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Preface

Message from the SSBSE 2014 General Chair

SBSE is growing up! In its sixth edition, the conference left home and expanded
its reach in a process of becoming a truly global forum. Brazil was proudly chosen
to kick off this process, mainly in recognition of its strong and still growing
SBSE community. Besides innovating in its location, SSBSE 2014 implemented
a series of novelties. First, it stood alone once again. As a test of maturity, this
decision sheds light on how independent and solid the SBSE field has become.
Second, it brought an all-inclusive experience, allowing for a much higher level
of integration among participants, in turn strengthening the community and
helping create a much more cooperative environment. Finally, it implemented a
double-blind submission and review process for the first time, providing as fair
and objective an evaluation of the submitted papers as possible.

Obviously, this historical event would not have been possible without the
help of many people, who I would like to recognize and thank. First of all, I
would like to thank our program chairs, Shin Yoo (University College London,
UK) and Claire Le Goues (Carnegie Mellon University, USA). They led the
review process with great competence and dedication and put together a very
rich and high-quality scientific program. I extend this recognition to all members
of our Program Committee, for the dedicated work in the review and selection of
our papers. Next, I thank our Graduate Student Track chair, Nadia Alshahwan
(University College London, UK), and our SBSE Challenge Track chair (Márcio
de Oliveira Barros, Federal University of the State of Rio de Janeiro, Brazil), for
their hard work on organizing those two special tracks. I would also like to give
special thanks to my friend Allysson Araújo (State University of Ceará, Brazil),
our Web chair, for accepting the important challenge of creating and maintaining
our website and operating this task with perfection. Also, I thank our publicity
chair, Sina Shamshiri (University of Sheffield, UK), for the important job of
keeping everybody informed about our event. Finally, I also thank the SSBSE
Steering Committee, chaired by Mark Harman (University College London, UK),
for their vote of confidence in giving us the privilege of organizing SSBSE 2014.

I must also mention and thank our long list of sponsors, who believed in our
proposal and provided confidence in me and in the field of SBSE. Without their
support, SSBSE 2014 would not have been nearly so special.

I hope you enjoy reading these proceedings as much as I enjoyed organizing
the event.

August 2014 Jerffeson Teixeira de Souza
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Message from the SSBSE 2014 Program Chairs

On behalf of the SSBSE 2014 Program Committee, we are pleased to present
the proceedings of the 6th International Symposium on Search-Based Software
Engineering. This year brought SSBSE to South America for the first time, in the
oceanside paradise of Fortaleza, Brazil! SSBSE 2014 continued to bring together
the international community of SSBSE researchers to exchange and discuss ideas
and celebrate the latest progress in this rapidly advancing field.

We are delighted to report that we had a record-breaking 51 submissions to
our four tracks: 32 Full Research Track submissions, eight Graduate Student
Track submissions, three Fast Abstract submissions, and eight SBSE Challenge
Track submissions. Submissions came from 19 different countries: Argentina,
Austria, Brazil, Canada, China, the Czech Republic, France, Germany, India,
Ireland, Italy, Luxembourg, Norway, the Russian Federation, Sweden, Switzer-
land, Tunisia, the UK, and the USA. After each submission was reviewed by at
least three members of the Program Committee, we accepted 14 Full Research
Track papers, one Fast Abstract track paper, three Graduate Student Track
papers, and four SBSE Challenge Track papers.

We would like to thank the members of the SSBSE 2014 Program Commit-
tee. Without their continued support, we would not have been able to further
improve the quality of the submissions and maintain the symposium’s tradi-
tion of a high-quality technical program. The general chair, Jerffeson Teixeira
de Souza, deserves a special mention for leading an excellent team, especially
locally, to make the conference an unforgettable experience for everyone. In ad-
dition, Márcio Barros worked hard to manage the fast-growing SBSE Challenge
Track, while Nadia Alshahwan oversaw the process of handling the Graduate
Student Track. The technical program would not have been the same without
their effort, for which we especially want to thank them.

As an experiment, this year we implemented a double-blind review procedure
for the main research track of the SSBSE program. Our intention was to enable
as fair a review process as possible, and recent evidence suggests that removing
information like institutional affiliation, country of origin, and author name from
submissions under review can contribute to this goal. We want to thank both
the Program Committee and our submitting authors for their patience with a
new and largely unfamiliar system, and for allowing us to experiment with our
review procedure. We encourage those who participated to continue sharing their
perspectives on this and other issues related to review and feedback quality.
Peer review remains a collaborative and work-in-progress system, and we are
interested in the community’s experience to help inform future decisions for
both this conference and others like it.

The symposium has an excellent tradition of hearing and learning from world
experts in both software engineering and meta-heuristic optimization, and we are
glad to report that this year was not an exception. We had the honor of having a
keynote from Prof. Mauro Pezzè, whose research on software redundancy bears
a strong connection to SBSE. Furthermore, we also had a keynote from Dr.
Marc Schoenauer, who brought us up to date with progress in adaptive learning
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research. Finally, the Brazilian SBSE community warmly and enthusiastically
invited Prof. Mark Harman to present a review of the field.

We would like to thank all the authors who submitted papers to SSBSE
2014, regardless of the outcome, and everyone who attended the symposium.
We hope that, with these proceedings, anyone who did not have a chance to be
at Fortaleza will have the opportunity to experience the exuberance of the SBSE
community.

August 2014 Claire Le Goues
Shin Yoo



Conference Organization

General Chair

Jerffeson Teixeira de Souza Universidade Estadual do Ceará, Brazil
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Mel Ó Cinnéide University College Dublin, Ireland
Justyna Petke University College London, UK
Pasqualina Potena University of Alcalá, Spain
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Intrinsic Software Redundancy:

Applications and Challenges
(Extended Abstract)

Mauro Pezzè

University of Lugano, Switzerland and University of Milano Bicocca, Italy

mauro.pezze@usi.ch

Abstract. Search-based software engineering has many important ap-
plications. Here, we identify a novel use of search-based techniques to
identify redundant components. Modern software systems are intrinsi-
cally redundant, and such redundancy finds many applications. In this
paper we introduce the concept of intrinsic redundancy, and we present
some important applications to develop self-healing systems and auto-
matically generate semantically relevant oracles. We then illustrate how
search-based software engineering can be used to automatically identify
redundant methods in software systems, thus paving the road to an ef-
ficient exploitation of intrinsic redundancy, and opening new research
frontiers for search-based software engineering.

Reliability is becoming a necessity for many software systems and redundancy
is its cornerstone. Well defined processes, efficient design approaches, careful
coding and pervasive testing and analysis can build excellent software products,
but cannot completely eliminate failures in the field, and the software products
may not meet a sufficient reliability level.

The classic way of improving the reliability of systems of different kinds ex-
ploits some form of redundancy. RAID disks (Redundant Array of Independent
Disks) are a successful example of the use of redundancy for improving hard-
ware reliability [1], the HDFS (Hadoop Distributed File System) is a popular
example of the use of redundancy for improving data reliability [2], N-version
programming is a classic approach that exploits redundancy for improving soft-
ware reliability [3].

In these different approaches, redundancy is deliberately added to the system
to improve reliability, and comes with additional costs that depend on the goals.
In hardware systems, redundancy aims to reduce the impact of production de-
fects, and is added at the production level, thus impacts mostly on production
costs. In database systems, redundancy is added at the server level and impacts
mostly on infrastructure costs. N-version programming targets design errors and
is added at the design level, where the impact on costs is relevant.

We point to a different kind of software redundancy that is intrinsically
present in software systems, and is thus available without additional design or
production costs. Our empirical investigation indicates that such form of re-
dundancy is widely spread in modern software systems and is a consequence
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of good design practice. Our work shows that this form of redundancy can be
automatically synthetized by means of search-based techniques [4], and can be
successfully exploited in many ways, including the automatic generation of self-
healing mechanisms [5] and of semantic oracles [6].

Redundancy is present at many abstraction levels, here we discuss it refer-
ring to redundancy at method call level. We say that two methods are redundant
when their execution is both different and produces equivalent results. Results
are equivalent when both the output and the final state are indistinguishable
from an external observer viewpoint, as formalised with the concept of obser-
vational equivalence [7]. Executions are different when they involve different
statements or the same statements but in different order.

Redundancy is intrinsically present in software systems due to modern design
practice. Design for reusability often leads to the same functionality implemented
in different methods to improve compatibility with different uses, as it happened
in containers that provide different methods to add one or more elements to the
container. Performance optimisation frequently results in different methods im-
plementing the same functionality, albeit with different, optimised code, like the
trove4J library that duplicates many of the functionalities offered by the stan-
dard Java containers. Backward compatibility is obtained by keeping the old
versions of the reimplemented functionalities thus offering redundant methods.
Redundancy is massively present in modern software systems: Our manual in-
spection of several popular libraries including Apache Ant, Google Guava, Joda
Time, Eclipse SWT, graphstream and Lucene identified over 4,700 redundant
methods, with an average of 5 redundant methods per class.

Intrinsic redundancy can be exploited to build self-healing mechanisms. Once
identified a set of redundant methods, we can automatically deploy a mechanism
that substitutes a failing method with a redundant one to avoid the failure. We
call such approach automatic workaround. The design of automatic workarounds
requires a mechanism to reveal failures, we rely on assertions embedded in the
code, a method to roll back to a correct state, we rely on an optimised rollback
mechanism, and a method to execute a redundant method, we rely on a source
to source code transformation [8, 5].

Another interesting application of intrinsic redundancy is the automatic syn-
thesis of semantically relevant test oracles. The increasing availability of au-
tomated test cases exacerbates the need of automated oracles, and the cost
pressure of software development calls for automatically generated oracles. Or-
acles that can be easily generated automatically, such as implicit oracles, can
only reveal simple failures, like unhandled exceptions, while oracles derived from
formal specifications can reveal failures that depend on the program semantics,
but require formal specifications that are expensive to produce. We exploit the
intrinsic redundancy of software systems to automatically generate test oracles
that can reveal failures related to the program semantics by cloning the program
state before executing a method call, executing the original call on the original
state and the corresponding redundant call on the cloned state, and comparing
the results. In this way we can reveal discrepancies between the executions of
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methods that should produce equivalent results and reveal failures related to the
program semantics. We call such oracles cross-checking oracles [6].

The automatic synthesis of both self-healing mechanisms and automated or-
acles requires a set of redundant program elements as input. We can automati-
cally synthetize redundant methods without expensive formal specifications by
exploiting search-based techniques. We use a genetic algorithm for synthetizing
a method call equivalent to a given method for an initial scenario (usually one
or few test cases). We then look for a counterexample that, if found, gives us
a new scenario to search for a redundant method, and, if not found, confirms
the redundancy of the original and the identified method. We can automatically
synthetize a large amount of redundant methods by applying the approach to
all methods in the target software system.

Acknowledgement. We would like to acknowledge the Swiss National
Foundation (SNF) for supporting this work through the projects Perseos (SNF
200021 116287), Wash (SNF 200020 124918) and Shade (SNF 200021 138006),
and the many people who contributed to the work, Antonio Carzaniga, Alberto
Goffi, Alessandra Gorla, Andrea Mattavelli, Nicolò Perino and Paolo Tonella.
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As early as 1904, Spearman [19] proposed to use ranks rather than actual values
to unveil correlations between data of unknown distribution. This was the begin-
ning of rank statistics and non-parametric tests. Still, in practice non-parametric
statistics are generally less accurate than their parametric counterparts (even
though more widely applicable), and the latter are often used even though the
underlying hypotheses (normally distributed data, size of sample) are not satis-
fied.

In the context of optimization and programming however, rank-based ap-
proaches might prove more beneficial that value-based approaches even in cases
where both approaches apply. Three test cases related to Algorithm Engineering
will be surveyed here, dealing with Black-Box Optimization (Section 1), Algo-
rithm Selection using ideas from recommender systems (Section 2) and robot
programming by weak experts (Section 3).

1 Rank-SVM Surrogate Models for CMA-ES

In the general framework of (black-box) continuous optimization, the human
mind cannot always easily grasp quantified measures to assess the quality of a
potential solution. In a famous example of interactive optimization [8], when the
coffee maker asks some coffee experts how close the taste of a coffee is from a
targeted coffee taste, there does not even exist a scale that could be used by all
experts to put a number on taste proximity. However, every expert can assess
whether a coffee is closer or farther than another one with respect to the target
taste.

Quantifying differences might be a problem even when there is no human
being in the loop. More generally, the optimization of a given real-valued func-
tion F is unchanged if F undergoes any monotonous transformation (from pre-
conditioning to non-linear regularization), although this can have a huge impact
on the efficiency of most optimization algorithms. Comparison-based algorithms
de facto possess such invariance w.r.t. monotonous transformations. In the case
of expensive optimization problems, the usual strategy is to learn an approxima-
tion a.k.a. surrogate model of F by numerical regression; this strategy however
destroys the invariance property as the surrogate model depends on the values
of F . Ordinal regression, aka rank-based learning, instead defines a surrogate



Programming by Ranking XIX

model which only preserves the ranks of the F values [10]. The use of such
rank-based surrogates preserves the invariance property in comparison-based
optimization [17]. Interestingly, the Covariance Matrix Adaptation Evolution
Strategy [7] (CMA-ES, considered today the state-of-the-art method in Black-
Box optimization) can be tightly integrated with rank-based learning, thus pre-
serving all invariance properties of CMA-ES [14], while enforcing the control
and adaptation of the learning hyper-parameters [15]. The resulting surrogate-
augmented algorithm further improves the performance of the basic variants of
CMA-ES on the BBOB (Black-Box Optimization Benchmarking [5]) platform.

2 Algorithm Selection as a Collaborative Filtering

In the domain of recommendation algorithms, similarly, movie rating can vary
a lot from user to user, clearly raising a scaling issue in recommendation sys-
tems [4]. On the opposite, any user is able to rank the movies he has seen. The
CofiRank method [21] uses the Maximal Margin Matrix Factorization to approxi-
mate rankings rather than ratings, bringing more robustness in the recommender
system.

Similar issues arise in algorithm selection, a key issue to get peak performance
from algorithm portfolios. It turns out that algorithm selection can be formalized
as a collaborative filtering problem [20], by considering that a problem instance
“prefers” the algorithms with better performance on this particular instance.
Learning the rating, i.e. the actual performance of the algorithm on the problem
instance raises significant difficulties, as the performance of an algorithm can
vary by orders of magnitude depending on the problem instance. Learning how
to rank algorithms depending on the problem instance can instead be achieved
efficiently [16].

A main difficulty in algorithm selection is the handling of the so-called ‘cold
start’ problem: how to choose an algorithm for a brand-new instance? Former
algorithm selection methods relied on known features describing the problem in-
stances − however with mixed results [12]. But the Matrix Factorization method
amounts to identify latent features that are by construction well suited to the
algorithm selection problem. Supervised learning of a mapping between known
features and those latent features is the key to solving the cold-start problem,
as demonstrated in [16] on three problem domains (the 2008 CSP and 2011 SAT
competitions, and the BBOB platform).

3 Programming by Feedback

In the context of adapting software or hardware agents (e.g., a companion robot)
to the precise requirements or preferences of their human users, the limitation
comes from both the quantity and the quality of what can be asked to the user.
Whereas you can ask experts to demonstrate the desired behavior to the robot,
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as in Inverse Reinforcement Learning approaches [1, 11], you can only ask limited
amount of feedback to the average user. On the one hand, the feedback is uneasily
provided through numbers; on the other hand, even a preference feedback (it is
better, it is worse) can be noisy and inconsistent.

Preference-based reinforcement learning, hybridizing reinforcement learning
and learning to rank, has been proposed to handle domains with no numerical
rewards [6], allowing the user to compare and rank the agent behaviors [22,
2]. The key issues are to deliver a good performance with a limited number of
comparison queries, and particularly to stand the comparison errors and the
possible user inconsistencies. These issues have been addressed in [3], enabling
the agent to model the user’s competence; indeed the cooperation between two
intelligent partners is better supported by each partner having a model of the
other one (see e.g. [13]).

From the user point of view, the game is similar to the well-known children’s
game “Hot-and-Cold”: she only has to tell the robot whether each new demon-
strated behavior is better or worse than the previous one − and she can be
inconsistent (or her goal can evolve). From the robot perspective, the idea is to
gradually learn the user’s utility function in the demonstration space, accounting
for the user’s estimated competence, and, based on the current utility function,
to optimize in the solution space the behavior with respect to some maximal
posterior utility, demonstrating the best one to the user. Experimental results
on artificial RL benchmark problems favorably compare to the state of the art
[22], and proof-of-principle results are obtained on a real NAO robot, though on
elementary tasks: 5 (resp. 24) interactions with the user are required to solve
problems involving 13 (resp. 20) states spaces.

4 Conclusion

There is emerging evidence that the art of programming could be revisited in the
light of the current state of the art in Machine Learning and Optimization. While
the notion of formal specifications has been at the core of software sciences for
over three decades, the relevance of ML-based approaches has been demonstrated
in the domain of pattern recognition since the early 90s.

Along this line, a new trend dubbed Programming by Optimization advocates
algorithm portfolios endowed with a control layer such that determining what
works best in a given use context [could be] performed automatically, substituting
human labor by computation [9]. Similarly, it has been suggested that the state
of the art can be improved by configuring existing techniques better rather than
inventing new learning paradigms [18].

