim as a separate process and interacting with it through
a TCP socket. The first method has the advantage of having
DARTSim and the adaptation manager in a single process;
not incurring the overhead of the TCP socket connection;
and interacting with DARTSim with simple method calls. The

5For example, survival in other sCPS could mean not running out of power
when that depends on how the uncertain weather will affect the output of
solar cells.

second method has the advantage of being language indepen-
dent, providing flexibility to implement adaptation managers
in most programming languages. Even when DARTSim is run
as a separate process, the adaptation manager controls the
simulation steps, allowing DARTSim to execute a simulation
step as soon as the adaptation manager finishes making the
adaptation decision. This results in fast simulations with both
methods. The following sections explain how an adaptation
manager can interact with DARTSim using each method.

A. Interacting with DARTSim as a Library

Listing 1 shows a fragment of the code of the adaptation
manager in one the examples included with DARTSim. This
example is implemented in C++ and demonstrates how to
use DARTSim as a library. Lines 1–4 show how to create
an instance of DARTSim and check if that was successful.
The method createInstance() receives arguments in the
same way as the C++ main() function. This allows config-
uring the simulation from the command line, for example (see
Section IV for some of the allowed configuration arguments).
Lines 6–8 demonstrate how the adaptation manager can obtain
parameters of the configuration of the simulation that can be
relevant. In this case, it is using the getParameters()
method to determine what is the maximum altitude level al-
lowed. There are several other parameters that can be obtained,
such as parameters of the sensors (e.g., false positive and false
negative rates), and the range of the threats.

The rest of the code of the adaptation manager is orga-
nized in a way similar to the MAPE-K loop [16]. The main
adaptation loop is in lines 10–43. The method finished(),
called in line 10, is used to check if the simulation has
finished, either because the team reached the end of the
route or because it was destroyed. Lines 12–15 imple-
ment the monitoring activities of the adaptation manager.
Line 12 invokes the method getState() to get the state
of the system—the team—and lines 14–15 read the for-
ward sensors for targets and threats to monitor the environ-
ment. The methods readForwardThreatSensor() and
readForwardTargetSensor() take the length of the
look-ahead horizon in cells as argument, and return a vector of
booleans with the sensor report for the presence of a threat or
a target, respectively, in each cell over the look-ahead horizon,
with the first element of the vector corresponding to the cell
the UAVs are about to enter.

The analysis and planning aspects of the adaptation loop
are combined in event-condition-action (ECA) style [17], and
their implementation is in lines 17–36. The tactics that the
planning decides to execute are collected in a list of tactics,
which is then passed to the simulator for execution. At a high
level, the logic of the adaptation decision is as follows. If a
threat is detected in the horizon, increase altitude if possible
(lines 18–21), otherwise decrease altitude if possible only if
a target is detected in the horizon (lines 22–28). If there is
a threat in the segment the team is entering, switch to tight
formation if not already in that formation (lines 30–33). If

1 Simulator *dartsim = Simulator::createInstance(simArgc, argv);
2 if (!dartsim) {
3 usage();
4 }
5

6 auto simParams = dartsim−>getParameters();
7 const int minAltitude = 1;
8 const int maxAltitude = simParams.altitudeLevels;
9

10 while (!dartsim−>finished()) {
11 auto startTime = myclock::now();
12 auto state = dartsim−>getState();
13 cout << ”current position: ” << state.position << endl;
14 auto threats = dartsim−>readForwardThreatSensor(horizon);
15 auto targets = dartsim−>readForwardTargetSensor(horizon);
16

17 Simulator::TacticList tactics;
18 bool threatAhead = any of(threats.begin(), threats.end(),
19 [](bool p){return p;});
20 if (threatAhead && state.config.altitudeLevel < maxAltitude) {
21 tactics.insert(Simulator::INC ALTITUDE);
22 } else {
23 bool targetAhead = any of(targets.begin(), targets.end(),
24 [](bool p){return p;});
25 if (targetAhead && state.config.altitudeLevel > minAltitude) {
26 tactics.insert(Simulator::DEC ALTITUDE);
27 }
28 }
29

