
Improved Crossover Operators for Genetic
Programming for Program Repair

Vinicius Paulo L. Oliveira1, Eduardo F.D. Souza1, Claire Le Goues2,
and Celso G. Camilo-Junior1(B)

1 Instituto de Informatica - Universidade Federal de Goias (UFG),
Goiania, GO, Brazil

{viniciusdeoliveira,eduardosouza,celso}@inf.ufg.br
2 School of Computer Science, Carnegie Mellon University (CMU), Pittsburgh, USA

clegoues@cs.cmu.edu

Abstract. GenProg is a stochastic method based on genetic program-
ming that presents promising results in automatic software repair via
patch evolution. GenProg’s crossover operates on a patch representa-
tion composed of high-granularity edits that indivisibly comprise an edit
operation, a faulty location, and a fix statement used in replacement
or insertions. Recombination of such high-level minimal units limits the
technique’s ability to effectively traverse and recombine the repair search
spaces. In this work, we propose a reformulation of program repair oper-
ators such that they explicitly traverse three subspaces that underlie
the search problem: Operator, Fault Space and Fix Space. We leverage
this reformulation in the form of new crossover operators that faith-
fully respect this subspace division, improving search performance. Our
experiments on 43 programs validate our insight, and show that the
Unif1Space without memorization performed best, improving the fix
rate by 34 %.

Keywords: Automatic software repair · Automated program repair ·
Evolutionary computation · Crossover operator

1 Introduction

Software maintenance is expensive, usually substantially more so than initial
development. Maintenance has been estimated to dominate the life cycle cost
of software, consuming up to 70 % of those costs [22]. One class of techniques
proposed to help mitigate these costs draws on search-based software engineer-
ing by applying meta-heuristic search techniques like Genetic Programming [11]
to evolve program repairs, to improve or mitigate the cost of the bug fixing
process [5,20]. The goal is to explore the solution space of potential program
improvements, seeking modifications to the input program that, e.g., fix a bug
without reducing other functionality, as revealed by test cases.

An important research innovation in this space represents candidate solutions
as small edit programs, or patches to the original program. This is by contrast
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 112–127, 2016.
DOI: 10.1007/978-3-319-47106-8 8

Improved Crossover Operators for Genetic Programming for Program Repair 113

to earlier work, which adapted more traditional tree-based program represen-
tations for repaired program variants [29]. The patch-based representation has
significant benefits to both scalability and expressive power in the bug repair
domain [17]. It is now commonly used across the domain of Genetic Improve-
ment, a field which treats the program itself as genetic material and attempts
to improve it with respect to a variety of functional and quality concerns [26].

Our core contention is that the current formulation of the patch represen-
tation overconstrains the search space by conflating its constituent subspaces,
resulting in a more difficult to traverse landscape. Consider GenProg [16,29], a
well-known program repair method that uses a customized Genetic Program-
ming heuristic to explore the solution space of possible bug fixes represented as
patches. The genome consists of a variable-length sequence of tree-based edits
to be made to the original program code, with the edits themselves constituting
the genes. Each edit takes the following form: Operation(Fault,Fix). Operation
is the selected edit operator (one of insert, delete, or replace); Fault represents
the modification point for the edit; and Fix captures the statement that will be
inserted whenever necessary, such as when Operation is a replacement or inser-
tion. That is, each edit contains information along the three subspaces underlying
the program repair problem (operator, fault, and fix) [13].

This high gene granularity is considered important to scalability. However,
this high granularity for the purposes of crossover limits the search ability to
identify, recombine, and propagate the small, low-order building blocks that form
the core of a healthy fitness landscape for the purposes of evolutionary computa-
tion [10]. Crossover cannot combine partial templates or schema of information
along a single subspace, or even two of the three, because the edits themselves
are indivisible. We speculate that this is one (though certainly not the only) rea-
son that existing evolutionary program improvement techniques are historically
poor at finding multi-edit patches [24].

We therefore propose a novel representation for patch-based evolutionary
program improvement, particularly for crossover, to affect a smaller-granularity
representation without substantial scalability loss. We instantiate this approach
in the GenProg technique for automatic defect repair. Our overall hypothesis is
that this new representation and associated crossover operators enable the pro-
ductive traversal and recombination of information across the actual subspaces
of the program improvement problem, and thus can improve performance.