Going further, we propose the Programming by Ranking paradigm, extend-
ing the above Programming by Feedback; several proofs of principle thereof in
different domains have been described, related to expensive optimization, al-
gorithm selection and policy design. Ultimately, our claim is that learning-
to-rank Machine Learning algorithms, based on minimal and possibly noisy
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specification/information/feedback from the user, have today reached the come-
of-age and should be considered whenever optimization at large is at stake.
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Results and Directions

Mark Harman
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Abstract. This talk at SSBSE 2014 will provide an introduction to
SBSE [4, 6, 14, 18], drawing on results from recent work and the many
surveys of SBSE for requirements [30], predictive modelling [1, 8] software
project management [5], cloud engineering [15], design [27], maintenance
[25], testing [2, 22], refactoring [7, 23] and repair [20]. The talk will be
partly interactive, discussing the motivation for computational search
in software engineering. We will also explore why it is that, among all
engineering disciplines, it is software engineering for which computa-
tional search finds its most compelling and promising application [9].
This theme will be developed by considering recent work that optimises
the engineering material at the heart of all software systems: the source
code itself. We will focus, in particular, on recent developments in Dy-
namic Adaptive SBSE [10, 11, 13] and genetic improvement for repair [21,
20], non-functional enhancement [3, 16, 19, 24, 28, 29], source code trans-
plantation [17, 26] and Software Product Line optimisation [12].
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vol. 6956, pp. 18–32. Springer, Heidelberg (2011)

7. Ghannem, A., El Boussaidi, G., Kessentini, M.: Model refactoring using interactive
genetic algorithm. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084,
pp. 96–110. Springer, Heidelberg (2013)

8. Harman, M.: How SBSE can support construction and analysis of predictive models
(keynote paper). In: 6th PROMISE (2010)

9. Harman, M.: Search based software engineering (keynote paper). In: 13th FASE
(2010)



XXVI M. Harman

10. Harman, M., Burke, E., Clark, J.A., Yao, X.: Dynamic adaptive search based
software engineering (keynote paper). In: 6th ESEM, pp. 1–8 (2012)

11. Harman, M., Clark, J.: Dynamic adaptive search based software engineering needs
fast approximate metrics (keynote paper). In: 4th WeTSOM (2013)

12. Harman, M., Jia, Y., Krinke, J., Langdon, B., Petke, J., Zhang, Y.: Search based
software engineering for software product line engineering: A survey and directions
for future work (keynote paper). In: 15th SPLC (2014)

13. Harman, M., Jia, Y., Langdon, W.B., Petke, J., Moghadam, I.H., Yoo, S., Wu, F.:
Genetic improvement for adaptive software engineering (keynote paper). In: 9th
SEAMS, pp. 1–4 (2014)

14. Harman, M., Jones, B.F.: Search based software engineering. Information and Soft-
ware Technology 43(14), 833–839 (2001)

15. Harman, M., Lakhotia, K., Singer, J., White, D., Yoo, S.: Cloud engineering is
search based software engineering too. Journal of Systems and Software 86(9),
2225–2241 (2013)

16. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge: Constructing the pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In: 27th ASE, pp. 1–14 (2012)

17. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engi-
neering (keynote paper). In: 20th WCRE (2013)

18. Harman, M., Mansouri, A., Zhang, Y.: Search based software engineering: Trends,
techniques and applications. ACM Computing Surveys 45(1), 11:1–11:61 (2012)

19. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation (to appear, 2014)

20. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. Software Quality Journal 21(3), 421–443 (2013)

21. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method
for automatic software repair. IEEE Transactions on Software Engineering 38(1),
54–72 (2012)

22. McMinn, P.: Search-based software testing: Past, present and future (keynote pa-
per). In: SBST, pp. 153–163 (2011)
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of Whole Test Suite Generation
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Abstract. A common application of search-based software testing is
to generate test cases for all goals defined by a coverage criterion (e.g.,
statements, branches, mutants). Rather than generating one test case at
a time for each of these goals individually, whole test suite generation
optimizes entire test suites towards satisfying all goals at the same time.
There is evidence that the overall coverage achieved with this approach
is superior to that of targeting individual coverage goals. Nevertheless,
there remains some uncertainty on whether the whole test suite approach
might be inferior to a more focused search in the case of particularly
difficult coverage goals. In this paper, we perform an in-depth analysis
to study if this is the case. An empirical study on 100 Java classes reveals
that indeed there are some testing goals that are easier to cover with the
traditional approach. However, their number is not only very small in
comparison with those which are only covered by the whole test suite
approach, but also those coverage goals appear in small classes for which
both approaches already obtain high coverage.

Keywords: automated test generation, unit testing, search-based
testing, EvoSuite.

1 Introduction

Search-based software engineering has been applied to numerous different tasks
in software development [15], and software testing is one of the most successful
of these [1, 19]. One particular task in software testing for which search-based
techniques are well suited is the task of automated generation of unit tests.
For example, there are search-based tools like AUSTIN for C programs [18] or
EvoSuite for Java programs [8].

In search-based software testing, the testing problem is cast as a search prob-
lem. For example, a common scenario is to generate a set of test cases such that
their code coverage is maximized. A code coverage criterion describes a set of
typically structural aspects of the system under test (SUT) which should be ex-
ercised by a test suite, for example all statements or branches. Here, the search
space would consist of all possible data inputs for the SUT. A search algorithm

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 1–15, 2014.
c∗ Springer International Publishing Switzerland 2014
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(e.g., a genetic algorithm) is then used to explore this search space to find the
input data that maximize the given objective (e.g., cover as many branches as
possible).

Traditionally, to achieve this goal a search is carried out on each individual
coverage goal [19] (e.g., a branch). To guide the search, the fitness function
exploits information like the approach level [24] and branch distance [17]. It may
happen that during the search for a coverage goal there are others goals that can
be “accidentally” covered, and by keeping such test data one does not need to
perform search for those accidentally covered goals. However, there are several
potential issues with such an approach:

– Search budget distribution: If a coverage goal is infeasible, then all search
effort to try to cover it would be wasted (except for any other coverage goals
accidentally covered during the search). Unfortunately, determining whether
a goal is feasible or not is an undecidable problem. If a coverage goal is
trivial, then it will typically be covered by the first random input. Given
a set of coverage goals and an overall available budget of computational
resources (e.g., time), how to assign a search budget to the individual goals
to maximise the overall coverage?

– Coverage goal ordering: Unless some smart strategies are designed, the search
for each coverage goal is typically independent, and potentially useful infor-
mation is not shared between individual searches. For example, to cover a
nested branch one first needs to cover its parent branch, and test data for
this latter could be use to help the search for the nested branch (instead of
starting from scratch). In this regard, the order in which coverage goals are
sought can have a large impact on final performance.

To overcome these issues, in previous work we introduced the whole test suite
approach [11, 12]. Instead of searching for a test for each individual coverage
goal in sequence, the search problem is changed to a search for a set of tests
that covers all coverage goals at the same time; accordingly, the fitness function
guides to cover all goals. The advantage of such an approach is that both the
questions of how to distribute the available search budget between the individ-
ual coverage goals, and in which order to target those goals, disappear. With
the whole test suite approach, large improvements have been reported for both
branch coverage [11] and mutation testing [12].

Despite this evidence of higher overall coverage, there remains the question of
how the use of whole test suite generation influences individual coverage goals.
Even if the whole test suite approach covers more goals, those are not necessarily
going to be a superset of those that the traditional approach would cover. Is
the higher coverage due to more easy goals being covered? Is the coverage of
difficult goals adversely affected? Although higher coverage might lead to better
regression test suites, for testing purposes the difficult coverage goals might be
more “valuable” than the others. So, from a practical point of view, preferring
the whole test suite approach over the traditional one may not necessarily be
better for practitioners in industry.
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In this paper, we aim to empirically study in detail how the whole test suite
approach compares to the traditional one. In particular, we aim at studying
whether there are specific coverage goals for which the traditional approach is
better and, if that is the case, we want to characterise those scenarios. Based
on an empirical study performed on 100 Java classes, our study shows that
indeed there are cases in which the traditional approach provides better results.
However, those cases are very rare (nearly one hundred times less) compared
to the cases in which only the whole test suite approach is able to cover the
goals. Furthermore, those cases happen for small classes for which average branch
coverage is relatively high.

This paper is organised as follows. Section 2 provides background information,
whereas the whole test suite approach is discussed in details in Section 3. The
performed empirical study is presented in Section 4. A discussion on the threats
to the validity of the study follows in Section 5. Finally, Section 6 concludes the
paper.

2 Background

Search-based techniques have been successfully used for test data generation
(see [1, 19] for surveys on this topic). The application of search for test data
generation can be traced back to the 70s [20], and later the key concepts of branch
distance [17] and approach level [24] were introduced to help search techniques
in generating the right test data.

More recently, search-based techniques have also been applied to test object-
oriented software (e.g., [13,21–23]). One specific issue that arises in this context
is that test cases are sequences of calls, and their length needs to be controlled
by the search. Since the early work of Tonella [22], researchers have tried to
deal with this problem, for example by penalizing the length directly in the
fitness function. However, longer test sequences can lead to achieve higher code
coverage [2], yet properly handling their growth/reduction during the search
requires special care [10].

Most approaches described in the literature aim at generating test suites that
achieve as high as possible branch coverage. In principle, any other coverage
criterion is amenable to automated test generation. For example, mutation test-
ing [16] is often considered a worthwhile test goal, and has been used in a search-
based test generation environment [13].

When test cases are sought for individual goals in such coverage based ap-
proaches, it is important to keep track of the accidental collateral coverage of the
remaining goals. Otherwise, it has been proven that random testing would fare
better under some scalability models [5]. Recently, Harman et al. [14] proposed
a search-based multi-objective approach in which, although each coverage goal
is still targeted individually, there is the secondary objective of maximizing the
number of collateral goals that are accidentally covered. However, no particular
heuristic is used to help covering these other coverage goals.

All approaches mentioned so far target a single test goal at a time – this is
the predominant method. There are some notable exceptions in search-based
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software testing. The works of Arcuri and Yao [6] and Baresi et al. [7] use a
single sequence of function calls to maximize the number of covered branches
while minimizing the length of such a test case. A drawback of such an approach
is that there can be conflicting testing goals, and it might be impossible to cover
all of them with a single test sequence regardless of its length.

To overcome those issues, in previous work we proposed the whole test suite
approach [11,12]. In this approach, instead of evolving individual tests, whole test
suites are evolved, with a fitness function that considers all the coverage goals
at the same time. Promising results were obtained for both branch coverage [11]
and mutation testing [12].

3 Whole Test Suite Generation

To make this paper self-contained, in this section we provide a summarised
description of the traditional approach used in search-based software testing
and the whole test suite approach. For more details on the traditional approach,
the reader can for example refer to [19, 24]. For the whole test suite approach,
the reader can refer to [11, 12].

Given a SUT, assume X to be the set of coverage goals we want to automati-
cally cover with a set of test cases (i.e., a test suite) T . Coverage goals could be
for example branches if we are aiming at branch coverage, or any other element
depending on the chosen coverage criterion (e.g., mutants in mutation testing).

3.1 Generating Tests for Individual Coverage Goals

Given |X | = n coverage goals, traditionally there would be one search for each
of them. To give more gradient to the search (instead of just counting “yes/no”
on whether a goal is covered), usually the approach level A(t,x) and branch
distance d(t,x) are employed for the fitness function [19,24]. The approach level
A(t,x) for a given test t on a coverage goal x ∈ X is used to guide the search
toward such target branch. It is determined as the minimal number of control
dependent edges in the control dependency graph between the target branch
and the control flow represented by the test case. The branch distance d(t,x) is
used to heuristically quantify how far a predicate in a branch x is from being
evaluated as true. In this context, the considered predicate xc is taken for the
closest control dependent branch where the control flow diverges from the target
branch. Finally, the resulting fitness function to minimize for a coverage goal x
will be:

f(t,x) = A(t,x) + ν(d(t,xc)) ,

where ν is any normalizing function in [0,1] (see [3]). For example, consider
this trivial function:
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public static void foo(int z){
if(z > 0)

if(z > 100)
if(z > 200)

; //target
}

With a test case t50 having the value z = 50, the execution would diverge
at the second if-condition, and so the resulting fitness function for the target
xz>200 would be

f(t50,xz>200) = 1 + ν(|50− 100|+ 1) = 1 + ν(51) ,

which would be higher (i.e., worse) than a test case having z = 101:

f(t101,xz>200) = 0 + ν(|101− 200|+ 1) = 0 + ν(100) .

While implementing this traditional approach, we tried to derive a faithful
representation of current practice, which means that there are some optimiza-
tions proposed in the literature which we did not include:

– New test cases are only generated for branches that have not already been
covered through collateral coverage of previously created test cases. However,
we do not evaluate the collateral coverage of all individuals during the search,
as this would add a significant overhead, and it is not clear what effects this
would have given the fixed timeout we used in our experiments.

– When applying the one goal at a time approach, a possible improvement could
be to use a seeding strategy [24]. During the search, we could store the test
data that have good fitness values on coverage goals that are not covered
yet. These test data can then be used as starting point (i.e., for seeding the
first generation of a genetic algorithm) in the successive searches for those
uncovered goals. However, we decided not to implement this, as reference [24]
does not provide sufficient details to reimplement the technique, and there is
no conclusive data regarding several open questions; for example, potentially
a seeding strategy could reduce diversity in the population, and so in some
cases it might in fact reduce the overall performance of the search algorithm.

– The order in which coverage goals are selected might also influence the result.
As in the literature usually no order is specified (e.g., [14, 22]), we selected
the branches in random order. However, in the context of procedural code
approaches to prioritize coverage goals have been proposed, e.g., based on
dynamic information [24]. However, the goal of this paper is neither to study
the impact of different orders, nor to adapt these prioritization techniques to
object-oriented code.

– In practice, when applying a single goal strategy, one might also bootstrap
an initial random test suite to identify the trivial test goals, and then use a
more sophisticated technique to address the difficult goals; here, a difficult,
unanswered question is when to stop the random phase and start the search.
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3.2 Whole Test Suite Generation

For the whole test suite approach, we used exactly the same implementation as
in [11,12]. In the Whole approach, the approach level A(t,x) is not needed in the
fitness function, as all branches are considered at the same time. In particular,
the resulting fitness function to minimize for a set of test cases T on a set of
branches X is:

w(T,X) =
∑

x≥X

d(T,x) ,

where d(T,x) is defined as:

d(T,x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if the branch has been covered,

ν(dmin(t ∈ T,x)) if the predicate has been
executed at least twice,

1 otherwise.

Note that these X coverage goals could be considered as different objectives.
Instead of linearly combining them in a single fitness score, a multi-objective
algorithm could be used. However, a typical class can have hundreds if not
thousands of objectives (e.g., branches), making a multi-objective algorithm not
ideal due to scalability problems.

4 Empirical Study

In this paper, we carried out an empirical study to compare the whole test suite
approach (Whole) with the traditional one branch at a time approach (One-
Branch). In particular, we aim at answering the following research questions:

RQ1: Are there coverage goals in which OneBranch performs better?
RQ2: How many coverage goals found by Whole get missed by OneBranch?
RQ3: Which factors influence the relative performance between Whole and

OneBranch?

4.1 Experimental Setup

In this paper, for the case study we randomly chose 100 Java classes from the
SF100 corpus [9], which is a collection of 100 projects randomly selected from
the SourceForge open source software repository. We randomly selected from
SF100 to avoid possible bias in the selection procedure, and to have higher
confidence to generalize our results to other Java classes as well. In total, the
selected 100 classes contain 2,383 branches, which we consider as test goals.

The SF100 currently contains more than 11,000 Java classes. We only used
100 classes instead of the entire SF100 corpus due to the type of experiments
we carried out. In particular, on the selected case study, for each class we ran
EvoSuite in two modes: one using the traditional one branch at a time approach
(OneBranch), and the other using the whole test suite approach (Whole). To take
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randomness into account, each experiments was repeated 1,000 times, for a total
of 100× 2× 1,000 = 200,000 runs of EvoSuite.

When choosing how many classes to use in a case study, there is always a
tradeoff between the number of classes and the number of repeated experiments.
On one hand, a higher number of classes helps to generalize the results. On
the other hand, a higher number of repetitions helps to better study in detail
the differences on specific classes. For example, given the same budget to run
the experiments, we could have used 10,000 classes and 10 repetitions. However,
as we want to study the “corner cases” (i.e., when one technique completely fails
while the other compared one does produce results), we gave more emphasis on
the number of repetitions to reduce the random noise in the final results.

Each experiment was run for up to three minutes (the search on a class was
also stopped once 100% coverage was achieved). Therefore, in total the entire
case study took up to 600,000/(24× 60) = 416 days of computational resources,
which required a large cluster to run. When running the OneBranch approach,
the search budget (i.e., the three minutes) is equally distributed among the
coverage goals in the SUT. When the search for a coverage goal finishs earlier
(or a goal is accidentally covered by a previous search), the remaining budget is
redistributed among the other goals still to cover.

To properly analyse the randomized algorithms used in this paper, we followed
the guidelines in [4]. In particular, when branch coverage values were compared,
statistical differences were measured with the Wilcoxon-Mann-Whitney U-test,
where the effect size was measured with the Vargha-Delany Â12. A Â12 = 0.5
means no difference between the two compared algorithms.

When checking how often a goal was covered, because it is a binary variable,
we used the Fisher exact test. As effect size, we used the odds ratios, with a
δ = 1 correction to handle the zero occurrences. When there is no difference
between two algorithms, then the odds ratio is equal to one. Note, in some of
the graphs we rather show the natural logarithm of the odds ratios, and this is
done only to simplify their representation.

4.2 Results

Table 1 shows the average coverage obtained for each of the 100 Java classes.
The results in Table 1 confirm our previous results in [11]: the whole test suite
approach leads to higher code coverage. In this case, the average branch cov-
erage increases from 67% to 76%, with a 0.62 effect size. However, there are
two classes in which the Whole approach leads to significantly worse results:
RecordingEvent and BlockThread. Two cases out of 100 could be due to the
randomness of the algorithm, although having 1,000 repetitions does reduce the
probability of this. However, in both cases the Whole approach does achieve
relatively high coverage (i.e, 84% and 90%).

Looking at RecordingEvent in detail, we see that there are some branches
that are never covered by the Whole approach, but sometimes by OneBranch
(see Figure 1). Specifically, there is a disjunction of two conditions on two static
variables ourJVMLocalObjectFlavor and ourFlavors. As EvoSuite works at
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Table 1. For each class, the table reports the average branch coverage obtained by
the OneBranch approach and by the Whole approach. Effect sizes and p-values of the
comparisons are in bold when the p-values are lower than 0.05.