30 if (threats[0]) { // is there an immediate threat?
31 if (state.config.formation != TeamConfiguration::Formation::TIGHT) {
32 tactics.insert(Simulator::GO TIGHT);
33 }
34 } else if (state.config.formation != TeamConfiguration::Formation::LOOSE) {
35 tactics.insert(Simulator::GO LOOSE);
36 }
37

38 auto delta = myclock::now() − startTime;
39 double deltaMsec = chrono::duration cast<
40 chrono::duration<double, std::milli>>(delta).count();
41

42 dartsim−>step(tactics, deltaMsec);
43 }
44

45 auto results = dartsim−>getResults();
46 if (!results.destroyed) {
47 cout << ”Total targets detected: ” << results.targetsDetected << endl;
48 }
49 cout << dartsim−>getScreenOutput();
50 delete dartsim;

Listing 1. Adaptation manager using DARTSim as a library.

there is no threat in that segment and the team is not in loose
formation, switch to loose formation.

The final task of the adaptation loop is to pass the (possibly
empty) tactic list to the simulator so that they are executed.
This is done by calling the method step() (line 42), which
in addition to having the simulator execute the tactics, instructs
it to perform one simulation step. All the tactics in the list are
started by the simulator at the beginning of the simulation step.
The second parameter passed to this method is the adaptation
decision time that was measured by the adaptation manager
(lines 11, 38–40). Although measuring decision time is not
required, when done, DARTSim collects statistics that can
be obtained at the end of the simulation. This is useful for
comparing different self-adaptation approaches.

Once the simulation finishes, the code in lines 45–49 gets
the simulation results from DARTSim and prints the simula-
tion output in the format shown in Figure 2 and described in
Section IV.

B. Interacting with DARTSim over TCP

DARTSim’s TCP-based interface can be used for adaptation
managers that run as an external program. The interface allows
DARTSim to be used as a target system for a variety of
adaptation managers, regardless of how they are implemented
since most languages support communication through TCP
sockets. In addition, for passing data structures through the
TCP-based interface, DARTSim uses the JSON data inter-
change standard [18], which is supported by libraries available
for many languages.

Although an adaptation manager and DARTSim will exe-
cute as separate programs, they interact with each other at
each simulation step. At each step, the manager will probe
DARTSim for its state and, if it decides that adaptation is
needed, it will pass a list of adaptation tactics to the simulator.
DARTSim will execute these adaptation tactics, starting them
concurrently, and the simulation will advance one step.

DARTSim listens on port 5418 by default. Once a client
(i.e., an external adaptation manager) opens a connection to
this port, DARTSim waits for a command sent by the client
as a text line terminated with a new-line character. If the
command is not recognized or there is an error executing it,
DARTSim replies with a text line with the prefix ‘error:’,
followed by an error message.

To send a command, the client first needs to create a string
containing the command name and the corresponding input
parameters separated by spaces; this string is then sent to
DARTSim using the TCP connection. Upon receiving a well-
formed command string, DARTSim executes it, and sends the
result back to the client in the form of a string. The client has
to convert the string to the corresponding data type.

For composite data types (e.g., list and records) used either
as input parameters or return values, DARTSim’s TCP-based
interface uses the JSON data interchange standard. For exam-
ple, the command step has list of tactic names to execute
as the first input parameter, and the adaptation decision time,
which is a floating point number, as the parameter. In this case,
the client needs to create a string in JSON format to encode the
list of strings for the first parameter. For instance, the complete
string for the command step telling the simulator to start the
tactics DecAlt and GoLoose, and reporting an adaptation
decision time of 132.0 milliseconds is

step ["DecAlt","GoLoose"] 132.0

To invoke this command with an empty list of tactics when no
adaptation is needed, the empty list is represented with empty
square brackets ‘[]’.