Thus, the main contributions of this paper are:

– An explicit consideration of the implications of schema theory on genetic pro-
gramming for program repair.

– A new representation to use specifically for crossover that provides a traversal
and recombination between repair subspaces.

– Six new crossover operators that more effectively explore the search space.
– Experiments demonstrating improvement in fix effectiveness.

The remainder of this paper is organized as follows. Section 2 presents back-
ground on genetic programming, and GenProg in particular; Sect. 3 describes our

114 V.P.L. Oliveira et al.

new representation and operators; Sect. 4 presents experimental setup, results,
and discussion. Section 5 discusses related work; we conclude in Sect. 6.

2 Background

Search-based program improvement leverages metaheuristic search strategies,
like genetic programming, to automatically evolve new programs or patches to
improve an input program.1 These improvements can be either functional (e.g.,
bug fixing [13], feature grafting [12]) or quality-oriented (e.g., energy usage [25]).
We focus on automatic program repair, GenProg in particular, but anticipate
that our innovations for patch representation should naturally generalize. In this
section, we provide background on Genetic Programming in general (Sect. 2.1)
and its instantiation for repair in GenProg (Sect. 2.2).

2.1 Genetic Programming

Genetic Programming (GP) is a computational method inspired by biological
evolution that evolves computer programs. GP maintains a population of pro-
gram variants, each of which corresponds to a candidate solution to the problem
at hand. Each individual in a GP population is evaluated for its fitness with
respect to a given fitness function, and the individuals with the highest fitness
are more likely to be selected to subsequent generations. Domain-specific muta-
tion and crossover operators modify intermediate variants and recombine partial
solutions to produce new candidate solutions, akin to biological DNA mutation
and recombination.

In the context of the Evolutionary Algorithms (EA), a schema is a template
that identifies a subset of strings (in a GA) or trees (in a GP) with similarities
at certain positions (gene) [8]. The fitness of a schema is the average fitness
of all individuals that match (or include) it. Holland’s schema theorem, also
called the fundamental theorem of genetic algorithms [10], says that short, low-
order schemata with above-average fitness increase exponentially in successive
generations. The schema theorem informs the building block hypothesis, namely
that a genetic algorithm seeks optimal performance through the juxtaposition of
such short, low-order, high-performance schemata, called building blocks. Ideally,
crossover combines such schemata into increasingly fit candidate solutions; this
is a feature of a healthy adaptive GP algorithm.

2.2 GenProg for Program Repair

GenProg overview. GenProg is a program repair technique predicated on Genetic
Programming. GenProg takes as input a program and a set of test cases, at least
one of which is initially failing. The search goal is a patch to that input program

1 We restrict attention to background necessary to understand our contribution; We
discuss related work more fully in Sect. 5.

Improved Crossover Operators for Genetic Programming for Program Repair 115

that leads it to pass all input test cases. Using test cases to define desired behav-
ior and assess fitness is fairly common in research practice [18,19,23]. Although
test cases only provide partial specifications of desired behavior, they are com-
monly available and provide efficient mechanisms for constraining the space
and assessing variants. Experimental results demonstrate that GenProg can be
scalable and cost-effective for defects in large, real-world open-source software
projects [13]. However, there remain a large proportion of defects that it cannot
repair. We focus particularly on the way that GenProg’s patch representation
results in a suboptimal fitness landscape for the purposes of a healthy adaptive
algorithm.

Old:

New:

Simplified:

Fig. 1. Old representation (top); New representation (middle); and simplified (bottom).

Search space. The program repair search problem can be formulated along three
subspaces: the Operation, or the possible modifications that can be applied; the
fault location(s), or the set of possibly-faulty locations where the modifications
shall be applied; and the fix code, or the space of code that can be inserted
into the faulty location [14,28]. GenProg constrains this infinite space in several
ways: (1) it uses the input test cases to localize the defect to a smaller, weighted
program slice, (2) it uses coarse-grained perturbation operators at the C state-
ment level (insert, replace, and delete), and (3) it restricts fix code to code within
the same program or module, leveraging the competent programmer hypothesis
while substantially reducing the space of possible fix code.
Representation and mutation. GenProg’s patch representation (Fig. 1, top) is
composed of a variable-length sequence of high-granularity edit operations. Each
edit takes the form: Operation(Fault,Fix), where Operation is the edit operator;
Fault is the modification location; and Fix captures the statement that will be
inserted when Operation is a replacement or insertion. The mutation operation
consists of appending a new such edit operation, constructed pseudo-randomly,
to the existing (possibly empty) list of edits that describe a given variant.
Crossover. Crossover combines partial solutions and can improve the exploitation
of existing solutions and implicit genetic memory. It takes two parent individ-
uals from the population to produce two offspring individuals. GenProg uses
a one-point crossover over the edits composing each of the parents. It selects
a random cut point in each individual and then swaps the tails of each list to
produce two new offspring that each contain edit operations from each parent.
This does not create new edits; this power is currently reserved for mutation.
Our illustrative example (Sect. 3.1) indicates the ways that this representation
limits the recombination potential offered by crossover (Fig. 2).