Class OneB. Whole Â12 p-value

MapCell 1.00 1.00 0.50 -
br.com.jnfe.base.CST_COFINS 0.99 1.00 0.53 < 0.001
ch.bfh.egov.nutzenportfolio.service.kategorie.KategorieDaoService 0.00 0.01 0.97 < 0.001
com.browsersoft.aacs.User 0.51 0.87 1.00 < 0.001
com.browsersoft.openhre.hl7.impl.config.HL7SegmentMapImpl 0.04 0.99 0.99 < 0.001
com.gbshape.dbe.sql.Select 0.06 0.08 0.57 < 0.001
com.lts.caloriecount.ui.budget.BudgetWin 0.11 0.12 0.64 < 0.001
com.lts.io.ArchiveScanner 0.07 0.45 0.99 < 0.001
com.lts.pest.tree.ApplicationTree 0.00 0.00 0.50 -
com.lts.swing.table.dragndrop.test.RecordingEvent 0.95 0.84 0.03 < 0.001
com.lts.swing.thread.BlockThread 0.98 0.90 0.27 < 0.001
com.werken.saxpath.XPathLexer 0.51 0.73 1.00 < 0.001
corina.formats.TRML 0.03 0.21 0.99 < 0.001
corina.map.SiteListPanel 0.00 0.00 0.99 < 0.001
de.huxhorn.lilith.data.eventsource.EventIdentifier 0.99 1.00 0.51 < 0.001
de.huxhorn.lilith.debug.LogDateRunnable 0.60 0.60 0.50 -
de.huxhorn.lilith.engine.impl.eventproducer.SerializingMessageBasedEventProducer 0.99 1.00 0.50 0.316
de.outstare.fortbattleplayer.gui.battlefield.BattlefieldCell 0.17 0.21 0.64 < 0.001
de.outstare.fortbattleplayer.statistics.CriticalHit 1.00 1.00 0.50 -
de.paragon.explorer.util.LoggerFactory 1.00 1.00 0.50 -
de.progra.charting.render.InterpolationChartRenderer 0.12 0.55 0.96 < 0.001
edu.uiuc.ndiipp.hubandspoke.workflow.PackageDissemination 0.02 0.09 0.99 < 0.001
falselight 1.00 1.00 0.50 -
fi.vtt.noen.mfw.bundle.common.DataType 1.00 1.00 0.50 -
fi.vtt.noen.mfw.bundle.probe.plugins.measurement.WatchDog 0.03 0.31 0.86 < 0.001
fi.vtt.noen.mfw.bundle.probe.shared.MeasurementReport 0.09 1.00 0.99 < 0.001
fi.vtt.noen.mfw.bundle.server.plugins.webui.sacservice.OperationResult 1.00 1.00 0.50 -
fps370.MouseMoveBehavior 0.19 0.55 0.98 < 0.001
geo.google.mapping.AddressToUsAddressFunctor 0.04 0.52 0.98 < 0.001
httpanalyzer.ScreenInputFilter 0.73 0.83 0.64 < 0.001
jigl.gui.SignalCanvas 0.85 0.95 0.89 < 0.001
jigl.image.io.ImageOutputStreamJAI 0.21 0.54 0.94 < 0.001
jigl.image.utils.LocalDifferentialGeometry 0.04 0.43 0.99 < 0.001
lotus.core.phases.Phase 0.50 0.50 0.50 -
macaw.presentationLayer.CategoryStateEditor 0.00 0.00 0.50 -
messages.round.RoundTimeOverMsg 0.99 1.00 0.50 0.007
module.ModuleBrowserDialog 0.00 0.00 0.50 -
net.sf.xbus.base.bytearraylist.ByteArrayConverterAS400 0.00 0.00 0.50 -
net.sourceforge.beanbin.command.RemoveEntity 1.00 1.00 0.50 -
net.virtualinfinity.atrobots.robot.RobotScoreKeeper 1.00 1.00 0.50 -
nu.staldal.lagoon.util.Wildcard 0.99 1.00 0.50 < 0.001
oasis.names.tc.ciq.xsdschema.xal._2.PremiseNumberSuffix 1.00 1.00 0.50 -
org.apache.lucene.search.exposed.facet.FacetMapSinglePackedFactory 0.00 0.18 0.99 < 0.001
org.databene.jdbacl.dialect.H2Util 1.00 0.99 0.49 < 0.001
org.databene.jdbacl.identity.mem.AbstractTableMapper 0.20 0.71 0.99 < 0.001
org.dom4j.io.STAXEventReader 0.14 0.28 0.99 < 0.001
org.dom4j.tree.CloneHelper 1.00 1.00 0.50 -
org.dom4j.util.PerThreadSingleton 0.85 0.85 0.49 0.165
org.exolab.jms.config.GarbageCollectionConfigurationLowWaterThresholdType 1.00 1.00 0.50 -
org.exolab.jms.config.SecurityConfigurationDescriptor 0.62 0.62 0.47 < 0.001
org.exolab.jms.selector.And 0.87 0.99 0.77 < 0.001
org.exolab.jms.selector.BetweenExpression 0.33 0.75 0.94 < 0.001
org.fixsuite.message.view.ListView 0.10 0.10 0.50 0.312
org.jcvi.jillion.assembly.consed.phd.PhdFileDataStoreBuilder 0.43 0.83 0.99 < 0.001
org.jcvi.jillion.fasta.FastaRecordDataStoreAdapter 0.00 0.00 0.50 -
org.jsecurity.authc.credential.Md2CredentialsMatcher 1.00 1.00 0.50 -
org.jsecurity.io.IniResource 0.40 0.82 0.99 < 0.001
org.jsecurity.io.ResourceUtils 0.32 0.79 0.99 < 0.001
org.jsecurity.web.DefaultWebSecurityManager 0.07 0.37 0.99 < 0.001
org.quickserver.net.qsadmin.gui.SimpleCommandSet 0.83 0.83 0.50 -
org.quickserver.net.server.AuthStatus 0.33 0.33 0.50 -
org.sourceforge.ifx.framework.complextype.ChkAcceptAddRs_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.ChkInfo_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.ChkOrdInqRs_Type 0.99 1.00 0.50 0.080
org.sourceforge.ifx.framework.complextype.CreditAdviseRs_Type 0.99 1.00 0.50 0.315
org.sourceforge.ifx.framework.complextype.DepAcctStmtInqRq_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.EMVCardAdviseRs_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.ForExDealMsgRec_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.PassbkItemInqRs_Type 0.99 1.00 0.50 0.312
org.sourceforge.ifx.framework.complextype.RecPmtCanRq_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.StdPayeeId_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.SvcAcctStatus_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.TINInfo_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.AllocateAllowed 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.BillInqRs 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.ChksumModRq 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.ChksumStatusCode 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CompositeCurAmtId 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CurAmt 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CustAddRs 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CustId 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CustPayeeRec 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.DepBkOrdAddRs 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.DevCimTransport 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.FSPayee 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.Gender 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.Language 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.StdPayeeRevRs 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.TerminalSPObjAdviseRq 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.URL 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.pain001.simpletype.BatchBookingIndicator 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.pain001.simpletype.CashClearingSystem2Code 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.pain004.simpletype.CashClearingSystem2Code 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.simpletype.DevName_Type 1.00 1.00 0.50 -
teder.Teder 1.00 1.00 0.50 -
umd.cs.shop.JSListSubstitution 0.97 0.99 0.53 < 0.001
wheel.components.Block 0.04 0.16 0.56 < 0.001
wheel.json.JSONStringer 0.99 1.00 0.50 < 0.001

Average 0.67 0.76 0.62
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class RecordingEvent {
static protected DataFlavor ourJVMLocalObjectFlavor;
static protected DataFlavor[] ourFlavors;

static protected void initializeConstants() {
if (null != ourJVMLocalObjectFlavor || null !=

ourFlavors)
return;

ourJVMLocalObjectFlavor = ...
ourFlavors = new DataFlavor[] {

ourJVMLocalObjectFlavor };
// ...

}
// ...

}

Fig. 1. Static behavior in RecordingEvent: If the test independence assumption is not
satisfied, then results become unpredictable

the level of bytecode, this disjunction results in four branches – two for each of
the conditions. The Whole approach only succeeds in covering one out of these
four branches, i.e., when outJVMLocalObjectFlavor is non-null and the return
statement is taken. This is because in the default configuration of EvoSuite
the static state of a class is not reset, and so once the initializeConstants
method has been executed, the two static variables are non-null. In the case
of OneBranch, if the first chosen coverage goal is to make either of the two
conditions false, then this will be covered in the first test executed by Evo-
Suite, and thus the two true-branches will have a covering test. If, however,
initializeConstants is executed as part of the search for any other branch,
then the coverage will be the same as for Whole. This is a known effect of static
states, and so EvoSuite has an experimental feature to reset static states after
test execution. When this feature is enabled, then both Whole and OneBranch
succeed in covering three out of the four branches. (To cover the fourth branch,
the assignment to ourJVMLocalObjectFlavor would need to throw an excep-
tion such that only one of the two variables is initialized). However, even when
static state is reset, the overall coverage achieved by Whole is significantly lower
than for OneBranch. The “difficult” branches are cases of a switch statement,
and branches inside a loop over array elements. These branches are sometimes
covered by Whole, but less reliably so than by OneBranch.

BlockThread only has a single conditional branch, all other methods contain
just sequences of statements (in EvoSuite, a method without conditional
statements is counted as a single branch, based on the control flow graph inter-
pretation). However, the class spawns a new thread, and several of the methods
synchronize on this thread (e.g., by calling wait() on the thread). EvoSuite uses



10 A. Arcuri and G. Fraser

Table 2. For each branch, we report how often the Whole approach is better (higher
effect size) than the OneBranch, when they are equivalent, and when it is OneBranch
that is better. We also report the number of comparisons that are statistically signif-
icant at 0.05 level, and when only one of the two techniques ever managed to cover a
goal out of the 1,000 repeated experiments.

# of Branches Statistically at 0.05 Never Covered by the Other

Whole Approach is better: 1631 1402 246
Equivalent: 671 – –
OneBranch is better: 81 58 3

Total: 2383

a timeout of five seconds for each test execution, and any test case or test suite that
contains a timeout is assigned the maximum (worst) fitness value, and not con-
sidered as a valid solution in the final coverage analysis. In BlockThread, many
tests lead to such timeouts, and a possible conjecture for the worse performance
of the Whole approach may be that the chances of having an individual test case
without timeout are simply higher than the chances of having an entire test suite
without timeouts.

To study the difference between OneBranch and Whole at a finer grained
level, Table 2 shows on how many coverage goals (i.e., branches) one technique
is better than the other. There are 58 cases in which OneBranch led to better
results. Three of them, Whole never manages to cover.

RQ1: There are 58 coverage goals in which OneBranch obtained
better results. Three of them were never covered by Whole.

On the other hand, there are 1,402 cases (out of 2,383) in which Whole gives
better results. For 246 of them, the OneBranch approach never managed to
generate any results in any of the 1,000 runs. In other words, even if there are
some (i.e., three) difficult goals that only OneBranch can cover, there are many
more (246/3 = 82 times) difficult branches that only Whole does cover.

RQ2: Whole test suite generation is able to handle 82 times more
difficult branches than OneBranch.

Once assessed that the Whole approach leads to higher coverage, even for the
difficult branches, it is important to study what are the conditions in which this
improvement is obtained. For each coverage goal (2,383 in total), we calculated
the odds ratio between Whole and OneBranch (i.e., we quantified what are the
odds that Whole has higher chances to cover the goal compared to OneBranch).
For each odds ratio, we studied its correlation with three different properties: (1)
the Â12 effect size between Whole and OneBranch on the class the goal belongs
to; (2) the raw average branch coverage obtained by OneBranch on the class the
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Table 3. Correlation analyses between the odds ratios for each coverage goal and
three different properties. For each analysis, we report the obtained correlation value,
its confidence interval at 0.05 level and the obtained p-value (of the test whether the
correlation is different from zero).

Property Correlation Confidence Interval p-value

Â12 Whole vs. OneBranch 0.275 [0.238, 0.312] < 0.001
OneBranch Coverage 0.016 [-0.024, 0.056] 0.433
# of Branches 0.051 [0.011, 0.091] 0.012

goal belongs to; and, finally, (3) the size of the class, measured as number of
branches in it. Table 3 shows the results of these correlation analyses.

There is correlation between the odds ratios and the Â12 effect sizes. This is
expected: on a class in which the Whole approach obtains higher coverage on
average, then it is more likely that on each branch in isolation it will have higher
chances to cover those branches. However, this correlation is weak, at only 27%.

On classes with many infeasible branches (or too difficult to cover for both
Whole and OneBranch), one could expect higher results for Whole (as it is not
negatively affected by infeasible branches [11]). It is not possible to determine if
branches are feasible or not. However, we can somehow quantify the difficulty of
a class by the obtained branch coverage. Furthermore, one would expect better
results of the Whole approach on larger, more complex classes. But the results
in Table 3 show no significant correlation of the odds ratios with the obtained
average branch coverage, and only very small (just 5%) with the class size. In
other words, the fact that Whole approach has higher chances of covering a
particular goal seems irrelevant from the overall coverage obtained on such class
and its size.

The analysis presented in Table 3 numerically quantifies the correlations be-
tween the odds ratios and the different studied properties. To study them in
more details, we present scatter plots: Figure 2 for the Â12 effect sizes, Figure 3
for the OneBranch average coverage and, finally Figure 4 for class sizes.

Figure 2 is in line with the 27% correlation value shown in Table 3. There are
two main clusters, where low odds ratios lead to low Â12 effect sizes, and the
other way round for high values. There is also a further cluster of values around
Â12 = 0.5 for which higher odds are obtained.

Although there is no clear correlation between the odds ratios and the ob-
tained coverage of OneBranch (only 1% in Table 3), Figure 3 shows an interesting
trend: the only coverage goals for which Whole perform worse (i.e., logarithms of
the odds ratios are lower than zero) are in classes for which OneBranch obtains
high coverage (mostly close to 100%). This is visible in the top-left corner in
Figure 3. There are coverage goals for which Whole approach has much higher
odds (logarithms above 30), and those appear only in classes for which the
OneBranch approach obtains an overall low branch coverage (see the rightmost
values in Figure 3).



12 A. Arcuri and G. Fraser

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Log of Odds Ratios

E
ffe

ct
 S

iz
e 

A
12

1

16

32

47

63

78

94

109

124

140

155

171

186

202

217

233

248

Counts

Fig. 2. Scatter plot of the (logarithm of) odds ratios compared to the Â12 effect sizes
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Fig. 3. Scatter plot of the (logarithm of) odds ratios compared to average class coverage
obtained by OneBranch

When looking at the effects of size, in Figure 4 we can see that the only cases
in which OneBranch has better odds ratios are when the SUTs are small. This
is visible in the bottom-left corner of Figure 4.

RQ3: Our data does not point to a factor that strongly influences
the relative performance between Whole and OneBranch.
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Fig. 4. Scatter plot of the (logarithm of) odds ratios compared to the sizes of the
classes

Interestingly, the few cases in which OneBranch obtains better results seem
located in small classes in which both approaches obtain relatively high code
coverage.

5 Threats to Validity

Threats to internal validity might come from how the empirical study was carried
out. To reduce the probability of having faults in our testing framework, it has
been carefully tested. But it is well known that testing alone cannot prove the
absence of defects. Furthermore, randomized algorithms are affected by chance.
To cope with this problem, we ran each experiment 1,000 times, and we followed
rigorous statistical procedures to evaluate their results. For the comparisons be-
tween the Whole approach and the OneBranch approach, both were implemented
in the same tool (i.e., EvoSuite) to avoid possible confounding factors when
different tools are used.

There is the threat to external validity regarding the generalization to other
types of software, which is common for any empirical analysis. Because of the
large number of experiments required (in the order of hundreds of days of com-
putational resources), we only used 100 classes for our in depth evaluations.
These classes were randomly chosen from the SF100 corpus, which is a random
selection of 100 projects from SourceForge. We only experimented for branch
coverage and Java software. Whether our results do generalise to other pro-
gramming languages and testing criteria is a matter of future research.
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6 Conclusions

Existing research has shown that the whole test suite approach can lead to higher
code coverage [11,12]. However, there was a reasonable doubt on whether it would
still perform better on particularly difficult coverage goals when compared to a
more focused approach.

To shed light on this potential issue, in this paper we performed an in-depth
analysis to study if such cases do indeed occur in practice. Based on a random
selection of 100 Java classes in which we aim at automating test generation for
branch coverage with the EvoSuite tool, we found out that there are indeed
coverage goals for which the whole test suite approach leads to worse results.
However, these cases are very few compared to the cases in which better results
are obtained (nearly two orders of magnitude in difference), and they are also
located in less “interesting” classes: i.e., small classes for which both approaches
can already achieve relatively high code coverage.

The results presented in this paper provides more support to the validity and
usefulness of the whole test suite approach in the context of test data generation.
Whether such an approach could be successfully adapted also to other search-
based software engineering problems will be a matter of future research.

To learn more about EvoSuite, visit our website at:

http://www.evosuite.org/study
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Abstract. Understanding a program from its execution traces is ex-
tremely difficult because a trace consists of thousands to millions of
events, such as method calls, object creation and destruction, etc.
Nonetheless, execution traces can provide valuable information, once ab-
stracted from their low-level events. We propose to identify feature-level
phases based on events collected from traces of the program execution.
We cast our approach in an optimization problem, searching through
the dynamic information provided by the program’s execution traces to
form a set of phases that minimizes coupling while maximizing cohesion.
We applied and evaluated our search algorithms on different execution
scenarios of JHotDraw and Pooka.

Keywords: Execution phase, execution trace, dynamic analysis, genetic
algorithm.

1 Introduction

There is a consensus today that program comprehension is a major challenge
in software maintenance [3]. However, understanding a program is a consider-
able resource-consuming activity [12]. To address this issue, a growing program-
comprehension research community actively develops techniques and tools to
support maintenance. One such family of techniques deals with dynamic analy-
sis, which helps in understanding behavioral aspects of the analyzed program.

Dynamic analysis shows to developers information from a different perspective
to better grasp how a program executes. This execution comprehension is crucial
when analyzing a program because for many problems, it is more precise than
static analysis, which relies on the source code. However, this comes at a much
higher cost in complexity. Typically, a program execution produces an execution
trace that records execution events such as method calls and returns, object
creations and destructions, etc. Usually, an execution generates thousands to
millions of such events. This is prohibitively too large for a developer to even just
look at, in order to gain a better understanding of the program. Fortunately, not
all execution events need to be considered to grasp the dynamic behavior of the
program. In fact, developers get a better idea of the execution when they get the
“big picture” of the run-time information. For all these reasons, one should focus
directly on useful parts of execution traces that relate to system functionality in
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order to reduce such complexity. Ideally, this abstraction should be computed
automatically by identifying in the execution, the phases that correspond to
program functionalities.

Some approaches (e.g., [13]) have addressed the problem of phase identifica-
tion, but they lack scalability by considering executions containing only a few
thousands of events. Another issue with existing approaches is the online pro-
cessing, i.e., the program run-time information is processed on the fly instead of
being collected in files and treated offline. While online processing benefits from
lower memory usage (for large execution traces), one can question the pertinence
of detecting high-level phases from the developer’s perspective if the developer
is performing the execution phases online [13,16]. An additional limitation is
that most high-level phase detection techniques make use of several parameters
or thresholds in their algorithms, such as the estimated number of execution
phases [19]. The determination of appropriate values for these parameters can
be difficult and may vary between programs. Furthermore, the results can be
very sensitive to the modification of such parameters.

We propose an automatic approach for the detection of high-level execution
phases from previously recorded execution traces, based on object lives, and
without the specification of parameters or thresholds. Our technique is simple
and based on the heuristic that, to a certain extent, different phases involve
different objects. We apply a metaheuristic to implement our heuristic. We utilize
in particular a genetic algorithm to search for the best decomposition of an
execution trace into high-level phases according to the objects triggered during
the program execution. To the best of our knowledge, it is novel to use a search-
based approach for high-level phase detection. We used JHotDraw and Pooka as
case studies for the evaluation of our approach, and identified execution phases
on seven use-case scenarios of these two open source software systems.

The rest of the paper is organized as follows. Section 2 details our phase-
identification technique and explains the underlying heuristic and the search
algorithm. The settings and results of the evaluation appear in Section 3, and
Section 4 discusses the achieved results and their impact. Section 5 introduces re-
lated work and contributions that are comparable to our work. Finally, Section 6
summarizes the content of this paper and exposes limitations of our approach
and future research directions.

2 Phase Identification

A program execution typically involves various functionalities. Knowing which
part of the execution (phase) belongs to which functionality helps maintainers to
focus on this part during their comprehension and maintenance tasks. However,
there are no explicit links in a program (source code or execution) between
functionalities and execution events. The goal of our work is to explore various
heuristics that approximate this link. Before introducing these heuristics, we first
define the related concepts. Then we present the implementation of heuristics
using a genetic algorithm to search for program execution phases.
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2.1 Basic Definitions

Event: An event is an action that occurs periodically during the execution,
e.g., a method call, a method return, an object creation. It encapsulates
information such as the class of the triggered method, the instance of the
class, and the method name.

Object: An object is the instance of the class concerned by the execution event.
Objects are uniquely identified.

Object life: An object begins its life when it is created and the end of its life
is approximated by its last appearance (reference) in the execution trace.

Trace: A trace is the sequence of all execution events representing the entire
execution scenario.

Phase: A phase is a sequence of consecutive execution events; it is a portion of
the trace.

Cut position: A cut position is the location of the first event of a phase in the
trace.

Phase identification solution: A solution is a set of cut positions that de-
composes the trace into phases.