If the result of a command is a composite data type such as
a record, then the client needs to decode the string encoded in
JSON format upon receiving the result. For example, the result
of the getState command would be encoded as follows (all
in a single line):

{"altitudeLevel": 1,
"directionX": 1, "directionY": 0,
"ecm": false, "formation": 0,
"positionX": 17, "positionY": 0,

"ttcDecAlt": 0, "ttcDecAlt2": 0,
"ttcIncAlt": 0, "ttcIncAlt2": 0}

JSON libraries that handle the conversion back and forth
between a JSON string and composite data types are available
for many programming languages [18].

DARTSim includes an example called simple-java,
which includes a class DartSimClient that implements
in Java the adaptation manager side of the TCP-based com-
munication with DARTSim. This class can be reused by
researchers to implement adaptation managers for DARTSim
in Java. When using it, the interaction with the simulator is
as simple as when using it as described in Section III-A. For
researchers using another language, this class can be used as
a reference implementation, and the complete TCP interface
is documented in the artifact.

IV. RUNNING SIMULATIONS

Running simulations with DARTSim is straightforward.
This section shows how to run DARTSim with the provided
examples using the default configuration, and explains how
to interpret the results of a completed simulation. In addition,
some of the most common configuration options are explained.

A. Running Examples

DARTSim includes three examples demonstrating integrat-
ing DARTSim with adaptation managers. Two minimal exam-
ples illustrate using DARTSim with adaptation managers in
two ways: as a library in C++, and over its TCP interface using
other programming languages (the provided example is in
Java). A third adaptation manager provides an implementation
of PLA-SDP [10] to demonstrate a fully featured adaptation
manager integrated with DARTSim.

To run DARTSim as a process separate from the adap-
tation manager (i.e., when they interact through the TCP
interface), the simulator can be started with the run.sh
script executed from a shell in the top-level directory of
DARTSim. In that case, DARTSim waits for a connection from
an adaptation manager, which has to be started separately. To
simplify this, both processes can be launched with the script
run-with-am.sh. When DARTSim is used as a library,
only the adaptation manager process must be started, which
in turn, instantiates the simulator. Detailed instructions for run-
ning the examples are included in the artifact’s documentation.

B. Interpreting the Results

The results of the simulation can be obtained as
a visual trace and as raw data using the methods
getScreenOutput() and getResults(), respectively
(as explained in Section III), and is up to the adaptation
manager to print them or save them to a file (see lines 45–49
in Listing 1). Figure 2 shows an example visual trace, which
depicts a 2D side view of the team’s route. The two-bottom
lines represent the ground, and the lines above them represent
the altitude level of the drones (vertical axis) at the different
positions in the route (horizontal axis). The meaning of the
symbols used in this representation is shown in Table II. The

#
*#
* * # * # # # # * # # # # # # *
** # *

ˆ ˆ ˆ ˆ ˆ ˆ
T X X T

Fig. 2. Sample simulation output.

TABLE II
LEGEND FOR SYMBOLS USED IN SIMULATION OUTPUT.

Symbol Meaning

loose formation
* tight formation
@ loose formation, ECM off
0 tight formation, ECM on
ˆ threat
T target (not detected)
X target (detected)

raw data reported includes: the number of targets detected by
the team, whether the team was destroyed or not, the location
where the team was destroyed (if destroyed), whether or not
the mission was successful, the average and variance of the
decision time. Of these values, the most important are the
first two, the number of targets and whether the team survived
or not. These are the objective values that an adaptation
manager should optimize, detecting as many targets as possible
without being destroyed. The last two values enable an easy
comparison of decision time between adaptation managers.

C. Configuring the Simulation

DARTSim furnishes a number of configurable options for
the simulation. This section discusses some of the more
important configuration options; however, a complete listing
of options is available in the artifact’s documentation. When
DARTSim is run as separate process, configuration options
should be passed to the simulator as command arguments.
When used as a library, the options are passed to DARTSim
in C++ (argc, argv) style as explained in Section III-A.