116 V.P.L. Oliveira et al.

3 Approach

Our high-level goal is to enable efficient recombination of genetic information
while maintaining the scalability and efficiency of the modern patch represen-
tation. The building block hypothesis states, intuitively, that crossover should
be able to recombine small schemata into large schemata of generally increasing
fitness. Instead of building high-performance strings by trying every conceiv-
able combination, better solutions are created from the best partial solutions of
past generations. We posit that the current patch representation for program
repair does not lend itself to the recombination of such small building blocks,
because each edit combines information across all three subspaces, and edits are
indivisible for the purposes of crossover. Partial information about potentially
high-fitness features of an individual (e.g., accurate fault localization, a useful
edit operator) cannot be propagated or composed between individuals.

Fig. 2. Example of mapping an individual to the new representation. Each subspace
is represented by a color: Yellow is the Operator subspace, blue is the Fault subspace
and red is the Fix subspace. The character i = Insert, r = Replace, d = Delete. (Color
figure online)

We propose to explicitly conceive of the schemata in this domain as a tem-
plate of edit operations, where certain operations and their order is necessary
to represent key individual information. We instantiate this conception in a new
intermediate representation and then new crossover operators that leverage it.
We begin with a running example that we will use to illustrate the approach
(Sect. 3.1). We propose a new representation and a mapping to it from the exist-
ing patch representation (Sect. 3.2). We then present six new crossover operators
(Sect. 3.3: OP1Space, Unif1Space, and OPAllS, and then each of these new
operators with memorization.

3.1 Illustrative Example

Consider a bug that requires two edits to be repaired:2 Insert(1,9) Delete(3,).
Consider also two candidate patches that contain all the genetic material nec-
essary for this repair: (A) Insert(1,2)Replace(3,4) and (B) Replace(8,9)
Delete(3,)Insert(5,6). The deletion in candidate (B) is correct as is and only

2 We use integer indices to denote numbered statements taken from a pool of potential
faulty locations and candidate fix code, as is standard.

Improved Crossover Operators for Genetic Programming for Program Repair 117

needs to be combined with the appropriate insertion. The current crossover oper-
ator can propagate this deletion into subsequent generations.

However, constructing the Insert(1,9) cannot be accomplished through
crossover alone, even though the insertion in candidate (A) is only one mod-
ification from the solution along the fix space, and (B) contains the correct code
in its first replacement. Crossover cannot change the Fix element in (A) from 2
to 9, because the gene is treated as an indivisible unit. The only way to achieve
the desired solution is via a combination of edits that compose semantically to
the desired solution, or by relying on mutation to produce the insertion from
whole-cloth.

Fig. 3. Example of OP1Space applied to a pair of variants.

3.2 Decoupled Representation

We begin by decoupling the three subspaces in the representation to decrease
edit granularity. We map variants to a new representation that imposes indepen-
dence of subspaces, shown in the middle of Fig. 1. This decoupled representation
has fixed positions to improve genetic memory. To simplify presentation, this
representation can be further reduced to a one dimensional array by concate-
nating the three subspace arrays, shown in the bottom of Fig. 1. To simplify
subsequent crossover operations while maintaining variant integrity, we add to
the Delete operator a ghost Fix value, equal to its Fault value.

Note that we maintain the original patch representation for non-crossover
steps because it is beneficial for mutation and because doing so allows us to
focus our study on the effects of crossover specifically. A mapping transforma-
tion (encode) is thus applied to each individual immediately before crossover,
which is applied to pairs of individuals selected in the standard way. We then
apply a decode transformation to the offspring to return them to the canonical

118 V.P.L. Oliveira et al.

representation for selection and mutation. As will be shown, Decode can cause
a loss of information. We therefore propose a memorization system to repair
broken individuals, which we discuss subsequently.