2.2 Heuristics

Our approach for phase identification stands on assumptions concerning the
activities of objects during their lifetime. Our rationale is based on the role of
objects during program execution and is outlined as follows:

– Two successive execution phases should not have many active objects in com-
mon, otherwise it could suggest that the program is still within the same
phase.

– Not all objects active in a phase are representative of this phase. Such objects
are more general and are indifferently used during the execution. Other objects
characterize the phase as they are only triggered during this particular phase.

– A phase does not begin between two successive method calls, between two suc-
cessive method returns, or even between a method call and a method return.
A phase switch occurs only when the program’s execution exits a method and
enters a method.

2.3 Detection Algorithm

We approach phase identification as an optimization problem.We consider phases
as subsets of the execution events contained in the execution trace. The phase
detection problem then becomes one of determining the best decomposition of
the execution trace’s events.

Considering that an execution trace contains n events (possibly in the order
of hundreds of thousands), and that a particular execution contains any number
m of phases, the number of possible solutions is Cl

k, where 0 ≤ l ≤ (n/2) − 2,
k = m−1 is the number phase shifts in the trace, and l is the number of positions
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in the execution trace where a phase shift can occur. The number Cl
k depends

on the shape of the call tree. The wider the tree is, the larger l will be.
To understand the effect on l, consider two extreme cases. First, a call tree

with one branch coming out of the root node, this branch consisting of a series
of method calls followed by a series of method returns; then l = 0 because there
is no method return followed by a method entry in the entire trace. Second, a
call tree with a depth of 1, and each method call is immediately followed by a
method return; then l = (n/2) − 2 because there are as many potential phase
shifting positions as the number of pairs of method return/call (in this order),
minus the root method call (at the beginning of the trace) and the root method
return (at the end of the trace).

The number k of phase switches during execution is the number of phases
minus 1. For instance, an execution phase containing two phases has one phase
switch. The problem of phase detection considers therefore the number of possi-
ble combinations of k from l. As mentioned before, the number of events n can
be very large and despite the fact that l ≤ (n/2)− 2, l remains also large. This
results in an exceedingly large search space to investigate exhaustively. Hence,
we rely on a metaheuristic search, in our case a genetic algorithm, to find a
solution to our phase identification problem.

The algorithm starts by creating an initial population of solutions, i.e., differ-
ent trace decompositions. In the first generation, these solutions are generated
randomly. Then in an iterative process, every iteration produces a new genera-
tion of solutions derived from the previous ones. For each iteration, we push the
fittest candidates to the next generation (elitism), and then we generate the rest
of the solutions composing the next generation by combining/modifying existing
solutions using crossover and/or mutation operators. The fitness of a solution is
computed using a function implementing the heuristics stated earlier.

The details about the main aspects of our algorithm are presented in the
following subsections.

Solution Encoding. A solution is a decomposition of the execution trace into
different chunks representing phases. Our algorithm searches for the best cut
positions to decompose the execution trace into phases. These cut positions in
the trace are events where a phase shift occurs. Figure 2 (left) schematizes two
solutions: A and B. The rectangle represents the entire trace, that is divided in
two phases in solution A with one cut position (dashed line), and in four phases
in solution B with three cut positions. As all solutions are decompositions of
the same execution trace, we simply represent a solution by a vector of integers
containing the cut positions. Each cut position consists of a valid potential phase
switching event position in the trace, according to heuristics in Section 2.2. This
vector representation of our solution maps perfectly with the genomic represen-
tation solutions in genetic algorithms, where each vector position corresponds
to a chromosome of our solution or phenotype. The vector size indicates the
number of execution phases, and therefore, it can have different sizes as we do
not limit our search to a fixed number of phases.
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Initial Population. At the beginning of the search algorithm, we create an
initial population of solutions, i.e., integer vectors containing phase cut positions.
In order to diversify the population’s individuals, we generate N solutions as
follows (in our experiments, N was set to 100):

1. We randomly choose cut positions in the trace, within the number of events
in the trace. The positions must be valid phase shifting positions, i.e., a cut
position is a method call (start of a phase) AND its preceding event must be
a method return (end of a phase).

2. The random cut positions are sorted in ascending order because events are or-
dered in time, and phases are successive. Two equal cut positions are merged,
and only one of them is conserved.

3. In order to vary the number of phases in an initial population ofN individuals,
we generate N/10 solutions with two phases, N/10 other solutions with three
phases, and so on. In total, we produce solutions containing two to eleven
phases. Again, our technique is not bound by a fixed number of phases or
even a subset of phases’ numbers, and therefore the number of phases can
exceed eleven during the search.

Fitness Function. The fitness function is the most important element of our
approach. It encodes our phase detection heuristics explained in Section 2.2,
and thus, guides the search process. There are different ways to translate the
proposed heuristics into measurable properties that allow evaluating the quality
of a phase detection solution. We propose three metrics that are combined to
define fitness functions for our problem.

1) Phase Coupling: Two successive phases are coupled if they share objects. An
object is shared by phases if its lifetime covers them. Figure 1 illustrates eight
different cases that can occur when computing coupling over two phases. These
cases differ in the way object lifetimes are distributed over the two successive
phases. Some of them are more desirable than others, and therefore, are given
larger weights when computing the result. The latter is a linear combination of
the number of objects per category. Here are the details and rationale behind
our weight affectation starting from the most desirable to the less desirable dis-
tribution of object lifetimes. We illustrate the different cases using the examples
of Figure 1. We refer to consecutive phases as the first phase and the second
phase (phase i and phase j in Figure 1).

First, objects that are included in one phase have a weight of 6, i.e., they are
created and destroyed within each phase. This is the ideal case since each phase
would involve a different set of objects, e.g., Obj1 and Obj2.

Second, we assign a weight of 5 to objects that are destroyed in the first phase
or are created in the second phase, e.g., Obj6 and Obj7. This resembles the first
category, except for the fact that objects are not created/destroyed within the
first/second phase respectively. It is a good category because the two successive
phases do not share objects.
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Fig. 1. Phase coupling with object’s lives

Third, there are objects that are created in the first phase and destroyed after
the second phase, such as Obj5. Here we have two sub-categories, one of which
is more desirable than the other. If the object is not active in the second phase,
i.e., the object is not involved in any event, we assign a weight of 4. Although
the two phases share the object, according to our earlier definition, the second
phase does not use it. However, if the object is involved in the second phase,
we assign to it a weight of 2 because the object is active in the two consecutive
phases, which probably means that the cut position is not appropriate. There is
also the contraposition of the previous case, in which we used the same weights’
values, where an object is destroyed in the second phase and created previous
to the first phase, e.g., Obj4.

Then, there is the case of an object created before the first phase and destroyed
after the second phase, such as Obj8. The object could be involved in the first
phase only, the second phase only, or both. Following the same principle as the
two previous cases, we assign a weight of 3 when the object is involved in one
phase only, and a weight of 2 if it is active in both phases.

Finally, the less desirable case is when the object is created in the first phase
and destroyed in the second phase, such as Obj3. Here we assign the lowest
weight of 1 because we probably should merge the two phases and hence remove
the cut position.

The coupling between two successive phases is computed as the number ob-
jects in each category, multiplied by its corresponding weight. Formally:

Coup(phasei, phasej) =

∑
k (wk|OCk|)− [min ({wk})

∑
k (|OCk|)]

[max ({wk})−min ({wk})]
∑

k (|OCk|)
(1)

where OCk is the set of objects of category k, and wk is the weight affected to
the objects of category k. The coupling for a solution is the average coupling on
the successive phase pairs.
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2) Object Similarity: This metric calculates the similarity between the objects
of two successive phases. We construct for each phase the list of distinct active
objects. Then, we compute the number of objects in common between the two
successive phases. The number of common objects in each phase is divided by
its total number of the objects. The object similarity is taken as the average
between the two resulting numbers of the two phases

Obj(phasei, phasej) = 1− 1

2

(
|DOi ∩DOj |

|DOi|
+

|DOi ∩DOj |
|DOj |

)
(2)

where DO is the set of distinct objects in the phase. The object similarity of a
solution is the average similarity of each two adjacent phases.

3) Thin Cut: The thin cut represents the number of objects that are divided, in
terms of their respective lifetimes, by the cut position. For each cut position, we
compute the number of objects that are active before and after the cut position.
The resulting number is then normalized by the number of objects in the entire
trace. For example in Figure 1, there are four objects divided by the cut position:
Obj3, Obj4, Obj5, and Obj8. Therefore, the result would be 4/M , where M is
the number objects created before the given cut. Formally:

Cut(positioni) = 1− |COi|
|TO| (3)

where CO is the set of objects that are created before cut position i and destroyed
after it, and TO is the set of all objects in the execution trace. The thin cut of
a given solution is simply the average score of each position.

Finally, the fitness function of a solution is defined as follows:

fitness(sol) =
a× Coup(sol) + b×Obj(sol) + c× Cut(sol)

a+ b+ c
(4)

where solution sol to be evaluated consists of cut positions in the execution
trace, and a, b, and c are the weights affected to each component.

Genetic Operators. To create the new population in a given generation, we
first automatically add the two fittest solutions. Then to complete the N − 2
solutions, we select (N − 2)/2 pairs of solutions, and for each pair, we produce
two offspring solutions. We use the roulette-wheel strategy to select the parent
solutions for reproduction. For each pair, a given solution has a probability to
be selected, proportional to its fitness. When two-parent solutions are selected,
we apply the crossover and mutation operators with certain probabilities.

A) Crossover: We use a single-point crossover. To perform a crossover between
two solutions, we randomly pick a new cut position independently from the
two solutions’ cut positions. The new cut position at the same location in both
solutions produces two parts for each. The upper part of solution A is combined



Detecting Program Execution Phases Using Heuristic Search 23

Fig. 2. The result of the crossover operator (right) applied to the solutions (left)

with the lower part of solution B to form a child solution (AB). Conversely,
the upper part of solution B is combined with the lower part of solution A
(BA). Figure 2 (right) illustrates the resulting children from the application
of the crossover on solutions A and B from Figure 2 (left). The new random
cut position is shown as a dashed blue line dividing both solutions. According
to the cut position, child AB is formed from phase 1 and part of phase 2 of
solution A, and part of phase 3 and phase 4 of solution B. The child BA is a
result of combining phase 1, phase 2, and a portion of phase 3 of solution B, and
the remaining portion of phase 2 of solution A. The two siblings share the new
random position, and receive portions of their parents other chromosomes.

B) Mutation: We mutate an individual in three different manners depending
on a certain probability. The first mutation strategy consists in merging two
successive phases into a single one, where we randomly select one of the cut
positions and discard it. The second mutation strategy splits one phase into
two, by generating randomly a new cut position and inserting it at the correct
location in the solution. Finally, the third mutation strategy randomly changes a
cut position, i.e., the boundary between two consecutive phases is repositioned.
The third mutation is applied twice.

This results in the alteration of three existing phases (the previous, selected,
and subsequent phases) without changing the number of phases in the solution.
Figure 3 illustrates the three mutation strategies applied to solution B from
Figure 2 (left). Mutant B1 is the result of removing the 3rd cut position of
solution B, which resulted in the merging of phase 2 and phase 3. Phase 3
in solution B was subdivided into two phases with the insertion of a new cut
position to produce mutant B1’. The first and second cut positions of solution B
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Fig. 3. The result of the mutation operator applied to solution B in Figure 2 (left)

were altered resulting in the modification of phase 1 and phase 2 in mutant B2
(phase 1’ and phase 2’).

3 Evaluation

To assess our approach, we apply our phase detection algorithm on three sce-
narios of the JHotDraw system and four scenarios of the Pooka system. This
section introduces the settings of our case studies and the choices made while
evaluating our approach. In particular, we evaluate the accuracy of our technique
in detecting high-level execution phases based on object usage and lifetime.

3.1 Settings

Trace Extraction. Our phase detection technique takes as input an execution
trace. This trace is constructed by monitoring the execution of a program and by
recording its events. We use an implementation in C of the JVMTI API to listen
to the JVM for method entries and exits. Each execution event is described by
its type (method entry or exit), the class name with the method triggered, a
timestamp, the method arguments, the return type, the object unique id, and
the dynamic object in the case of polymorphism or dynamic dispatch. To deter-
mine the reference which our solutions will be compared to, the tracer allows us
to record event ids on demand. These serve to determine the beginning and end-
ing events of each external functionality, i.e., boundaries of their corresponding
phases.
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Execution Scenarios. We extracted three execution traces, one for each of
three scenarios of JHotDraw [7], an open source Java GUI framework for techni-
cal and structured graphics. It contains 585 classes distributed over 30 packages.
We also executed four scenarios of Pooka [14], an open source email client writ-
ten in Java, using the Javamail API. It contains 301 classes organized in 32
packages.

The execution traces differ in size and in performed tasks. For each scenario,
we defined the beginning and ending events of each phase in the trace, as ex-
plained above. These events serve as reference for evaluating our phase detection
approach. The following table summarizes the information about the extracted
execution scenarios, which were used during the evaluation.

Scenario Description # events

J1 Init ; New file ; Draw round rectangle; 66983
J2 Init ; Open file ; Animation ; New file; Window tile; 100151
J3 Init ; Open file ; Delete figure ; Write html text area; 105069
P1 Init ; Open email ; Reply to sender ; Consult Help; 79506
P2 Init ; Change theme ; Send new email; 101710
P3 Init ; Search inbox ; Delete email; 99128
P4 Init ; Get new emails; Window tile; 63162

For example, execution scenario J1 contains three execution phases: an initial-
ization phase, a phase representing the opening of a new file, and a phase repre-
senting the drawing of a rectangle with round edges. In the second phase (‘New
file’), JHotDraw opens a window canvas for drawing, on which we draw a round
rectangle figure. In terms of cut positions, an ideal solution for this scenario
would be to have two cut positions: one at the end of the initialization phase,
and the other at the end of the ‘New file’ phase.

Algorithm Parameters. Our genetic algorithm uses parameters that may
influence the resulting solution. We present here the values chosen for our eval-
uation.

The initial-population size, which stays constant throughout the iterative
process, affects both the algorithm’s performance and efficiency [6]. We start our
search with a population of 100 solutions. Solutions are generated randomly (see
Section 2.3), but only those having a fitness value ≥ 50% are incorporated in
the initial population. This starts with a population of a reasonable quality.

For the selection strategy, the roulette-wheel technique is used. We also
use the elitist strategy that incorporates the two fittest solutions directly to
the next generation. Regarding the genetic operators’ probabilities, we use
a crossover probability of 90% and a mutation probability of 10%. As a termi-
nation criterion, we fixed the number of generations to be produced to 10×
the size of a population, i.e., 1000 generations. Finally, for the fitness function
definition, we utilized a combination of three metrics (see Section 2.3). We
investigated several other metrics, such as common methods between phases,
phase cohesion where objects in a phase collaborate together, etc. In Section 3.2
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we show results for the combination that produces the best solutions for most
execution scenarios (coupling, object similarity, and thin cut metrics).

3.2 Results

We ran our algorithm on the seven described scenarios. As our algorithm is prob-
abilistic, each scenario was processed six times; the best solution was retained.

As discussed in Section 3.1, the beginning and end positions (i.e., events)
of each phase is recorded during the tracing process. We used these positions
as an oracle to evaluate our solutions. Precision and recall were used to assess
our solutions. We computed the precision in terms of events as explained by
Asadi et al. [1], as well as recall. They are defined formally as:

precisionevent(DE,AE) =
|DE ∩ AE|

|DE| recallevent(DE,AE) =
|DE ∩ AE|

|AE|
(5)

where DE is the set of detected phase events and AE the set of actual phase
events. The event precision and recall of a solution are simply the averages of
the phases precision and recall, respectively.

We computed precision and recall by comparing the detected phases with the
actual phases, as done by Watanabe et al. [19]. A phase is considered detected
if it has ≥ 75% event precision with the corresponding oracle phase.

precisionphase =
|Detected ∩ Actual|

|Detected| recallphase =
|Detected ∩ Actual|

|Actual|
(6)

Table 1. Summary of the evaluation results of the seven scenarios

Scenario precisionevent recallevent precisionphase recallphase

J1 .85 (.94) .38 (.57) .66 (1) .50 (.66)

J2 .89 (.96) .58 (.59) .80 (1) .60 (.75)

J3 .82 (.92) .64 (.64) .66 (1) .20 (.50)

P1 .91 (.95) .71 (.71) 1 (1) .60 (.75)

P2 .93 (.96) .69 (.61) 1 (1) .75 (.66)

P3 .94 (.99) .32 (.32) .83 (1) .33 (1)

P4 .96 (.99) .37 (.37) 1 (1) .66 (1)

All the execution scenarios include an initialization phase. There are many
object creations during this phase, many of them remain active in subsequent
phases. Our approach is based on the objects’ lifetimes, hence, it fails to detect
the initialization phase of several scenarios. The results of Table 1 take into
consideration the initialization phase, which penalizes them. The results between
parentheses do not include the initialization phase in the calculations and are
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clearly higher, which suggests that the rest of the phases are correctly detected
(see precisionphase). This suggests a further investigation of this special phase.

Finally, for sanity check, we compared our results to random search. To have
a similar setup than our algorithm, we generated the same number of solutions
(100 individuals × 1000 generations), i.e., 100000 random solutions for each
scenario. Each time, we selected the best solutions from these, according to the
same fitness function. The results of the Wilcoxon test showed that our algorithm
performs significantly better than random search for precisionevent (p = .018),
precisionphase (p = .027), and recallphase (p = .043). However, the difference
for recallevent is not statistically significant (p = .271).

4 Discussion

When developing our approach, we made several decisions concerning the detec-
tion heuristics and their implementation. The results of our experiments showed
that these decisions could still be improved.

We considered that all objects utilized by a program to accomplish an execu-
tion phase contribute equally to phase detection. However, objects are different
in terms of lifetime, number of uses, and execution pattern. Some objects are
created at the beginning and destroyed at the end of the execution, others are
more specialized and have shorter lifetimes. Apart from their lifetimes, objects
also differ in the way they are used in the execution. An object may be executed
sparsely from its creation to its destruction, or it can be used in a dense manner.
Another aspect of object execution is the regularity with which it appears in
the execution trace. These object execution properties should be further inves-
tigated to define object execution profiles that will be much more representative
of execution phases.

Our single-point crossover strategy also introduces some mutation in the
form of the new common cut position of two-parent individuals. This strat-
egy preserves most of the parents’ phases and possibly creates new phases. This
crossover strategy is consistent with our execution phase definition, which states
that a phase is a portion of the trace. Another possible crossover strategy is a
uniform one, where we generate two child solutions from two parents by select-
ing their cut points. Here no new cut position is introduced, and all the parents
cut points are inherited. However, the resulting individuals may end up with no
phases from the parents since these latters could be further segmented by cut
positions from the other parent. Although we opted for our first strategy, we
believe that more sophisticated crossover operations could reduce the mutation
factor while preserving the completeness and consistency of trace decomposition.

The choice of the fitness function metrics is an important decision when using
the approach. We tried several metrics to evaluate the fitness of our solutions.
Some of them gave better results in some particular scenarios. We chose the
metrics configuration that gave the best results in average for all scenarios.
Therefore, we believe it is important to investigate the relationship between the
nature of the functionalities involved in a scenario and the metrics. For example,
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some metrics favor solutions with few phases while others tend to orient the
search towards solutions with more phases.