DARTSim uses randomness in several parts of the simula-
tion, including generating the environment (the locations of
targets and threats), and simulating the results of sensor read-
ings and encounters with threats. When comparing adaptation
managers, it may be desirable for these random processes to
be consistent between runs (i.e., so that for each trial, the
conditions are replicated for each adaptation manager). This
is facilitated through the --seed configuration option, which
allows the user to specify the master seed for the various
random number generators (RNG) used in the simulator.6

Keeping this number constant between executions of the
simulator will result in reproducible conditions.

DARTSim also supports varying the size of the environ-
ment and the number of threats and targets present. The
--map-size options allows the user to configure the number
of segments in the route, which determines the length of the

6This seed is for a master RNG that generates seeds for the other RNGs.

team’s mission. The --altitude-levels option allows
the user to determine how many discrete altitude levels are
available for the team. This option provides an easy way
to increase the number of possible states that the team can
be in, which could be useful in evaluating the scalability of
an adaptation manager. Some other useful options include
--num-threats and --num-targets, which allows the
user to specify how many threats and targets are in the envi-
ronment. An exhaustive list of the DARTSim’s configuration
options is included in the documentation of DARTSim.

V. CONCLUSION

In this paper we have presented DARTSim, an exemplar
that simulates an autonomous team of UAVs carrying out a
reconnaissance mission in an unknown hostile environment.
DARTSim poses challenges that self-adaptation approaches
face when used to provide “smartness” to sCPS. These include
the sensing error of the long-range forward-looking sensors;
the adaptation tactics to change altitude levels, which take
time to execute due to the required physical movement; the
unknown threats that can destroy the UAVs if they do not evade
them in a timely manner; and the difficulty in conflating the
value of surviving the mission and the value of the detected
targets in a single utility measure when the number of targets
is unknown.

Several aspects of the mission are randomly generated in
DARTSim, making it suitable for running many simulations
with different conditions for statistical analysis when eval-
uating self-adaptation approaches. Nevertheless, DARTSim
can replicate these random conditions, allowing researchers
to compare different approaches. The exemplar is available
as a Docker image (https://hub.docker.com/r/gabrielmoreno/
dartsim/) for easy deployment on different platforms, and its
source code is available at https://github.com/cps-sei/dartsim.

ACKNOWLEDGMENTS

Copyright 2019 IEEE. All Rights Reserved. This mate-
rial is based upon work funded and supported by the De-
partment of Defense under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research
and development center, and by AFRL and DARPA under
agreement number FA8750-16-2-0042, the Office of Naval
Research (N000141612961), and the National Science Foun-
dation (CCF-1618220). The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the AFRL, DARPA, ONR,
NSF, or the U.S. Government. References herein to any spe-
cific commercial product, process, or service by trade name,
trade mark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or fa-
voring by Carnegie Mellon University or its Software Engi-
neering Institute. Carnegie Mellon® is registered in the U.S.
Patent and Trademark Office by Carnegie Mellon University.
DM19-0066

REFERENCES

[1] T. Bures, F. Krikava, R. Mordinyi, N. Pronios, D. Weyns, C. Berger,
S. Biffl, M. Daun, T. Gabor, D. Garlan, I. Gerostathopoulos, and
C. Julien, “Software engineering for smart cyber-physical systems –
towards a research agenda,” ACM SIGSOFT Software Engineering
Notes, vol. 40, no. 6, pp. 28–32, Nov. 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2830719.2830736

[2] T. Bures, A. Knauss, P. Patel, A. Rashid, I. Ruchkin, R. Sukkerd,
C. Tsigkanos, D. Weyns, B. Schmer, E. Tovar, E. Boden, T. Gabor,
I. Gerostathopoulos, P. Gupta, and E. Kang, “Software engineering for
smart cyber-physical systems,” ACM SIGSOFT Software Engineering
Notes, vol. 42, no. 2, pp. 19–24, Jun. 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3089649.3089656