3.3 New Crossover Operators

We propose six crossover operators to leverage and analyze the proposed repre-
sentation in search-based program repair. OP1Space and Unif1Space apply to
a single subspace, while OPAllS applies to the whole chromosome. These three
operators augmented with memorization mechanism result in six total proposed
operators.

Fig. 4. Example of Unif1Space applied in the Operator subspace.

One Point Crossover on a Single Subspace (OP1Space). OP1Space applies
one-point crossover to a single subspace (see Fig. 3 for a visual presentation).
It therefore explores new solutions in a single neighborhood, while maintaining
potentially important blocks of information in the other subspaces. Given two
parent variants encoded into the new representation, OP1Space chooses one
of the three subspaces uniformly at random, and then randomly selects a cut
point. Because the patch representation is of variable length, this number must
be bounded by the minimum length of the chosen subspace so as to result in a
valid point in both parents. We swap the tails beyond this cut point between
parents, generating two offspring. The portion of the individuals relative to the
unselected subspaces are unchanged.

Finally, decode is applied. Decode to unchanged parents is simply the inverse
of encode. However, this crossover operator can break edit operations in off-
spring when the parents are of different lengths, resulting in either excess or
missing data in the unchanged subspaces (e.g., an insert operation without a

Improved Crossover Operators for Genetic Programming for Program Repair 119

corresponding fix statement ID; Fig. 3 provides an example). For this operator,
decode simply drops invalid genes.
Uniform Single Subspace (Unif1Space). A uniform crossover operator combines
a uniform blend of data from each parent [4], promoting greater exploration.
However, in certain domains, a uniform operator be problematically destruc-
tive [17]. We thus propose a uniform operator along a single subspace, promoting
a constrained exploration. As with OP1Space, Unif1Space selects a subspace
at random. It then generates a random binary mask of length equal to the smaller
of the two subspaces chosen. Genes are swapped between parents to create off-
spring according to this mask. As with OP1Space, invalid genes are dropped in
decode. Figure 4 shows the behavior of this operator on the running example. It
can create highly diverse offspring, but may also dissolve many basic blocks.

Fig. 5. Example of OPAllS.

One Point Across All Subspaces (OPAllS). OPAllS follows the same rules
for cut point selection as OP1Space, but without the restriction to a single
subspace. The crossover point is based on the length of the entire individual.
It swaps large parts of the entire individual, simultaneously mixing subspaces.
This operator can thus maintain larger basic blocks than Unif1Space, with a
greater capacity for information exchange than OP1Space. Large blocks con-
taining valuable information within at least one subspace cannot be dissolved,
so this operator prevents the destruction of some good information in such sub-
spaces. However, it can completely change certain operations by affecting an
entire subspace. For example, this crossover can keep all the original values for
“Operator”, but, unlike OP1Space, will still change all the Fix values and part
of the Fault values. We illustrate with the running example in Fig. 5.
Memorization. As the previous discussion demonstrated, crossover on the decou-
pled representation presents a possibility of data loss. We therefore propose a

120 V.P.L. Oliveira et al.

memorization scheme to help reconstruct valid from invalid genes. Memorization
maintains, for each individual, a cache of pieces of genes unused after crossover
operations, distinguishing between the Operator, Fix and Fault spaces. It then
tries to use values from this cache to fix broken genes on demand. This cache is
maintained throughout the evolution process.

For example, in Fig. 3, the operation “i” in the first offspring and the fault
and fix values 5 and 6 in the second would be stored in the cache for use in
subsequent generations. Assuming the existence of data from previous variants
in the cache, the memorization algorithm will try to find a Fault and Fix value
to repair the first offspring, and an Operator to repair the second. If such values
are available, they will be selected between at random, removed from the cache,
and inserted into the associated individual.

Thus, we propose the three previously-described crossover operators, as well
as the same three operators implemented with memorization, hypothesizing
that memorization may decrease data loss and increase the number of solutions
through the evolution process.

4 Experiments

In this section, we present experiments that compare the proposed crossover
operators to the canonical one-point patch representation crossover operator.
We hypothesize that the proposed crossover operators can increase the fix rate.

4.1 Setup

Benchmarks. Table 1 shows the C programs we useTable 1. Benchmarks, test
cases, and buggy versions of
each program.