Finally, the fitness function is computed as a combination of three metrics
(Equation (4)). The factors were weighted equally, on the same domain ([0, 1]),
but they have in practice different magnitudes. Taking the simple average could
favor some metrics over others. To alleviate this, we can use a multi-objective
search algorithm for which the magnitude of single objectives is not important.

5 Related Work

Techniques for execution phase detection can be divided in two groups. First,
there are techniques concerned with detecting program execution phases at a
low level of granularity, such as program instructions, conditional branches,
etc. These techniques (e.g., [10,11,4]) are typically used for hardware configura-
tion, compiler optimization, and dynamic optimization in general. The detected
phases represent portions of execution where the program is stable, i.e., where
there is a certain repetition in the executed instructions.

The second group of phase detection techniques is concerned with the identi-
fication of execution phases at a higher level. Phases are related to what the pro-
gram is doing from the user’s perspective, e.g., initializing, database connection,
performing computations [17]. Our approach belongs to this group of techniques.
Compared to the first group where there is extensive work on low-level phase
detection, there is much less research on the identification of high-level phases.

One contribution that addresses high-level phase detection comes fromWatan-
abe et al. [19]. They employ information from the objects to detect phase tran-
sition by keeping an updated list of recently used objects. A steep increase in
change frequency is interpreted as entering a new phase. An execution trace is
collected according to a use-case scenario and processed to retrieve the objects’
information used to identify feature-level phases. In summary, their work uses
the assumption that different functionalities use different sets of objects. How-
ever, it also makes the assumption that the number of phases is known. Our
method has the clear advantage of not making this assumption.

Pirzadeh et al. [13] exploit the sequence of method calls during program execu-
tion to reveal phase shifting within an execution trace. They claim that executed
methods tend to disappear as the program enters a new execution phase. They
construct a set of methods invoked as the program executes. The methods are
ranked according to their prevalence, which is used to decide if they are disap-
pearing from the execution, i.e., if phase shifting is occurring.

Reiss [17] uses dynamic information online, i.e., dynamic data is collected
and processed during program execution. Periodically, he gathers counters for
classes and packages, such as the number of method calls and object allocations,
in addition to the threads’ states. Reiss determines a phase switch when the
similarity value between successive periods’ data exceeds a threshold. The phases
are then displayed using JIVE [16].

Several contributions treat dynamic behavior visualization. Cornelissen et
al. [2] propose two views to visualize execution traces: a massive sequence view
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as a UML-based view, and a circular bundle view. The massive sequence view
permits the visual identification of the major execution phases. Similarly, Jin-
sight [4] provides views for exploring and understanding a program’s run-time
behavior. Execution patterns can be identified using its execution view.

Furthermore, there are contributions in program slicing [18] and feature lo-
cation [5], that correlate parts of the source code to program functionality.
Asadi et al. [1] identify concepts in execution traces using genetic algorithms.
The authors segment an execution trace according to the conceptual cohesion
of the methods’ source code. Their work tries to solve a different problem, i.e.,
feature location, using genetic algorithms. However, the heuristics involved in
the search are different since we use object collaborations and lifetimes. Me-
dini et al. [8] compare genetic algorithms and dynamic programming in terms of
efficiency and precision, in the identification of concepts in execution traces. Al-
though their work suggests that dynamic programming increases performance,
the application to our approach and its success are not guaranteed because of
the difference in problem representation and heuristics in the two methods.

Finally, some methods in search-based software engineering on module clus-
tering [9,15] use search algorithms to automatically re-modularize a software
system. The module clustering problem is related to our work as it can be seen
as a clustering of objects according to their lifetimes.

Our phase-identification approach automatically detects periods of the pro-
gram’s execution that abstract the external behavior. Typically, we correlate the
program’s execution information with observable actions from the users.

6 Conclusion

We presented an automatic approach for identifying program execution phases.
Our technique is based on object lifetimes and object collaborations. We cast
the problem of finding execution phases as an optimization problem and utilize
a genetic algorithm to search for a good solution. We evaluated our automatic
results by comparing with phases manually detected. We ran our algorithm on
three different scenarios of JHotDraw and four scenarios of Pooka.

Although the computed results are satisfactory, there is still room for im-
provement. In addition to the future research directions mentioned in Section 4,
we will consider other heuristics for the search algorithm, such as the structure
of the call graph or the linguistic similarity between phases to improve our detec-
tion. We also intend to use our approach at a different level of granularity, i.e.,
on program instruction, where rather than analyzing only the method calls, we
could consider the control flow (instruction). However, considering the amount
of data and their nature, we have to redesign a large portion of our approach.
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Abstract. The most challenging step when adapting a search-based technique 
for a software engineering problem is the definition of the fitness function. For 
several software engineering problems, a fitness function is ill-defined, 
subjective, or difficult to quantify. For example, the evaluation of a software 
design is subjective. This paper introduces the use of a neural network-based 
fitness function for the problem of software refactoring. The software engineers 
evaluate manually the suggested refactoring solutions by a Genetic Algorithm 
(GA) for few iterations then an Artificial Neural Network (ANN) uses these 
training examples to evaluate the refactoring solutions for the remaining 
iterations. We evaluate the efficiency of our approach using six different open-
source systems through an empirical study and compare the performance of our 
technique with several existing refactoring studies. 

1 Introduction 

Large scale software systems exhibit high complexity and become difficult to 
maintain. In fact, it has been reported that software cost dedicated to maintenance and 
evolution activities is more than 80% of total software costs [16]. To facilitate 
maintenance tasks, one of the widely used techniques is refactoring which improves 
design structure while preserving the overall functionalities and behavior [28, 29]. 

SBSE was applied successfully to reformulate software refactoring as a search 
problem using metaheuristics [8, 22, 25, 24, 21, 19]. In the majority of these studies, 
refactoring solutions are evaluated based on the use of quality metrics. However, the 
evaluation of the design quality is subjective and difficult to formalize using quality 
metrics with the appropriate threshold values due to several reasons. First, there is no 
general consensus about the definition of design defects [29], also called code-smells, 
due to the various programming behaviors and contexts. Thus, it is difficult to 
formalize the definitions of these design violations in terms of quality metrics then 
use them to evaluate the quality of a refactoring solution. Second, the majority of 
existing refactoring studies do not include the developer in the loop to analyze the 
suggested refactoring solutions and give their feed-back during the optimization 
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process. In [5], the authors used an interactive genetic algorithm to estimate the 
quality of refactoring solutions but it is fastidious task for developers to evaluate 
every refactoring solution at each iteration. Third, the calculation of some quality 
metrics is expensive thus the defined fitness function to evaluate refactoring solutions 
can be expensive. Finally, quality metrics can just evaluate the structural 
improvements of the design after applying the suggested refactorings but it is difficult 
to evaluate the semantic coherence of the design without an interactive user 
interpretation.  

The paper tackles a problem that is faced a lot of search based software 
engineering (SBSE) research: how do we define fitness when the computation of 
fitness is an inherently subjective and aesthetic judgment that can only really be 
properly made by human?  

We propose, in this paper, a GA-based interactive learning algorithm of software 
refactoring based on Artificial Neural Networks (ANN) [27]. Harman [9] noticed that 
fully automated search-based software engineering solutions, sometimes, are not very 
desired due to the fact that the developers/designers are not considered in the loop 
during the optimization process. He stressed that the contribution of the decision 
maker (DM) is important to guide the search through, for example, predictive models. 
Predictive models have been, recently, the subject of a Harman’s paper [9]. He 
claimed that there are many unexplored areas including both predictive models 
(Artificial Neural Networks, Bayesian Networks, etc.) and SBSE. In this paper, we 
are interested in modeling DM’s refactoring preferences using ANN as a predictive 
model to approximate the fitness function for the evaluation of software refactoring 
solutions. The developer is asked to evaluate manually refactoring solutions suggested 
by a Genetic Algorithm (GA) for few iterations then these examples are used as a 
training set for the ANNs to evaluate the solutions of the GA in the next iterations. 
We evaluated our approach on open-source systems  using an existing benchmark  [22, 
23, 4]. We report the results on the efficiency and effectiveness of our approach, 
compared to existing approaches  [5, 14, 19, 18].  

The rest of this paper is outlined as follows. Section 2 is dedicated to the problem 
statement. Section 3 presents the proposed approach. Section 4 presents results of 
experimentations. Finally, section 5 summarizes our findings. 

2 Related Work 

Several studies are proposed in the literature to address the refactoring problem. We 
focus mainly in this related work on existing search-based refactoring work. These 
studies are based on the use of mono, multi and many-objective optimization 
techniques. The GA was the most used metaheuristic search algorithm according to a 
recent survey [8] and recently there has been also many other algorithms such as 
NSGA-II [25] and NSGA-III [22]. Hence, we classify those approaches into two main 
categories: (1) mono-objective approaches, and (2) multi/many-objective ones. 

In the first category, the majority of existing work combines several metrics in a 
single fitness function to find the best sequence of refactorings. Seng et al. [24] have 
proposed a single-objective optimization based-approach using genetic algorithms to 
suggest a list of refactorings to improve software quality. The search process uses a 
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single fitness function to maximize a weighted sum of several quality metrics. The 
used metrics are mainly related to various class level properties such as coupling, 
cohesion, complexity and stability. Furthermore, there is another similar work of 
Simons et al. [31] have used interactive evolution in various software design problems 
but their approach requires a fastidious and high number of interactions with the 
designer. O’Keeffe et al. [21] that have used different local search-based techniques 
such as hill climbing and simulated annealing to provide an automated refactoring 
support. Eleven weighted object-oriented design metrics have been used to evaluate 
the quality improvements. In [3], Qayum et al. considered the problem of refactoring 
scheduling as a graph transformation problem. They expressed refactorings as a 
search for an optimal path, using Ant colony optimization, in the graph where nodes 
and edges represent respectively refactoring candidates and dependencies between 
them. Recently, Kessentini et al. [14] have proposed a single-objective combinatorial 
optimization using genetic algorithms to find the best sequence of refactoring 
operations that improve the quality of the code by minimizing as much as possible the 
number of design defects detected on the source code. Jensen et al. [1] have proposed 
an approach that supports composition of design changes and makes the introduction 
of design patterns a primary goal of the refactoring process. They used genetic 
programming and software metrics to identify the most suitable set of refactorings to 
apply to a software design. Kilic et al. [6] explore the use of a variety of population-
based approaches to search-based parallel refactoring, finding that local beam search 
could find the best solutions.  

In the second category of work, Harman et al. [19] have proposed a search-based 
approach using Pareto optimality that combines two quality metrics, CBO (coupling 
between objects) and SDMPC (standard deviation of methods per class), in two 
separate fitness functions. The authors start from the assumption that good design 
quality results from good distribution of features (methods) among classes. Their 
Pareto optimality-based algorithm succeeded in finding good sequence of move 
method refactorings that should provide the best compromise between CBO and 
SDMPC to improve code quality. Ó Cinnéide et al. [20] have proposed a multi-
objective search-based refactoring to conduct an empirical investigation to assess 
some structural metrics and to explore relationships between them. To this end, they 
have used a variety of search techniques (Pareto-optimal search, semi-random search) 
guided by a set of cohesion metrics. Furthermore, Ouni et al.  [25] have proposed a 
new multi-objective refactoring to find the best compromise between quality 
improvement and semantic coherence using two heuristics related to the vocabulary 
similarity and structural coupling.  

Overall, most of refactoring studies are based on the use of quality metrics as a 
fitness function to evaluate the quality of the design after applying refactorings. 
However, these metrics can only evaluate the structural improvements. Furthermore, 
the efficient evaluation of the suggested refactoring from a semantic perspective 
requires an interaction with the designer. In addition, the symptoms of design defects 
are difficult to formalize using quality metrics due to the very subjective process to 
identify them that depends on the programming context and the preferences of 
developers (programming behavior). Finally, the definition of a fitness function based 
on quality metrics can be expensive. To address these challenges, we describe in the 
next section our approach based on machine learning and search-based techniques to 
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evaluate the refactoring solutions without the need to explicitly define a fitness 
function.  There were very few works that combine those two fields (SBSE and ML) 
as mentioned recently by Harman [9] and Zang [30]. This work represents one of the 
first studies in this area.   

3 Refactoring as an Interactive Search-Based Learning 
Problem 

3.1 Approach Overview  

As described in Figure 1, our technique takes as input the system to refactor, an 
exhaustive list of possible refactoring types and the number of DM’s interactions 
during the search process. It generates as output the best refactoring sequence that 
improves the quality of the system. Our approach is composed of two main 
components: the interactive component (IGA) and the learning module (LGA). 

The algorithm starts first by executing the IGA component where the designer 
evaluates the refactoring solutions manually generated by GA for a number of 
iterations. The designer (DM) evaluates the feasibility and the efficiency/quality  
of the suggested refactorings one by one since each refactoring solution is a sequence 
of refactoring operations. Thus, the designer classifies all the suggested refactorings 
as good or not one by one based on his preferences.  

After executing the IGA component for a number of iterations, all the evaluated 
solutions by the developer are considered as training set for the second component 
LGA of the algorithm. The LGA component executes an ANN to generate a 
predictive model in order to approximate the evaluation of the refactoring solutions in 
the next iteration of the GA. Thus, our approach does not requires the definition of a 
fitness function. Alternatively, the LGA incorporates many components to 
approximate the unknown target function f . Those components are the training set, 

the learning algorithm and the predictive model. For each new sequence of 
refactoring

1+kX , the goal of learning is to maximize the accuracy of the 

evaluation
1+ky . We applied the ANN as being among the most reliable predictive 

models, especially, in the case of noisy and incomplete data. Its architecture is chosen 
to be a multilayered architecture in which all neurons are fully connected; weights of 
connections have been, randomly, set at the beginning of the training. Regarding the 
activation function, the sigmoid function is applied [17] as being adequate in the case 
of continuous data. The network is composed of three layers: the first layer is 

composed of p input neurons. Each neuron is assigned the value ktx . The hidden layer 
is composed of a set of hidden neurons. The learning algorithm is an iterative 
algorithm that allows the training of the network. Its performance is controlled by two 
parameters. The first parameter is the momentum factor that tries to avoid local 
minima by stabilizing weights. The second factor is the learning rate which is 
responsible of the rapidity of the adjustment of weights.  
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Fig. 1. Approach overview 

3.2 Algorithm Adaptation 

3.2.1 Solution Representation 
To represent a candidate solution (individual), we used a vector representation. Each 
vector’s dimension represents a refactoring operation. Thus, a solution is defined as a 
long sequence of refactorings applied to different parts of the system to fix design 
defects. When created, the order of applying these refactorings corresponds to their 
positions in the vector. In addition, for each refactoring, a set of controlling 
parameters (stored in the vector), e.g., actors and roles are randomly picked from the 
program to be refactored and stored in the same vector.  

Moreover, when creating a sequence of refactorings (individuals), it is important to 
guarantee that they are feasible and that they can be legally applied. The first work in 
the literature was proposed by Opdyke [29] who introduced a way of formalizing the 
preconditions that must be imposed before a refactoring can be applied in order to 
preserve the behavior of the system. Opdyke created functions which could be used to 
formalise constraints. These constraints are similar to the Analysis Functions used 
later by Ó Cinneide [21] and Roberts [2] who developed an automatic refactoring tool 
to reduce program analysis. In our approach, we used a system to check a set of 
simple conditions, taking inspiration from the work proposed by Ó Cinnéide [21]. 
Although we suggest a recommendation system and we do not apply refactorings 
automatically, we verify the applicability of the suggested refactorings. Similarly to 
[2], our search-based refactoring tool simulates refactorings using pre and post 
conditions that are expressed in terms of conditions on a code model.  

 
3.2.2 Training Set and Data Normalization 
Before the learning process, the data used in the training set should be normalized. In 
our case, we choose to apply the Min-max technique since it is among the most 
accurate techniques according to [10]. We used the following data representation to 
the GA-based learning problem using ANN for software refactoring. Let us denote by 



36 B. Amal et al. 

 

E the training set of the ANN. It is composed of a set of couples that represent the 
refactoring sequence and its evaluation. 

{ } [ ]nkyXyXyXyXyXE nnkk ..1,),(),...,,(),..,,(),,(),,( 332211 ∈=  
kX  is a refactoring sequence represented as  [ ] [ ]ptxxxxX kpktkkk ..1,,...,,...,, 21 ∈=  . 

ky is the evaluation associated to the kth refactoring sequence in the range 
[ ]1..0∈ky . 

Let’s denote by O  the matrix that includes numerical values related to the set of 
refactorings and by Y the vector that contains numerical values representing Xk’s 
evaluations. O  is composed of n lines and p columns where n is equal to the number 
of refactoring sequences and p is equal to the number of solutions. 
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3.2.3 Change Operators 
To better explore the search space, the crossover and mutation operators are defined. 
For crossover, we use a single, random, cut-point crossover.  It starts by selecting and 
splitting at random two parent solutions. Then crossover creates two child solutions 
by putting, for the first child, the first part of the first parent with the second part of 
the second parent, and, for the second child, the first part of the second parent with the 
second part of the first parent. This operator must ensure that the length limits are 
respected by eliminating randomly some refactoring operations. Each child combines 
some of the refactoring operations of the first parent with some ones of the second 
one. In any given generation, each solution will be the parent in at most one crossover 
operation. The mutation operator picks randomly one or more operations from a 
sequence and replaces them by other ones from the initial list of possible refactorings. 
After applying genetic operators (mutation and crossover), we verify the feasibility of 
the generated sequence of refactoring by checking the pre and post conditions. Each 
refactoring operation that is not feasible due to unsatisfied preconditions will be 
removed from the generated refactoring sequence. 

4 Validation  

4.1 Research Questions  

In our study, we assess the performance of our refactoring approach by finding out 
whether it could generate meaningful sequences of refactorings that fix design defects 
while reducing the number of code changes, preserving the semantic coherence of the 
design, and reusing as much as possible a base of recorded refactoring operations 
applied in the past in similar contexts. Our study aims at addressing the research 
questions outlined below.  
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RQ1: To what extent can the proposed approach improve the design quality and 
propose efficient refactoring solutions? 

RQ2: How does the proposed approach perform compared to other existing search-
based refactoring approaches and other search algorithms? 

RQ3: How does the proposed approach perform comparing to existing approaches 
not based on heuristic search? 

To answer RQ1, we use two different validation methods: manual validation and 
automatic validation to evaluate the efficiency of the proposed refactorings. For the 
manual validation, we asked groups of potential users of our refactoring tool to 
evaluate, manually, whether the suggested refactorings are feasible and efficient. We 
define the metric “refactoring efficiency” (RE) which corresponds to the number of 
meaningful refactoring operations over the total number of suggested refactoring 
operations. For the automatic validation we compare the proposed refactorings with 
the expected ones using an existing benchmark  [22, 23, 4]. In terms of recall and 
precision. The expected refactorings are those applied by the software development 
team to the next software release. To collect these expected refactorings, we use Ref-
Finder [13], an Eclipse plug-in designed to detect refactorings between two program 
versions. Ref-Finder allows us to detect the list of refactorings applied to the current 
version we use in our experiments to suggest refactorings to obtain the next software 
version.  