[3] L. Bertuccelli and J. How, “Robust UAV search for environments
with imprecise probability maps,” in Proceedings of the 44th IEEE
Conference on Decision and Control. IEEE, 2005, pp. 5680–5685.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1583068

[4] S.-W. Cheng and D. Garlan, “Stitch: A language for architecture-
based self-adaptation,” Journal of Systems and Software, vol. 85,
no. 12, pp. 2860–2875, Dec. 2012. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2381464.2381594

[5] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and
G. Jiang, “Power and performance management of virtualized
computing environments via lookahead control,” Cluster Computing,
vol. 12, no. 1, pp. 1–15, Oct. 2008. [Online]. Available: http:
//link.springer.com/10.1007/s10586-008-0070-y

[6] B. Trushkowsky, P. Bodı́k, A. Fox, and M. J. Franklin, “The
SCADS director: Scaling a distributed storage system under stringent
performance requirements,” in Proceedings of the 9th USENIX
Conference on File and Stroage Technologies (FAST’11). San Jose,
California: USENIX Association, 2011, pp. 163—-176. [Online].
Available: http://static.usenix.org/legacy/events/fast11/tech/full papers/
Trushkowsky.pdf

[7] K. Angelopoulos, A. V. Papadopoulos, V. E. Silva Souza, and
J. Mylopoulos, “Model predictive control for software systems with
CobRA,” in Proceedings of the 11th International Workshop on
Software Engineering for Adaptive and Self-Managing Systems -
SEAMS ’16. Austin, Texas: ACM Press, 2016, pp. 35–46. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2897053.2897054

[8] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive
self-adaptation under uncertainty: a probabilistic model checking
approach,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2015. New York,
New York, USA: ACM Press, Aug. 2015, pp. 1–12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2786805.2786853

[9] G. A. Moreno, O. Strichman, S. Chaki, and R. Vaisman, “Decision-
making with cross-entropy for self-adaptation,” in 2017 IEEE/ACM
12th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). IEEE, May 2017, pp. 90–101.
[Online]. Available: http://ieeexplore.ieee.org/document/7968136/

[10] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Flexible and
efficient decision-making for proactive latency-aware self-adaptation,”
ACM Trans. Auton. Adapt. Syst., vol. 13, no. 1, pp. 3:1—-3:36, Apr.
2018. [Online]. Available: http://doi.acm.org/10.1145/3149180

[11] S. A. Hissam, S. Chaki, and G. A. Moreno, “High assurance
for distributed cyber-physical systems,” in Proceedings of the 2015
European Conference on Software Architecture Workshops. New York,
New York, USA: ACM Press, Sep. 2015, pp. 1–4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2797433.2797439

[12] J. P. Hansen, S. Chaki, S. Hissam, J. Edmondson, G. A. Moreno, and
D. Kyle, “Input attribution for statistical model checking using logistic
regression,” in Runtime Verification, Y. Falcone and C. Sánchez, Eds.
Cham: Springer International Publishing, 2016, pp. 185–200.

[13] J. Cito and H. C. Gall, “Using Docker containers to improve repro-
ducibility in software engineering research,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-
C), May 2016, pp. 906–907.

[14] M. J. Veth, “Advanced formation flight control,” Air Force Institute of
Technology, Tech. Rep., 1994.

[15] A. Symington, S. Waharte, S. Julier, and N. Trigoni,
“Probabilistic target detection by camera-equipped UAVs,” in
2010 IEEE International Conference on Robotics and Automation.
IEEE, May 2010, pp. 4076–4081. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509355

[16] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1160055

[17] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing–degrees, models, and applications,” ACM Computing
Surveys, vol. 40, no. 3, Aug. 2008. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1380584.1380585

[18] “JSON: JavaScript Object Notation,” http://json.org, n.d.