Program Tests Versions

gcd 11 1

zune 24 1

checksum 6 7

digits 6 7

grade 7 7

median 7 7

smallest 7 7

syllables 6 6

in our evaluation. gcd and zune have classi-
cally appeared in previous assessments of program
repair.3 Both include infinite loop bugs. The other
six program classes are drawn from IntroClass [15],4

a set of student-written versions of small C pro-
gramming assignments in an introductory C pro-
gramming course. IntroClass contains many incor-
rect student programs corresponding to each prob-
lem. We chose 6–7 random programs for each assign-
ment, for a total of 43 defective programs. We use
the higher-quality black box tests provided with the
benchmark to assess correctness.

Each program version itself is small, but this is
important for our evaluation. First, it allows us to
run many random trials for more iterations than

is typical in program repair evaluations, without a prohibitive computational

3 Both available from the GenProg project: http://genprog.cs.virginia.edu/.
4 Available at http://repairbenchmarks.cs.umass.edu/.

http://genprog.cs.virginia.edu/
http://repairbenchmarks.cs.umass.edu/

Improved Crossover Operators for Genetic Programming for Program Repair 121

time. Second, our small programs are fully covered/specified by their black box
tests, which allows for a separation of concerns with respect to fitness function
quality and completeness. That is: the tests provided with real-world programs
can be weak proxies for correctness, increasing the risk of low-quality patches.
We sidestep this issue by evaluating on small but very well-specified programs
(as validated by their designers, manually, and experimentally [27]).

Parameters and metrics. We executed 30 random trials for each program ver-
sion. The search concludes either when it reaches the generational limit or when
it finds a patch that causes the program to pass all provided test cases. The
parameters used for all runs are: Elitism = 3, Generations = 20, Population
size = 15, Crossover rate = 0.5, Mutation rate = 1, Tournament k = 2. The
evaluation metrics are the success rate and the number of test suite evaluations
to repair, a machine and test-suite independent measure of time.

4.2 Results

Table 2 presents the success rate of experiments for all operators and problems
(higher is better). Table 3 presents test suite evaluations, or average fitness evalu-
ations, to repair (lower is better). In the latter table, we omit grade and syllables,
as no repairs were found in any run.

Table 2. Success rate (percentage) over all runs. We aggregate across IntroClass prob-
lems for presentation.

Memorization? Original OP1Space Unif1Space OPAllS

N/A No Yes No Yes No Yes

gcd 0.70 0.80 0.63 0.67 0.70 0.73 0.80

zune 0,66 0.70 0.97 1.00 0.97 0.93 0.93

checksum 0.00 0.00 0.01 0.03 0.00 0.00 0.00

digits 0.27 0.25 0.31 0.29 0.27 0.26 0.28

grade 0.00 0.00 0.00 0.00 0.00 0.00 0.00

median 0.28 0.50 0.48 0.48 0.49 0.50 0.49

smallest 0.51 0.51 0.58 0.64 0.57 0.64 0.60

syllables 0.02 0.16 0.16 0.16 0.16 0.16 0.16

Average 0.305 0.365 0.392 0.408 0.395 0.402 0.407

Success rate. Unif1Space without memorization presents the best success rate,
as can be seen in Table 2. Overall, the Unif1Space was the best operator, pro-
ducing a 34 % improvement the fix rate over the Original baseline. A Wilcoxon
rank-sum test, at α = 0.05, establishes that the observed difference in perfor-
mance between all operators without memorization and the Original crossover

122 V.P.L. Oliveira et al.

are statistically significant. A Vargha-Delaney test supports the observation that
all operators outperformed the Original operator, with effect sizes between 0.532
and 0.564, indicating a small but observable effect size. The effect size is greatest
for Unif1Space, as compared to the Original baseline.

Although Unif1Space produced consistently strong results, it is not the
best across all problems. At a per-problem level, for the checksum problem,
Unif1Space without memorization is best, but in general, checksum appears to
be difficult for all operator. We speculate that this is because most of checksum
defects require a specific modification that is difficult to produce with the cur-
rent operators in short programs. On digits programs, OP1Space with mem-
orization was the best, followed by Unif1Space without memorization. In the
gcd problem, all operators produced a high fix rate, but OP1Space without
memorization and OPAllS with memorization were best. In the median prob-
lem, OP1Space and OPAllS without memorization were best, but all pro-
posed operators are comparable. For zune, Unif1Space without memorization
achieved the maximum fix rate; the other proposed operators were all still better
than the original baseline. Finally, for syllables, all proposed operators reached
the same results and outperformed the original.