To answer RQ2, we compare our approach to two other existing search-based 
refactoring approaches: Kessentini et al. [14] and Harman et al. [19] that consider the 
refactoring suggestion task using fitness function as a combination of quality metrics 
(single objective). We also assessed the performance of our proposal with the IGA 
technique proposed by Ghannem et al. [5] where the developer evaluates all the 
solutions manually. 

To answer RQ3, we compared our refactoring results with a popular design defects 
detection and correction tool JDeodorant [18] that do not use heuristic search 
techniques in terms precision, recall and RE. The current version of JDeodorant is 
implemented as an Eclipse plug-in that identifies some types of design defects using 
quality metrics and then proposes a list of refactoring strategies to fix them. 

4.2 Experimental Settings 

The goal of the study is to evaluate the usefulness and the effectiveness of our 
refactoring tool in practice. We conducted a non-subjective evaluation with potential 
developers who can use our refactoring tool. Our study involved a total number of 16 
subjects. All the subjects are volunteers and familiar with Java development. The 
experience of these subjects on Java programming ranged from 2 to 15 years 
including two undergraduate students, four master students, six PhD students, one 
faculty member, and three junior software developers. Subjects were very familiar 
with the practice of refactoring. 

We used a set of well-known and well-commented open-source Java projects. We 
applied our approach to six open-source Java projects: Xerces-J, JFreeChart, 
GanttProject, AntApache, JHotDraw, and Rhino . Xerces-J is a family of software 
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packages for parsing XML. JFreeChart is a powerful and flexible Java library for 
generating charts. GanttProject is a cross-platform tool for project scheduling. 
AntApache is a build tool and library specifically conceived for Java applications. 
JHotDraw is a GUI framework for drawing editors. Finally, Rhino is a JavaScript 
interpreter and compiler written in Java and developed for the Mozilla/Firefox 
browser. We selected these systems for our validation because they range from 
medium to large-sized open-source projects, which have been actively developed over 
the past 10 years, and their design has not been responsible for a slowdown of their 
developments. Table 1 provides some descriptive statistics about these six programs.  

Table 1. Studied systems 

Systems Release # classes KLOC 

Xerces-J v2.7.0 991 240 

JFreeChart  v1.0.9 521 170 

GanttProject v1.10.2 245 41 

AntApache  v1.8.2 1191 255 

JHotDraw  v6.1 585 21 

Rhino v1.7R1 305 42 

 
To collect the expected refactorings applied to next version of studied systems, we 

use Ref-Finder [13]. Ref-Finder, implemented as an Eclipse plug-in, can identify 
refactoring operations applied between two releases of a software system. Table 2 
shows the analyzed versions and the number of refactoring operations, identified by 
Ref-Finder, between each subsequent couple of analyzed versions, after the manual 
validation.  

Table 2. Expected refactorings collected using Ref-Finder 

Systems 

Expected refactorings

Next 

release 

# 

Refactorings 

Xerces-J v2.8.1 39 

JFreeChart  v1.0.11 31 

GanttProject v1.11.2 46 

AntApache  v1.8.4 78 

JHotDraw  v6.2 27 

Rhino 1.7R4 46 

 
In our experiments, we use and compare different refactoring techniques. For each 

algorithm, to generate an initial population, we start by defining the maximum vector 
length (maximum number of operations per solution). The vector length is 
proportional to the number of refactorings that are considered and the size of the 
program to be refactored. During the creation, the solutions have random sizes inside 
the allowed range. For all algorithms, we fixed the maximum vector length to 150 
refactorings,. We consider a list of 11 possible refactorings to restructure the design of 
the original program. Table 3 presents the parameter setting used in our experiments. 
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Table 3. Parameter setting 

Parameter Our approach Ghannem Harman et al. Kessentini et 
al. 

Population size 50 50 50 50 
Termination criterion 10000 10000 10000 10000 
Crossover probability 0.8 0.8 0.8 0.8 
Mutation probability 0.2 0.2 0.2 0.2 
Individual size 150 150 150 150 
Number of interactions 35 90 N/A N/A 
Interaction sample size 4 4 N/A N/A 

Our approach, like the others search-based approaches (Harman et al., Ghannem et 
al. and Kessentini et al.), is stochastic by nature, i.e., two different executions of the 
same algorithm with the same parameters on the same systems generally leads to 
different sets of suggested refactorings. To confirm the validity of the results, we 
executed each of the three algorithm 31 times and tested statistically the differences in 
terms of precision, recall, and RE. To compare two algorithms based on these metrics, 
we record the obtained metric’s values for both algorithms over 51 runs. After that, 
we compute the metric’s median value for each algorithm. Besides, we execute the 
Wilcoxon test with a 99% confidence level (α = 0.01) on the recorded metric’s values 
using the Wilcoxon MATLAB routine. If the returned p-value is less than 0.01 than, 
we reject H0 and we can state that one algorithm outperforms the other, otherwise we 
cannot say anything in terms of performance difference between the two algorithms. 
In table 4, we have performed multiple pairwise comparisons using the Wilcoxon test. 
Thus, we have to adjust the p-values. To achieve this task, we used Holm method 
which is reported to be more accurate than the Bonferroni one [1]. 

Table 4. Multiple pairwise comparisons using the Wilcoxon test  

 
 
As interesting observation from the results that will be detailed in the next section 

is that the medians are close, the results are statistically different but the effect size 
which quantifies the difference is small for most of the systems and techniques 
considered in our experiments. 
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4.3 Results and Discussions 

Results for RQ1: To answer RQ1, we need to assess the correctness/meaningfulness 
of the suggested refactorings from developers’ stand point. We reported the results of 
our empirical evaluation in Figure 2. We found that the majority of the suggested 
refactorings, with an average of more than 85% of RE, are considered by potential 
users as feasible, efficient in terms of improving the quality of the design and make 
sense.  

In addition to the empirical evaluation performed manually by developers to 
evaluate the suggested refactorings, we automatically evaluate our approach without 
using the feedback of potential users to give more quantitative evaluation to answer 
RQ1. Thus, we compare the proposed refactorings with the expected ones. The 
expected refactorings are those applied by the software development team to the next 
software release as described in Table 2. We use Ref-Finder to identify refactoring 
operations that are applied between the program version under analysis and the next 
version. Figures 3 and 4 summarizes our results. We found that a considerable 
number of proposed refactorings (an average of more than 80% for all studied 
systems in terms of recall) are already applied to the next version by software 
development team which is considered as a good recommendation score, especially 
that not all refactorings applied to next version are related to quality improvement, but 
also to add new functionalities, increase security, fix bugs, etc. 

To conclude, we found that our approach produces good refactoring based on 
potential users of our refactoring tool and expected refactorings applied to the next 
program version. 

Results for RQ2: To answer RQ2, we evaluate the efficiency of our approach 
comparing to three existing search-based refactoring contributions Harman et al. [19] 
Kessentini et al. [14] and Ghannem et al. [5]. In [19], Harman et al. proposed a multi-
objective approach that uses two quality metrics to improve (coupling between 
objects CBO, and standard deviation of methods per class SDMPC) after applying the 
refactorings sequence. In [14], a single-objective genetic algorithm is used to correct 
defects by finding the best refactoring sequence that reduces the number of defects. In 
[5], Ghannem et al. proposed an interactive Genetic Algorithm (IGA) for software 
refactoring where the user manually evaluates the suggested solutions by the GA. The 
comparison is performed through three metrics of Precision, Recall and RE. Figures 
2, 3 and 4 summarize our findings and report the median values of each of our 
evaluation metrics obtained for 31 simulation runs of all projects. 

We found that a considerable number of proposed refactorings (an average of 80% 
for all studied systems in terms of precision and recall) are already applied to the next 
version by software development team comparing to other existing approaches having 
only 65% and 74% for respectively Harman et al. and Kessentini et al. The precision 
and recall scores of the interactive approach proposed by Ghannem et al. are very 
similar to our approach (ILGA). However, our proposal requires much less effort and 
interactions with the designer to evaluate the solutions since the ANN replace the DM 
after a number of iterations/interactions. The same observations are also valid for RE 
where developers evaluated manually the best refactoring suggestions on all systems 
as described in Figure 2.  
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Results for RQ3: JDeodorant uses only structural information/improvements to 
suggest refactorings. Figures 2, 3 and 4 summarize our finding. It is clear that our 
proposal outperforms JDeodorant, in average, on all the systems in terms of RE, 
precision and recall. This is can be explained by the fact that JDeodorant use only 
structural metrics to evaluate the impact of suggested and do consider the designer 
preferences and the programming context. 
 

 

Fig. 2. RE median values of ILGA, Kessentini et al., Harman et al., Ghannem et al. and 
JDeodorant over 31 independent simulation runs using the Wilcoxon rank sum test with a 99% 
confidence level (α < 1%) 

       

 

Fig. 3. Precision median values of ILGA, Kessentini et al., Harman et al., Ghannem et al. and 
JDeodorant over 31 independent simulation runs using the Wilcoxon rank sum test with a 99% 
confidence level (α < 1%) 
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Fig. 4. Recall median values of ILGA, Kessentini et al., Harman et al., Ghannem et al. and 
JDeodorant over 31 independent simulation runs using the Wilcoxon rank sum test with a 99% 
confidence level (α < 1%) 

The number of interactions with the designer is a critical parameter of our ILGA 
approach to estimate the number of training examples required by the ANNs to generate 
a good predective model of the fitness function. Figure 5 shows that an increase of the 
number of interactions improve the quality of the results on Xerces however after 
around 35 interactions (iterations) the precison and recall scores become stable. At each 
iteration, the designer evaluates 4 refactoring solutions. Thus, we defined the number of 
interactions emprically in our experiments based on this observation.  

 

             
Fig. 5. Number of interactions versus Precision/Recall on Xerces 

 

Usually in the optimization research field, the most time consuming operation is 
the evaluation step. Thus, we show how our ILGA algorithm is more efficient than 
existing search-based approaches from a CPU time (Computational Time) viewpoint. 
In fact, all the algorithms under comparison were executed on machines with Intel 
Xeon 3 GHz processors and 8 GB RAM. Figure 6 illustrates the obtained average 
CPU times of all algorithms on the systems. We note that the results presented in this 
figure were analyzed by using the same previously described statistical analysis 
methodology. In fact, based on the obtained p-values regarding CPU times, the ILGA 
is demonstrated to be faster than the remaining techniques as highlighted through 
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figure 6. The ILGA spends approximately the half amount of time required for IGA 
proposed by Ghannem et al. This observation could be explained by the fact that IGA 
requires a high number of interactions with the designer to evaluate the solutions 
which is a time consuming task. We can see that the use of an ANN to generate a 
surrogate fitness function seems to be an interesting approach to tackle software 
engineering problems where the individual evaluations are expensive like the case of 
software refactoring.  

 

 

Fig. 6. Execution time 

4.4 Threats to Validity 

In our experiments, construct validity threats are related to the absence of similar work 
that uses interactive search-based learning techniques for software refactoring. For that 
reason we compare our proposal with several other refactoring techniques. Another 
construct threat can be related to the corpus of manually applied refactorings since 
developers do not all agree if a candidate is a code smell or not. We will ask some new 
experts to extend the existing corpus and provide additional feedback regarding the 
suggested refactorings. In addition, the parameter tuning of the different algorithms can 
be another threat related to our experiments that should be addressed in the future by 
further experiments with different parameters. 

We take into consideration the internal threats to validity in the use of stochastic 
algorithms since our experimental study is performed based on 31 independent 
simulation runs for each problem instance and the obtained results are statistically 
analyzed by using the Wilcoxon rank sum test [15] with a 95% confidence level (α = 
5%). However, the parameter tuning of the different optimization algorithms used in our 
experiments creates another internal threat that we need to evaluate in our future work.  

External validity refers to the generalizability of our findings. In this study, we 
performed our experiments on seven different widely-used open-source systems 
belonging to different domains and with different sizes. However, we cannot assert that 
our results can be generalized to industrial applications, other programming languages, 
and to other practitioners. Future replications of this study are necessary to confirm the 
generalizability of our findings. 

5 Conclusion 

This paper presented a novel interactive search-based learning refactoring approach 
that does not require the definition of a fitness function. The developer is asked to 
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evaluate manually refactoring solutions suggested by a Genetic Algorithm (GA) for 
few iterations then these examples are used as a training set for the ANNs to evaluate 
the solutions of the GA in the next iterations. We evaluated our approach on open-
source systems. We report the results on the efficiency and effectiveness of our 
approach, compared to existing approaches.  

In future work, we are planning to investigate an empirical study to consider 
additional systems and larger set of refactoring operations in our experiments. We are 
also planning to extend our approach to include the detection of refactoring 
opportunities using our interactive search-based learning approach. 
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Abstract. Software architecture knowledge is an important asset in to-
day’s projects, as it serves to share the main design decisions among the
project stakeholders. Architectural knowledge is commonly captured by
the Software Architecture Document (SAD), an artifact that is useful
but can also be costly to produce and maintain. In practice, the SAD
often fails to fulfill its mission of addressing the stakeholders’ informa-
tion needs, due to factors such as: detailed or high-level contents that
do not consider all stakeholders, outdated documentation, or documen-
tation generated late in the lifecycle, among others. To alleviate this
problem, we propose a documentation strategy that seeks to balance the
stakeholders’ interests in the SAD against the efforts of producing it.
Our strategy is cast as an optimization problem called "the next SAD
version problem” (NSVP) and several search-based techniques for it are
discussed. A preliminary evaluation of our approach has shown its po-
tential for exploring cost-benefit tradeoffs in documentation production.

Keywords: architecture documentation model, stakeholders, informa-
tion needs, combinatorial optimization, search-based techniques.

1 Introduction

As software systems grow large and complex, the reliance on some form of docu-
mentation becomes a necessity in many projects [1]. Since producing documenta-
tion does not come without cost, software engineers must carefully consider how
this process plays out in the development lifecycle (e.g., artifacts, techniques,
tools), and furthermore, identify the goals of the project stakeholders. In par-
ticular, a useful model for describing the high-level structure of a system is the
software architecture [2], which is the main domain explored in this work. The
architecture is typically captured by the so-called Software Architecture Doc-
ument (or SAD), as an information repository that enables knowledge sharing
among the architecture stakeholders [3]. The SAD is structured into sections that
contain text and design diagrams, known as architectural views, which permit to
reason about the architectural solution from different perspectives.

Documenting an architecture with multiple stakeholders poses challenges for
the SAD. A first challenge is that the SAD contents target readers that might
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have different backgrounds and information needs [4]. For example, project man-
agers are mainly interested in high-level module views and allocation views,
whereas developers need extensive information about module views and behav-
ioral views. Many times, the SAD is loaded with development-oriented contents
that only consider a few (internal) stakeholders. In practice, the documentation
usefulness decreases as more information is added, because finding relevant in-
formation in a large set of documents becomes difficult [1]. A second challenge
is the effort necessary for creating (and updating) the SAD, an expenditure
that developers and managers do not wish to bear, mainly because of budget
constraints, tight schedules, or pressures on developing user-visible features. As
a result, the architecture knowledge ends up informally captured. Besides the
stakeholders’ dissatisfaction, the problem of ineffective documentation brings
hidden costs such as: knowledge vaporization, re-work, and poor quality [5].

Recently, some works have investigated the practices and value of architecture
documentation [6]. In this context, we argue that the SAD should be produced
in incremental versions and concurrently with the design work. Thus, the main
question becomes: how much documentation is good enough for the next SAD
release? Answering this question involves a tradeoff between documenting those
aspects being useful to the stakeholders and keeping the documentation efforts
low. To deal with this tradeoff, we previously proposed [7] an optimization tool
that, for a given SAD version, is able to assist the documenter in choosing a set
of SAD updates that brings high value for the stakeholders. The tool is based on
the Views & Beyond (V&B) method [8,3], which explicitly links the candidate
architectural views for the SAD to the needs of its stakeholders. The optimization
was treated as a knapsack problem that maximizes the stakeholders’ utility with-
out exceeding a cost constraint. Yet, considering that documentation is more a
business decision than a technical one, we believe that alternative optimizations
can be required, depending on cost-benefit concerns of the project.

In this work, we provide a general formulation of the SAD documentation
strategy and its associated optimization problem(s), that we call the Next SAD
Version Problem (NSVP), by analogy with the well-known Next Release Problem
(NRP) [9,10]. As its main contribution, our proposal considers two variants for
NSVP: a single-objective cost minimization and a bi-objective optimization (cost
versus utility), in addition to the single-objective utility maximization of [7]. We
also investigate different satisfaction functions for stakeholders. The experimen-
tal results, although preliminary, show that the NSVP optimization approach
helps to explore alternative documentation strategies with reduced costs.

The article is organized as follows. Section 2 provides background about archi-
tecture documentation. Section 3 formally defines the NSVP as an optimization
problem. Section 4 discusses exact and heuristic algorithms for NSVP. Section 5
reports on an empirical evaluation with a SAD case-study. Section 6 discusses
related work. Finally, Section 7 gives the conclusions and future work.
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2 Background

The software architecture is the set of structures needed to reason about a com-
puting system, comprising software elements, their relations, and properties of
both [2]. Design decisions are part of the architecture, as they record the ratio-
nale behind the architects’ solution [11]. An example of decisions is the use of
certain patterns, such as layers or client-server, to meet stakeholders’ goals, such
as modifiability or performance qualities, among others. Thus, the architecture
acts as a blueprint in which the main stakeholders’ concerns can be discussed. By
stakeholder [12], we mean any person, group or organization that is interested
in or affected by the architecture (e.g., managers, architects, developers, testers,
end-users, contractors, auditors). In order to share the architecture knowledge
among the stakeholders, it must be adequately documented and communicated.
The SAD is the usual “knowledge radiator” and can take a variety of formats,
for instance: Word documents, UML diagrams, or Web pages in a Wiki [13,14].

The notion of architectural views is key in the organization of architectural
documentation, and it is part of most current documentation methods [3]. A
view presents an aspect or viewpoint of the system (e.g., static aspects, run-
time aspects, allocation hardware, etc.). Typical views include: module views
(the units of implementation and their dependencies), component-and-connector
views (the elements having runtime presence and their interactions), or alloca-
tion views (the mappings of software elements to hardware). In addition, these
views include text describing the design elements and decisions that pertain to
the views. Therefore, we can see a SAD as a collection of documents with tex-
tual and graphical contents. Figure 1 shows a snapshot of a Wiki-based SAD1,
in which their documents (Wiki pages) adhere to the V&B templates2.

In architecture-centric projects, the SAD usually emerges as a by-product of
the architects’ design work. The stakeholders (both internal and external ones)
are the main SAD consumers. Moreover, a SAD is useful as long as its contents
satisfy the stakeholders’ information needs. A good strategy to ensure this goal is
to deliver the SAD in incremental versions along with the (iterative & incremen-
tal) development of the architecture itself [15,1]. In the documentation process,
the documenter must decide what should be added (or updated) in a given SAD
version. She is expected to follow the well-known rule: “write the SAD contents
from the reader’s perspective rather than from writer’s” [3], but also consider
the so-called TAGRI principle3: “They [the stakeholders] Ain’t Gonna Read It”,
which advocates for documenting only what reflects true needs. To realize these
ideas, a model of stakeholders’ interests regarding the architectural contents of
the SAD is needed. For instance, we can have a matrix of S stakeholders (or
stakeholder roles) and D SAD documents (or view types), in which a cell in-
dicates that stakeholder Si is interested in the information of document Dj .
1 SEI example:
https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD

2 V&B templates:
http://www.sei.cmu.edu/downloads/sad/SAD_template_05Feb2006.dot

3 Scott Ambler’s website: http://www.agilemodeling.com/essays/tagri.htm

https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD
http://www.sei.cmu.edu/downloads/sad/SAD_template_05Feb2006.dot
http://www.agilemodeling.com/essays/tagri.htm
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Fig. 1. Example of a Wiki-based SAD with architectural views of the V&B method

In fact, some documentation methods, and specifically V&B, provide guidance
for generating the SAD contents according to such a model [8,16].

In an ideal situation, one would analyze the matrix and produce a SAD version
addressing all stakeholders’ interests. Unfortunately, this is seldom the case in
practice, either because the documentation resources are scarce or because of
conflicts between stakeholders’ interests. Empirical studies [17] have shown that
individual stakeholder’s concerns are met by a SAD fraction (less than 25%),
but for each stakeholder a different (sometimes overlapping) fraction is needed.
Therefore, determining the “delta” of SAD contents that brings most utility (or
benefit) to the stakeholders as a whole is not a straightforward decision.

3 The Next SAD Version Problem (NSVP)

We see the SAD as an artifact that contains n documents, each one associated to
a predefined view template4. In this work, we assume the usage of the V&B views
and templates, although other view-centric methods are equally possible. Let
SADt =< d t

1 , ..., d
t
n > be a SAD version at time t, in which each vector position

corresponds to a document and dk (1 ∈ k ∈ n) is its level of detail (at time t).
We assume a discretization of the possible completion states of a document k,
based on the sub-sections prescribed by the V&B templates. Figure 2 depicts how
a view document of V&B can be filled with new contents over time. This should
not be interpreted as a strict documentation progression for the documenter,
but rather as a guideline based on the relative importance of the sub-sections
4 Admittedly, other documents with no architectural views are usually part of a SAD

(e.g., system context, main stakeholders, architectural drivers, or glossary). These
documents are out of the current NSVP scope, but still considered in our evaluation.
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for the view under consideration [8] (e.g., a documenter might begin adding
rationale information, but it is recommended that she works first on the primary
presentation of her solution and describes its main elements before providing a
detailed solution rationale). In particular, we here assume 4 completion states
DS = {empty, overview, someDetail, detailed} for a document, so as to keep
its evolution at a manageable level. In general, the mapping between discrete
completion states and required view sections can be adjusted, depending on the
chosen documentation method and templates.

Given a partially-documented SADt, let us consider an arbitrary next version
SADt+1 =< d t+1

1 , ..., d t+1
n > with d t+1

i ∩ d t
i . We define an increment vector

Δ =< x1, ..., xn > such that d t
i + xi = d t+1

i . Note that changes in document
states are currently assumed to be always additive (fixes to a sub-section are also
allowed with a cost, but they are not expected to alter the current state). For
example, a deployment view like in Figure 1 can be refined with information for
the sections Element Catalog and Context Diagram, which implies a transition
from overview to someDetail. Thus, Δ is actually a decision vector, because one
can choose alternative increments (i.e., levels of detail) for the documents in
order to fulfill objectives related to stakeholders’ satisfaction and cost.

Fig. 2. Evolution of the contents of a document (based on View template of V&B)

The cost of a document state change dk � d′k is assumed to be a fixed
quantity. Then, we have a cost vector CΔ =< c1, ..., cn > with ck = cost(dk , d

′
k),

and the total cost of an increment Δ, denoted by Cost(Δ), is the sum of the
individual costs of changing document. If dk = d′k, a zero cost is assigned, unless
fixes were applied to the document (without altering its completion level). We
refer to Cost(Δ) as the production cost for the next SAD version.

The expected utility of an increment Δ is a function of the vectors SADt

and SADt+1, but it also depends on the stakeholders’ preferences on those two
state vectors. Similarly to the cost formulation, we assume a benefit vector
BΔ =< b1, ..., bn > with bk = benefit(dk , d

′
k, satisfactionk(S)) in the range

[0, 1] (0 means no utility, and 1 means high utility). Given a set of m stakehold-
ers S = {S1, ..., Sm}, satisfactionk(S) captures the combined preferences of all
stakeholders on the document state transition dk � d′k. For example, stake-
holder X might prefer a deployment view D in overview, while stakeholder Y
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might instead prefer the same document in detailed. In other words, bk is the
“happiness” of the stakeholders group with an increased detail in document k,
and Benefit(Δ) is computed as the sum of the utilities through all documents.
Benefit(Δ) is a measure of the stakeholders’ utility with the next SAD version.

The NSVP consists of choosing an increment Δ for a SADt such that both
Cost(Δ) and Benefit(Δ) are optimized. Specifically, 3 variants are possible:
(i) NSVP-B, in which Benefit(Δ) is maximized with Cost(Δ) lower than a
threshold C; (ii) NSVP-C, in which Cost(Δ) is minimized with Benefit(Δ)
above a threshold B; or (iii) NSVP-BC, in which Benefit(Δ) is maximized while
Cost(Δ) is minimized. The first two variants are constrained, mono-objective
optimizations, whereas the third variant is a bi-objective optimization. In the
latter, we are interested in the non-dominated solutions of the benefit-cost space.

3.1 Determining Production Costs

The production cost of the next SAD version is Cost(Δ) =
n∑

k=1

cost(xk) =

n∑
k=1

cost(d t
k , d

t+1
k ). In our 4-state model the detail level of a document increases

according to the sequence empty (0) ≥ overview (1) ≥ someDetail (2) ≥
detailed (3). Thus, we assume an “atomic” cost associated to each transition
in the sequence (see Figure 2). An atomic cost ci,k denotes the (documenter’s)
effort of updating document k with current detail i to its next consecutive level
i+1. For a transition between not-consecutive states, we use a “composite” cost
equal to the sum of the atomic costs across the transition.

Certainly, estimating the costs of writing SAD sections is a subjective activity.
One proxy for estimating such costs is the number of words. For instance, if a
document has 1000 words and is considered to have a 100% of completeness, its
atomic costs can be c0 = c1 = c2 ∧ 333. This estimation is crude, since costs are
affected by the document type (e.g., architectural view, template used, typical
amount of text required, or need of design diagrams). In practice, the final length
of a SAD document can be unknown. Nonetheless, it is possible for the docu-
menter to provide ballpark estimates (often, in collaboration with the manager
or experienced architects), based on: historical effort information, importance of
certain views, or number of design decisions involved, among others.

3.2 Assessing Stakeholders’ Utility

The benefit of the next SAD is given by Benefit(Δ) =
n∑

k=1

benefit(xk) =

n∑
k=1

benefit(d t
k , d

t+1
k , satisfactionk(S)). Computing benefit(dk , d

′
k,

satisfactionk(S)) for a document k requires the specification of: i) the satis-
faction information satisfactionk(S), and ii) a procedure to combine individual
satisfactions into one single value. For every SAD document, a stakeholder can
prefer any state in DS = {empty, overview, someDetail, detailed}. Note here
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that empty is interpreted as the stakeholder being “not interested” in the docu-
ment. This model of preferences is derived from the V&B method [8,3]. In order
to translate preferences to satisfaction values, we introduce the notion of satis-
faction function. We depart from the assumption that a stakeholder somehow
knows her “perfect” level of detail for a document, based on her own information
needs and the expected information to be conveyed by an architectural view.
This knowledge is modeled by functions of the form sf : DS × DS ≥ [0, 1],
which depend on both the actual and preferred completion states of a document
and also on the view type. Based on our experience with architectural documen-
tation projects, we propose three candidate functions that can be assigned to
stakeholders, as described in Figure 3. Anyway, other satisfaction functions that
take into account the semantics of document changes are also possible.

Fig. 3. Satisfaction functions for stakeholders’ preferences on detail of documents

Fig. 4. Example of converting stakeholder preferences to satisfaction values

Function A (exact-or-nothing) gives maximal satisfaction (1.0) when the cur-
rent detail of the document matches exactly the stakeholder preference, and 0.0
satisfaction otherwise. Function B (more-is-fine) proportionally increases the sat-
isfaction value as the current detail of the document gets closer to the stakeholder
preference, and beyond that point the satisfaction gets the maximal value (1.0).
This reflects the situation in which the stakeholder does not care having more
detail than required. Function C (more-can-be-penalized) is a variant of Func-
tion B. It begins with a proportional increase until the document detail matches
the stakeholder preference, but for higher detail than required the satisfaction
value decreases slightly. This situation would happen when the stakeholder is
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overwhelmed by an excess of information. In all functions, we set ε = 0.1 as the
“allowed difference” for a matching between a preference prefk and a document
state dk, that is, prefk ≈ dk ⇒| prefk − dk |∈ ε . Eliciting the right satisfaction
function of a stakeholder is not trivial, and it is out of the scope of this work.

In the end, after applying this kind of satisfaction functions, we obtain a
vector satisfactionk(S) =< sk(S1), ..., s(Sm) > with sk(Si) ∈ [0, 1]. Examples of
satisfaction vectors computed with functions A, B, and C are shown in Figure 4.
Note that two (or more) stakeholders might have competing preferences on the
same document, which cannot be solved by means of the satisfaction functions
(except perhaps when Function B is used). This tradeoff situation means that
selecting a detail level for a document might satisfy some stakeholders but might
just partially satisfy others. In our model, the aggregation of the stakeholder
satisfaction is based on a weighted average schema. Specifically, we assign each
stakeholder Si a priority pi in the range [0, 10], where 0 is the lowest priority and
10 is the highest one. This priority can be defined by the role that the stakeholder
plays in the project. Along this line, the average utility of all stakeholders with

document k is benefit(dk , d
′
k, satisfactionk(S)) = (

m∑
i=1

uk(Si) ∗ pi)/
m∑
i=1

pi.

4 Exact and Heuristic Algorithms for NSVP

To solve NSVP instances (i.e., find a “good” SAD documentation strategy),
discrete optimization techniques can be applied [18], based either on exact or
heuristic algorithms. In our case, the number of SAD documents (N) is the
main contributor to problem size, affecting the choice between exact or heuristic
algorithms. Real-life SAD sizes have typically 15-40 documents, depending on
how critical the architecture is for the system (and hence, its documentation). In
this work, we explored 2 exact and 2 heuristic implementations, namely: i) Back-
tracking, ii) SAT4J [19], iii) Random Search, and iv) the NSGA-II algorithm [20].
The goal here was to assess their performance and optimality (of results) using
synthetic data for SAD state vectors, costs, and stakeholders’ preferences. The
goodness (or score) of a solution is tied to the NSVP variant, namely: highest
benefit (NSVP-B), lowest cost (NSVP-C), or non-dominated cost-benefit pairs
(NSVP-BC). Figure 5 shows outputs of SAT4J, NSGA-II and RandomSearch
for NSVP-BC. The points represent the Pareto front of pairs (benefit, cost).

The 4 implementations are summarized next. First, Backtracking is a algo-
rithm that progressively generates and evaluates all valid decision vectors Δ that
derive from SADt. We used backtracking as a baseline for the SAT4J algorithm,
knowing in advance that backtracking would have trouble with medium-to-large
instances (e.g., SADs with N ∩ 20). Second, SAT4J treats the document state
representation as if it were a 0-1 Knapsack Problem [7]. The tasks model the
transitions between document states, like in Figure 2. With this representa-
tion, we took advantage of the state-of-the-art Pseudo-boolean (PB) solver of
SAT4J [19]. The PB solver only deals with single-objective minimization subject
to constraints (NSVP-C), but its adaptation to single-objective maximization
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Fig. 5. Sample of Pareto fronts (cost versus benefit) using exact/heuristic algorithms

(NSVP-B) is straightforward. In NSVP-BC, we iterate over all possible costs,
defining each one as a constraint and then invoking the solver with an NSVP-B
instance. Non-dominated solutions are returned. This schema adds some over-
head, but still capitalizes on the SAT4J performance.

Third, the Random Search implementation takes the current SADt and then
randomly generates vectors Δ leading to SADt+1. It was built on top of an im-
plementation provided by the MOEA framework5, as a baseline for the NSGA-II
algorithm. Despite the low execution times of Random Search for the 3 NSVP
variants, the solutions are seldom optimal (see Figures 5a and 5b), and some-
times they even violate the cost (or benefit) constraints. Fourth, NSGA-II is a
well-known genetic algorithm for multi-objective optimization [20]. Our imple-
mentation was based on the NSGA-II version of MOEA, and solves any of the
NSVP variants. In short, NSGA-II uses an evolutionary process with operators
such as selection, genetic crossover and genetic mutation, applied to the docu-
ment state representation of NSVP. An initial population of vectors Δ is evolved
through several generations.

For the sake of brevity, we focus our analysis on the NSVP-BC formulation.
From Figure 5 (and other Pareto fronts, not included here), we observed that
the percentage of SAD completion affects the number of non-dominated solu-
tions: the higher the percentage the fewer the solutions. Also, the differences in
solution quality (cost and benefit) for the 3 algorithms get smaller, as the com-
pletion percentage increases. A possible explanation for this trend is that the

5 http://www.moeaframework.org/

http://www.moeaframework.org/
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optimization problem gets “easier” for SAD percentages greater than 70% (be-
cause the potential solution space to search for is small). Nonetheless, there were
differences between the solutions of NSGA-II and Random Search for NSVP-BC,
particularly for large SADs (N ∩ 30), as NSGA-II produced Pareto fronts closer
to the reference front of SAT4J. In addition, the SAD completion influenced the
costs attainable by the NSVP-BC solutions, with wider cost fluctuations in the
Pareto sets for SAD instances with completion lower than 30%. Along this line,
we can say that the completion range 25-50% offers the best opportunities for
the documenter to find diverse cost-benefit solutions.

Another interesting observation is how the satisfaction functions modulate
the Pareto solutions. The choice of function B (more-is-fine) leads to more so-
lutions than the other functions (see Figures 5c and 5d), because function B is
more likely to accommodate many stakeholder preferences, even if the stakehold-
ers have different priorities. Function A (exact-or-nothing) showed the opposite
behavior, with a very “strict” preference satisfaction that generates a sort of com-
petition among stakeholders, which ultimately leads to few solution alternatives.

A performance analysis of the SAT4J and NSGA-II showed that their scal-
ability varies, as expected, depending on the SAD sizes. For example, Figure 6
presents execution times of the 3 algorithms for a range of N (15-40) and incre-
mental SAD completions (25%, 50%, and 75%). Overall, NSGA-II came out as
an efficient alternative for the 3 NSVP variants. On one hand, NSGA-II showed
bound execution times, with a slight increase at N ∧ 30, independently of the
SAD completion. This behavior can be attributed to the evolutionary process
of the genetic algorithm. On the other hand, SAT4J performed well for small
SADs (N ∈ 30), with a fast response for SADs above 50%. Its execution times
started to degrade beyond N = 30 but only for incomplete SADs (completion
around 25%). Although more experiments are needed, this finding suggests that
SAT4J is very competitive for NSVP instances involving small-to-medium SADs
and medium-to-high completion levels. For a general setting (or future, more
complex NSVPs), we conclude that NSGA-II should be the solver of choice.

Fig. 6. Performance (in ms.) of exact/heuristic algorithms for different SAD sizes
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5 Case-Study

In addition to the experiments with synthetic data, we evaluated our approach
on Wiki-based SADs being accessed by groups of (simulated) stakeholders. The
main goal was to compare SAD increments produced by the SAT4J (or NSGA-II)
algorithm against SAD versions generated in a usual manner (i.e., with no con-
tent optimization whatsoever). The objects of the study were incremental SAD
versions, and we measured the cost of producing those increments as well as their
benefit for predefined stakeholders. The subjects (stakeholders) were undergrad-
uate students from a Software Architecture course taught at UNICEN University
(Tandil, Argentina), with 2-4 years of developing experience. We organized these
students into 11 groups of 7 members, each member playing a distinctive stake-
holder role: 3 members took the architect role, whereas the other 4 members
were divided into: 1 manager, 1 evaluator (responsible for design reviews) and
2 clients (e.g., representatives of external companies). Their priorities were as
follows: pmanager = 10 , parchitect = 6, pclient1 = 6, pevaluator = 2, pclient2 = 2.

The architects (of each group) were asked to: i) design an architecture solution
for a model problem called CTAS6, and ii) use V&B to produce SADs (one per
group) that should satisfy the concerns of the other roles of the group. The
stakeholders’ preferences were derived from the view-role matrix of [3]. Both
the design and documentation work had to be done in 3 iterations of 3 weeks,
with 2 (partial) SAD versions for the first 2 iterations and a final release after 9
weeks. The managers, clients, and evaluators periodically assessed the solution
and documentation quality, and gave feedback to the architects. We refer to these
documentation versions as normal SADs, because their production strategy was
only based on architects’ criteria (and not steered by optimization techniques).

Once all the groups were finished, we obtained 3 normal SAD versions (or
slices) per group with the different completion percentages: 10-25% after the
1st iteration (slice 1), 40-60% after the 2nd iteration (slice 2), and 75-85% af-
ter the 3rd iteration (final SAD). The final SADs were not considered as 100%
complete, because some sections were unfinished or lacked details. These percent-
ages were estimated by counting the number of words and images per document
(an image ≈ 200 words). The same metric was also used to estimate the cost
of producing a SAD document, by considering a word as a unit of effort. We
established the costs and utilities of the normal SAD slices as references for the
optimization counterparts. Under a NSVP-BC formulation, we initially executed
the optimization algorithms on slice 1 of every group (transition to slice 2). The
same procedure was then repeated for slice 2 (transition to final SAD). We re-
fer to the SAD versions produced by our algorithms as optimized SADs. Based
on the Pareto fronts, we analyzed two situations: i) the best benefit reachable
for each slice (and its corresponding cost), and ii) the cost for having the same
benefit shown by the (next) normal slice.

6 http://people.cs.clemson.edu/~johnmc/courses/cpsc875/resources/
Telematics.pdf

http://people.cs.clemson.edu/~{}johnmc/courses/cpsc875/resources/Telematics.pdf
http://people.cs.clemson.edu/~{}johnmc/courses/cpsc875/resources/Telematics.pdf
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Figure 7 shows the evolution of the average values of costs and benefits across
the normal SAD versions, and the vectors represent what-if optimization an-
alyzes (for the 3 satisfaction functions). The Utility Evolution chart (left side)
compares utility values of normal SADs against optimized SADs. For instance, at
slice 2, normal-Fa (normal SAD for function A) reached a utility of 5.52, whereas
opt-optimal-Fa (best solution of optimized SAD for function A) reached a util-
ity of 6. The Cost Evolution chart (right side) compares the costs of producing
normal SADs against: i) optimized SADs with maximum benefit, and ii) opti-
mized SADs with the same benefit as normal SADs. For instance, at slice 2,
the cost of having a normal SAD was 98, while the costs of opt-optimal-Fa and
opt-same-utility-normal-Fa were 103 and 78 respectively. In opt-optimal-Fa we
had a slightly higher cost than that of normal SADs but the utility was better.
In opt-same-utility-normal-Fa, the optimization helped to reach a utility of 5.52
(normal-Fa at slice 2 in Utility Evolution chart) but with a lower effort.