Table 3. Test suite evaluations to repair. We aggregate across IntroClass problems
for presentation. We omit grade because no repairs were found. N/A is used when no
repair was found.

Memorization? Original OP1Space Unif1Space OPAllS

N/A No Yes No Yes No Yes

gcd 10.88 5.04 6.20 10.94 7.77 5.91 7.47

zune 3.90 3.00 3.30 3.83 3.87 3.22 3.01

checksum 27.22 69.50 35.67 47.00 N/A 56.25 N/A

digits 14.53 13.17 17.63 14.90 9.94 15.63 13.64

median 16.07 37.94 41.48 34.38 40.91 33.30 41.78

smallest 16.40 37.59 44.77 65.26 48.33 56.73 46.40

syllables 20.53 27.30 27.30 28.97 30.90 25.40 27.13

Average 15.59 27.64 25.19 29.32 23.62 28.06 19.91

Efficiency. Table 3 presents the average fitness evaluations to repair for each
operator. Overall, the operator with the best success rate was not the most effi-
cient. This is consistent with our expectations: the more difficult problems are
harder to solve, and thus succeeding in them (having greater success) can pull
up the average time to repair [17]. This behavior may also be explained by the
fact the operators that focus on a single subspace, OP1Space and Unif1Space,
are less destructive in recombining variants, which may lead to a slower search
process as compared to Original and OPAllS. However, overall, the differences
are not large, and it may be reasonable to exchange a slight loss of efficiency

Improved Crossover Operators for Genetic Programming for Program Repair 123

in favor of a more effective search strategy. On the other hand, the opera-
tor OPAllS with memorization presented a success rate almost the same as
Unif1Space without memorization, but presented a considerable smaller time
to repair, so it may present a desirable cost-benefit tradeoff.

At a per-problem level, the Original crossover operator outperforms the oth-
ers for checksum, but as the success rate is low, high variability is unsurpris-
ing. The second best operator here is OP1Space without memorization. For
digits, the Unif1Space with memorization was best, followed by OP1Space
without memorization. In gcd OP1Space without memorization significantly
outperformed Original; OPAllS without memorization performed second best.
The zune presents a low discrepancy within operators, but OP1Space without
memorization was the most efficient. The smallest and median the Original
was much better than others. For syllables, Original was best, followed by
OPAllS without memorization.
Memorization results. Memorization does not appear to increase success rate,
as we can see particularly in the best operators according to this metric
(Unif1Space followed by OPAllS, both without memorization). We speculate
that the loss of incomplete genes in decode can reduce unnecessary modifica-
tions that hinder repair performance. One general lesson is that there may be a
benefit to mitigating code bloat throughout the program improvement process.
However, in aggregate, comparing each operator with memorization to the same
operator without, the version with memorization is more efficient, supporting
the general potential of the mechanism. This is particularly true of OPAllS,
where memorization provided a significant efficiency benefit. This may suggest
that memorization is more beneficial for the more destructive operators, allow-
ing them to avoid large losses of genetic material. As a final note, our maximum
generation count was relatively low, reducing the potential utility of a genetic
memorization mechanism. We expect the memorization approach may perform
better in longer runs.
New representation. In general, on average, crossover using our new represen-
tation outperformed the standard representation, even when genes are lost in
decode. This indicates the new representation in particular has important poten-
tial to improving the performance of patch-based program improvement heuristic
techniques. In terms of scalability, the new representation does not use consid-
erably more memory over the standard representation, and the computational
cost of transforming between them was low. Although we do not directly ana-
lyze the progression of schema through the search, our results are affirmed by
underlying theory suggesting that the representation improves GenProg’s ability
to construct and propagate building blocks.

4.3 Threats to Validity

On threat to the validity of our results is that they may not generalize, because
our dataset may not be indicative of real-world program improvement tasks. We
selected our programs because they allowed us to minimize other types of noise,

124 V.P.L. Oliveira et al.

such as test suite quality, which allowed for a more focused study of operator
effectiveness; we view this as a necessary tradeoff. Another important concern
in program improvement work is output quality, as test-case-driven program
improvement can overfit to the objective function or be misled by weak tests. We
mitigate this risk by using high-coverage, high-quality test suites [27]. Note that
output quality is not our core concern, and the new representation and operators
are parametric with respect to fitness functions and mutation operators, and
thus should generalize immediately to other patch-based program improvement
techniques that produce program improvements. Further tests and analysis are
required to fully explain the operators’ behavior, enabling understanding of why
any one operator performed better than another.

5 Related Work

Most innovations in the Genetic Programming (GP) space for program improve-
ment involve new kinds of fitness functions or application domains; there has been
less emphasis on novel representations and operators, such as those we explore.
However, there are exceptions to this general trend. Orlov and Sipper outline
a semantics-preserving crossover operator for Java bytecode [21]. Ackling et al.
propose a patch-based representation to encode Python rewrite rules [1]; Debroy
and Wong investigate alternative mutation operators [6]. Forrest et al. quanti-
fied operator effectiveness, and compared crossback to traditional crossover [7].
Le Goues et al. examined several representation, operator and other choices used
for evolutionary program repair [17], quantified the superiority of the patch rep-
resentation over the previously-common AST alternative, and demonstrated the
importance of crossover to success rate in this domain. Although they do exam-
ine the role of crossover, they do not attempt to decompose the representation
to improve evolvability, as we do, rather focusing on the effects of representation
and parameter weighting in particular. These results corroborate Arcuri’s [2]
demonstrating that parameter and operator choices have tremendous impact
on search-based algorithms generally. Our research contributes to this area,
presenting a new way to represent and recombine parents and demonstrating
the influence of crossover operators on algorithmic performance.

Our results demonstrate that in theory our new representation combined
with the crossover operators can improve the creation and propagation of the
build blocks, but does not directly investigate the role of schema evolution in
this phenomenon; we leave this to future work. For example, Burlacu [3] presents
a powerful tool for theoretical investigations on evolutionary algorithm behavior
concerning building blocks and fitness.

Informed by the building blocks hypothesis, Harik proposed a compact
genetic algorithm, representing the population as a probability distribution over
a solution set, which is operationally equivalent to the order-one behavior of a
simple GA with uniform crossover [9]. He concluded that building blocks can be
tightly coded and propagated throughout the population through repeated selec-
tion and recombination. His theory suggests that knowledge about the problem

Improved Crossover Operators for Genetic Programming for Program Repair 125

domain can be inserted into the chromosomal features, and GA can use this par-
tial knowledge to link and build information blocks. The difficulty in representing
a program in repair problem can be one of the reasons for its complexity.

6 Conclusion

Supported by the Schema Theorem and Building Blocks Hypothesis, our pri-
mary contribution in this paper is a new low-granularity patch representation
and associated crossover operators to enable better parental recombination in a
search-based program improvement algorithm. We also presented a novel mem-
orization process that shows a possibility to repair problematic genes, that even
not showing results better than without memorization, it can be useful to develop
new ways to solve the broken genes problem. Our objective was to improve the
algorithm’s ability to traverse the fitness landscape, improving success rate. Our
results suggest that this targeted approach is promising: our best new crossover
operator, Unif1Space without memorization, demonstrated an increase of 34 %
in the success rate over the baseline. However, our results also showed that oper-
ator success varied across the different program classes studied. The results sug-
gest that it may be possible to achieve both the scalability benefits of the patch
representation for program improvement as well as more effective recombina-
tion over the evolutionary computation, motivating future work on such novel
evolutionary operators and associated parameters.

References

1. Ackling, T., Alexander, B., Grunert, I.: Evolving patches for software repair. In:
Genetic and Evolutionary Computation, pp. 1427–1434 (2011)

2. Arcuri, A.: Evolutionary repair of faulty software. Appl. Soft Comput. 11(4), 3494–
3514 (2011)

3. Burlacu, B., Affenzeller, M., Winkler, S., Kommenda, M., Kronberger, G.: Methods
for genealogy and building block analysis in genetic programming. In: Borowik, G.,
Chaczko, Z., Jacak, W., �Luba, T. (eds.) Computational Intelligence and Efficiency
in Engineering Systems, Part I. SCI, vol. 595, pp. 61–74. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-15720-7 5

4. Chawdhry, P.K., Roy, R., Pant, R.K.: Soft Computing in Engineering Design and
Manufacturing. Springer, Heidelberg (2012)

5. de Oliveira, A.A.L., Camilo-Junior, C.G., Vincenzi, A.M.R.: A coevolutionary algo-
rithm to automatic test case selection and mutant in mutation testing. In: Congress
on Evolutionary Computation, pp. 829–836 (2013)

6. Debroy, V., Eric Wong, E.: Using mutation to automatically suggest fixes for faulty
programs. In: International Conference on Software Testing, Verification, and Val-
idation, pp. 65–74 (2010)

7. Forrest, S., Nguyen, T., Weimer, W., Goues, C.L.: A genetic programming app-
roach to automated software repair. In: Genetic and Evolutionary Computation
Conference (GECCO), pp. 947–954 (2009)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Reading (1989)

http://dx.doi.org/10.1007/978-3-319-15720-7_5

126 V.P.L. Oliveira et al.

9. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Trans. Evol. Comput. 3(4), 287–297 (1999)

10. John, H.: Adaptation in natural and artificial systems (1992)
11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge (1992)
12. Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknot-sRG for RNA

pseudoknot free energy calculation. In: Genetic and Evolutionary Computation
Conference, GECCO Companion 2015, pp. 805–810 (2015)

13. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: fixing 55 out of 105 bugs for $8 each. In: International
Conference on Software Engineering, pp. 3–13 (2012)

14. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. Softw. Qual. J. 21(3), 421–443 (2013)

15. Le Goues, C., Holtschulte, N., Smith, E.K., Brun, Y., Devanbu, P., Forrest, S.,
Weimer, W.: The ManyBugs and IntroClass benchmarks for automated repair of
C programs. IEEE Trans. Softw. Eng. 41, 1236–1256 (2015)

16. Le Goues, C., Nguyen, T.V., Forrest, S., Weimer, W.: GenProg: a generic method
for automatic software repair. IEEE Trans. Softw. Eng. (TSE) 38, 54–72 (2012)

17. Le Goues, C., Weimer, W., Forrest, S.: Representations and operators for improving
evolutionary software repair. In: Genetic and Evolutionary Computation Confer-
ence (GECCO), pp. 959–966 (2012)

18. Long, F., Rinard, M.: Automatic patch generation by learning correct code. In:
Principles of Programming Languages, POPL 2016, pp. 298–312 (2016)

19. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch
synthesis via symbolic analysis. In: International Conference on Software Engineer-
ing, ICSE 2016, pp. 691–701 (2016)

20. Nunes, B., Quijano, E.H.D., Camilo-Junior, C.G., Rodrigues, C.: SBSTFrame: a
framework to search-based software testing. In: International Conference on Sys-
tems, Man, and Cybernetics (2016)

21. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. IEEE
Trans. Evol. Comput. 15(2), 166–182 (2011)

22. Pressman, R.S.: Software Engineering: A Practitioners Approach. Palgrave
Macmillan, London (2005)

23. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: The strength of random search on
automated program repair. In: Proceedings of the 36th International Conference
on Software Engineering, pp. 254–265. ACM (2014)

24. Qi, Z., Long, F., Achour, S., Rinard, M.: An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In: International
Symposium on Software Testing and Analysis, pp. 24–36 (2015)

25. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler soft-
ware optimization for reducing energy. In: Architectural Support for Programming
Languages and Operating Systems, pp. 639–652 (2014)

26. Silva, S., Esparcia-Alcázar, A.I. (eds.): Genetic and Evolutionary Computa-
tion Conference, GECCO 2015, Companion Material Proceedings, Workshop on
Genetic Improvement. ACM (2015)

27. Smith, E.K., Barr, E., Goues, C.L., Brun, Y.: Is the cure worse than the disease?
Overfitting in automated program repair. In: Joint Meeting of the European Soft-
ware Engineering Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), pp. 532–543 (2015)

Improved Crossover Operators for Genetic Programming for Program Repair 127

28. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive
program repair: models and first results. In: Automated Software Engineering
(ASE), pp. 356–366 (2013)

29. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: International Conference on Software Engineering
(ICSE), pp. 364–374 (2009)

	Improved Crossover Operators for Genetic Programming for Program Repair
	1 Introduction
	2 Background
	2.1 Genetic Programming
	2.2 GenProg for Program Repair

	3 Approach
	3.1 Illustrative Example
	3.2 Decoupled Representation
	3.3 New Crossover Operators

	4 Experiments
	4.1 Setup
	4.2 Results
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