Fig. 7. Evolution of utility and cost over different SAD versions

From the results of Figure 7, we noticed that the optimized SADs achieved
higher benefits for the 3 satisfactions functions, ranging between 9-20% of im-
provement for slice 2 and 55-93% for slice 3. Although, the costs to compute
optimal solutions increased by 11%. However, for the same utility values of the
normal SADs, we observed lower costs when applying optimization with savings
of 44-78%. These savings mean that our algorithms produced smaller SADs with
comparable utilities. Furthermore, it would suggest that the normal SADs had
unnecessary contents for the stakeholder’s needs.

We applied a Mann-Whitney-Wilcoxon (MWW) test to statistically validate
results of this case-study. We tested the null hypothesis H0 : individual utility
values of normal SADs are equal to those of optimized SADs, for slice 2 and
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the final SAD. With a significance level of 0.05, we verified a significant dif-
ference between utility values in favor of optimized SADs, except for function
C at slice 2 and function B at the final SAD. Nevertheless, in those cases the
average utility values of optimized SADs were still higher. Furthermore, in order
to get insights on why optimized SADs outperformed normal ones, we manually
inspected a sample of manual SADs in terms of satisfaction values. We realized
that documenters who produced normal SADs tended to satisfy all stakeholders
alike. On the contrary, the optimized SADs clearly favored high-priority stake-
holders. These observations also support our conjecture about the complexity of
producing satisfying documentation for stakeholders with competing interests.

At last, the evaluation has some validity threats. First, the results of our
case-study cannot be generalized, as we used students in an academic environ-
ment, which might differ from an industrial context with seasoned practitioners.
However, many students were actually working for software companies. Second,
our effort unit for SAD production costs (amount of words of documents) is a
simplification, and a better estimation proxy should be applied in real scenarios.

6 Related Work

In the last decade, several methods for software architecture documentation have
emerged, namely: Kruchten’s 4+1 View Model, Siemens Four Views, Software
Systems Architecture and SEI Views & Beyond (V&B) [3,16]. A common aspect
is the prescription of a SAD structure (i.e., templates) and the usage of views for
different system viewpoints, which might be related to stakeholders’ concerns.
Nonetheless, these methods do not provide guidelines for creating the documen-
tation package, except for the steps suggested by V&B [3]. V&B also proposes
basic rules for relating stakeholder roles and views. The documenter is expected
to apply these rules when determining the contents of a SAD release, but still
this might be a complex and time-consuming task. This drawback motivated our
NSVP work as a semi-automated aid to the documenter. However, our approach
is not tied to V&B and can apply to other strategies, such as ACDM [15].

Optimization techniques have been used in several Software Engineering fields
[21]. In particular, the Next Release Problem (NRP) is initially due to Bagnall
et al. [9]. In the NRP formulation, a software company has to determine a subset
of features that should be included in the next product release, in such a way the
overall satisfaction of the company customers is maximized. Every customer is
interested in a given subset of features and her satisfaction is proportional to the
percentage of relevant features being included in the next release. Each feature
is associated to a cost, and the total cost of the scheduled features must not
exceed the available resources. The NRP was lately extended to a multi-objective
formulation, known as MONRP (Multi-Objective Next Release Problem) [10,22],
which treats the cost as a minimization objective. Along this line, MONRP
has admits several solutions. Experiments with synthetic data [10,22] to solve
(large) MONRP instances have shown that NSGA-II algorithms outperformed
other ones with acceptable execution times. Nonetheless, the application of these
ideas to other domains is still a topic of research.
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7 Conclusions and Future Work

In this article, we have formalized the NSVP as an optimization problem for
the production of software architecture documentation. A novel aspect of NSVP
is that it seeks to balance the multiple stakeholders’ interests in the SAD con-
tents against the efforts of producing them. To do so, we characterize common
stakeholder profiles and relate them to architectural views prescribed by SAD
templates. The stakeholders’ benefits were quantified by means of possible sat-
isfaction functions. Our NSVP formulation admits 3 optimization variants. The
project context should inform the selection of the most suitable variant. Two al-
gorithms (SAT4J and NSGA-II) for efficiently solving the NSVP were discussed,
although other algorithms are also possible. This kind of algorithms supports
the documenter’s tasks, assisting her to explore alternative solutions (e.g., the
Pareto fronts). We actually envision a practical scenario where she can quickly
identify “unnecessary” architectural information (with the consequent effort sav-
ings), and then prioritize relevant contents for the next SAD version.

A preliminary evaluation of the NSVP algorithms with both synthetic data
and a case-study showed encouraging results. We observed a clear improvement
in the quality of the optimized SAD versions, when compared to SAD coun-
terparts generated in the usual manner. Regarding the satisfaction functions,
we corroborated that, beyond a certain completion (≈ 75%), the addition of
more documentation reduces the SAD global utility. There is a “sweet spot” for
applying optimized documentation when the SAD has a 25-40% of completion.

The current NSVP formulation still has shortcomings, mostly related to the
assumptions of our model, such us stakeholders’ interests on views, the com-
pletion actions for templates, the satisfaction functions, and the cost measures.
These assumptions are either based on the authors’ experience or taken from the
literature, but they must be further validated (e.g., with user studies). We need
to empirically investigate the correlations between the satisfaction computed by
the functions and the actual stakeholders’ satisfaction [6]. Regarding the SAD
structure, some aspects ignored in today’s model include: dependencies between
SAD sections, or varied documentation actions (e.g., updating a section due to
system refactoring, or deleting a section). These extensions to the NSVP pose
a more complex optimization problem, and might emphasize the role of heuris-
tic solvers. As for the V&B schema of stakeholder preferences, we will enhance
it with user profiling techniques that incorporate personal dynamic interests,
instead of using just predefined roles. Finally, we plan to consider stakehold-
ers’ concerns that might crosscut the SAD with the support of document pro-
cessing/recognition techniques. For instance, interests on topics, such us system
features or quality attributes, that affect more than one view or document.
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Abstract. The rise and adoption of the Cloud computing paradigm had a strong
impact on the ICT world in the last few years; this technology has now reached
maturity and Cloud providers offer a variety of solutions and services to their
customers. However, beside the advantages, Cloud computing introduced new
issues and challenges. In particular, the heterogeneity of the Cloud services of-
fered and their relative pricing models makes the identification of a deployment
solution that minimizes costs and guarantees QoS very complex. Performance
assessment of Cloud based application needs for new models and tools to take
into consideration the dynamism and multi-tenancy intrinsic of the Cloud envi-
ronment. The aim of this work is to provide a novel mixed integer linear program
(MILP) approach to find a minimum cost feasible cloud configuration for a given
cloud based application. The feasibility of the solution is considered with respect
to some non-functional requirements that are analyzed through multiple perfor-
mance models with different levels of accuracy. The initial solution is further
improved by a local search based procedure. The quality of the initial feasible
solution is compared against first principle heuristics currently adopted by prac-
titioners and Cloud providers.

1 Introduction

The rise and consolidation of the Cloud computing paradigm had a significant impact
on the ICT world in recent years. Cloud has now reached maturity; many are the tech-
nologies and services supplied by various providers, resulting in an already highly di-
versified market. Tools for fast prototyping, enterprise developing, testing and integra-
tion are offered, delegating to Cloud providers all the intensive tasks of management
and maintenance of the underlying infrastructure. However, besides the unquestionable
advantages, Cloud computing introduced new issues and important challenges in appli-
cation development. In fact, current Cloud technologies and pricing models can be so
different and complex that looking for the solution that minimizes costs while guaran-
teeing an adequate performance, might result in a tremendous task. To carry out such
a labor, application designer should consider multiple architectures at once and be able
to evaluate costs and performance for each of them. Moreover, while information on
architectures and costs are openly available, the performance assessment aspect turns
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out to be a far more complicated concern because Cloud environments are often multi-
tenant and their performance can vary over time, according to the congestion level and
the competition for resources among the different applications. Although some analyt-
ical performance models have been proposed to attain an approximate assessment of
software systems performance, there is, until now, no attempt to extend those models
for taking into account the specificity of Cloud solutions. Consider, for example, Pal-
ladio Component Model (PCM) and Palladio Bench [10] for Quality of Service (QoS)
evaluation. PCM is a Domain Specific Language (DSL) for the description of software
architecture, resource and analysis of non-functional requirements but it is limited to
enterprise systems, QoS can be assessed only for the peak workload, and it lacks sup-
port for Cloud systems. On the contrary, Cloud based systems are dynamic and time-
dependent parameters have to be considered to assess performance and costs. It should
also be noticed that cost and performance assessments are just one side of the coin.
On the other side, the problem of quickly and efficiently explore the space of possible
Cloud configurations in automatic or semi-automatic way also exists.

The aim of this work is to propose and validate a novel Mixed Integer Linear Pro-
gram (MILP) designed to quickly find a minimum-cost Cloud configuration for a cer-
tain application, where the feasibility of a solution is considered according to some
non-functional constraints expressed in the model. To realize an accurate model, the
most common Cloud systems have been analyzed deriving general meta-models and
parameter values. Those meta-models have been expressed by means of a Cloud-based
extension of the PCM. This extension, presented for the first time here, is able to ex-
press different kinds of QoS constraints and time-dependent profiles for most important
performance parameters. The proposed MILP is finally validated against a local search
based metaheuristic also designed to explore the space of alternative Cloud configu-
rations. The MILP solution is also compared with first principle heuristics currently
adopted by practitioners and Cloud providers.

The remainder of the paper is organized as follows. In Section 2 the PCM proposed
extension is briefly introduced. The optimization model is introduced in Section 3,
whereas Section 4 illustrates the experimental campaign the optimization model under-
went and analyzes the outcomes. The State-of-the-art analysis is reported in Section 5;
conclusions are finally drawn in Section 6.

2 Background: Architecture Modeling and Analyses

In order to model the application under analysis, we extended the Palladio Compo-
nent Model [10]. The PCM language allows developers to represent different aspects
of the application by building specific diagrams. Figure 1 shows the main components
of Apache Open For Business (OfBiz), our case study application; the figure is a sum-
mary of the information that can be expressed via our PCM extension, represented in a
UML-like notation.

OfBiz 1 is an enterprise open source automation software developed by the Apache
software foundation and adopted by many companies. We focus here on the E-Commerce

1 http://ofbiz.apache.org/

http://ofbiz.apache.org/


A Multi-model Optimization Framework 63

functionality of OfBiz since it is a good candidate to be implemented with Cloud tech-
nology. The left most activity diagram models the behavior of users of the system, in
this example on average 70% of users will access the application to purchase some prod-
uct while the remaining 30% will check the status of a scheduled order. The incoming
workload is expressed in number of requests per second. Our extension allows to specify
a workload profile of 24 hours. All requests generated by users are served by the Re-
quest Handler component. The behavior of the checkout functionality is described by
the activity diagram associated with the request handler. To serve a checkout request,
the front-end needs to perform some internal computation (e.g., calculate the shipping
price), whose impact on physical resources hosting the system is shown as Demand, and
interact with some components hosted on the back-end. In particular the request handler
interacts with the Database component to check the availability of the desired item and
with the Payment component to check the validity of the credit card information specified
by the user. The topmost part of the diagram shows that the request handler component
is deployed alone in the front-end tier while the database and the payment service are
co-located in the same back-end tier.

The standard PCM allows application designers to build diagrams with this kind of
information and derive (for every time slot) a Layered Queuing Network (LQN) model
from them. LQN models can then be solved analytically or by means of a simulation in
order to derive performance metrics. As opposed to [26] we suppose that the compo-
nent allocation to application tiers has already been chosen by the software developer
therefore will not be changed by the optimization process. Multiple QoS metrics can

Front End VM

Request Handler

Back End VM

Database

Payment 
Service

Log In

Check Order 
Status

Search 
Object

Checkout

Log Out

70%

<<Intrernal Action>>
Personalize Item

CPU demand = 100

<<External Call Action>>
Check Availability

<<External Call Action>>
Payment

<<Intrernal Action>>
Query Product 

Availability
CPU demand = 10

<<Intrernal Action>>
Check Card Number

CPU demand = 10

t

Fig. 1. OfBiz Application Example

be derived from the analysis of LQN models, in this work our focus is on response time
and cost.

In a Cloud environment, infrastructural Costs are also difficult to compute, since the
pricing policy offered by Cloud providers is very heterogeneous. In this work we refer
to cost as to the sum of the prices of allocated resources, charged on a per-hour basis.
This kind of pricing policy is a common denominator of all the most important Cloud
provider offers, the main objective of this cost modeling is to show that cost related
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aspects can be included in the optimization process, not to provide a comprehensive
description of the costs related to any specific Cloud environment.

As main performance metric we consider server side request response time. We also
suppose that all Virtual Machines (VMs) hosting the application components are located
inside the same local network (e.g., the same availability zone in Amazon EC2) so that
the communication between the different application layers does not cause a bottleneck.

<<Interface>>

Request Handler

- LogIn
- CheckOrderStatus
- SearchObject
- Checkout
- LogOut

ResourceName: "CheckOrderStatus"
Metric: "ResponseTime"
Aggregation: "Avg"
Unit: "ms"
Lower Than: 2000

ResourceName: "Request Handler"
Metric: "ResponseTime"
Aggregation: "Avg"
Unit: "ms"
Lower Than: 3000

(a) QoS constraints defined over an interface

Back End VM

Database

Payment 
Service

ResourceName: "Back End VM"
Metric: "RAM"
Unit: "GB"
Greater Than: 8

ResourceName: "Back End VM"
Metric: "Utilization"
Aggregation: "Avg"
Unit: "%"
Lower Than: 80

(b) Architectural constraints defined over an
auto-scaling group

Fig. 2. Examples of different type of constraints that can be specified on the modeled application

In order to describe the Cloud environment the modeled application will run in, we
made use of the meta models presented in [16]. We also extended those models in or-
der to express constraints over the application QoS to drive the optimization process.
Figure 2(a) shows two examples of QoS constraints that can be defined on a component.
The topmost constraint expresses the fact that the functionality in charge of checking the
status of an order should have an average response time lower than 2000 milliseconds.
The other constraint is defined over the entire component and limits the average re-
sponse time, computed over all the functionality offered by the component, to be lower
than 3000 ms. Figure 2(b) shows another kind of constraints that can be expressed on
the virtual hardware used to host the software components of the application. The ex-
ample shows a constraint on the minimum amount of RAM that a VM needs to feature
in order to run the two components and a constraint on the maximum allowed value of
the CPU utilization.

3 Optimization Process
In this section we describe the hybrid optimization approach we propose, to solve the
capacity allocation problem. As in [22], we implemented a two-steps approach. The
first step consists in solving a Mixed Integer Linear Problem (MILP) in which the QoS
associated to a deployment solution is calculated by means of an M/G/1 queuing model
with processor sharing policy. Such performance model allows to calculate the average
response time of a request in closed form. Our goal is to determine quickly an approxi-
mated initial solution through the MILP solution process which is then further improved
by a local search based optimization algorithm (step 2). The aim of this algorithm is to
iteratively improve the starting Cloud deployment exploring several application con-
figurations. A more expressive performance model (LQN) is employed to derive more
accurate estimations of the QoS by means of the LQNS tool [17]. Figure 3 shows the
workflow of the optimization process. As explained in Section 2 the specification of
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Optimization Framework
(M/G/1 based)

SPACE4Cloud

LQNS

PCM

Extension Initial Solution
Final Solution

Fig. 3. Solution generation workflow

the application design is given in form of a PCM with an accompanying extension.
The information contained in these models constitutes the input of the optimization
problem and is passed to the optimization framework, which is the main object of
this work, in order to derive an initial solution. This solution is then passed to the
SPACE4Cloud tool [5], which performs an assessment of the solution using the more
accurate LQN model and an heuristic optimization to derive an optimized solution.

In the remainder of the paper, Section 3.1 describes in details the capacity allocation
problem faced in this work, Section 3.2 provides its MILP formulation, while Section
3.3 outlines the heuristic local search approach.

3.1 Search Problem Formulation

The aim of the optimal selection and capacity allocation problem for Cloud applications
is to minimize the usage cost of Cloud resources, while satisfying some user-defined
constraints. As discussed in Section 2, an application can be described as a composition
of several components C, each of them implementing a particular set of functionalities
K with a certain resources demand. Each component is deployed into a resource pool,
or application tier, I composed by a set of homogeneous VMs. Such a set is not static
but can scale to handle variations of the incoming workload. Since, the daily workload
is periodic for many applications [11], we decided to limit our analysis to a single day
horizon. Many Cloud providers charge the use of VMs per hour (e.g., Amazon EC2
on-demand pricing scheme2), hence it is reasonable to split the time horizon into 24
time slots T of one hour each . For the sake of simplicity, in the following we consider
QoS constraints predicating on application response time. In a nutshell, the problem we
deal with presents two main decision aspects, first is the selection of a certain VM type
V for each resource pool, while the second faces the way the application has to scale in
order to meet the constraints, i.e., aims at determining the optimum number of VMs to
be devoted to each pool at every hour of the day. The overall workload of an application
is described in terms of requests per second Λt.

Users interact with the application by making requests, the set of possible requests
is referred to as K. Moreover, each class of requests is characterized with a probability
to be executed (αk specified in the model, see Figure 1) and by a set of components
supporting its execution (i.e., its execution path [6]). Finally, we assume that requests
are served according to the processor sharing scheduling policy, a typical scheduling

2 http://aws.amazon.com/ec2/pricing

http://aws.amazon.com/ec2/pricing
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policy in Web and application server containers that evenly splits the workload among
all the VMs of the resource pool. As for the QoS requirements the application designer
can define a threshold on the average response time Rk for a set of classes KAvg ⊆ K
(as depicted in Figure 2(a)).

3.2 Analytic Optimization

In the light of the considerations made so far, the optimal capacity allocation problem
can be formulated as follows:

min
Z,V

∑

i∈I

∑

v∈V

∑

t∈T
Cv,tzi,v,t (1)

Subject to:

∑

v∈V
wi,v = 1 ∀i ∈ I (2)

wi,v ≤ zi,v,t ∀i ∈ I,∀v ∈ V,∀t ∈ T (3)

zi,v,t ≤ Nwi,v ∀i ∈ I,∀v ∈ V,∀t ∈ T (4)
∑

v∈V
Mvwi,v ≥ Mi ∀i ∈ I (5)

∑

v∈V
(1− μk,cRk,cSv)zic,v,t ≤ μk,cGk,c,tRk,c ∀k ∈ K,∀c ∈ C,∀t ∈ T (6)

∑

v∈V
Svzic,v,t > Gk,c,t ∀k ∈ K,∀c ∈ C,∀t ∈ T (7)

zi,v,t Integer ∀i ∈ I,∀t ∈ T (8)

wi,v ∈ {0, 1} ∀i ∈ I,∀v ∈ V (9)

Where T = {1 . . . 24} and Gk,c,t = Λt

∑
c̃∈Ic

∑
k̃∈K

αkpk,c̃

μk̃,c̃
.

Table 1 summarizes the list of parameters of our optimization model and Table 2 reports
the decision variables.

The value expressed by (1) represents the total usage cost of the Cloud application
and it is the objective function to minimize. As wi,v are binary decision variables (eq. 9)
equal to 1 if the VM type v is assigned to the i-th resource pool, condition (2) guarantees
that exactly one type can be selected for each resource pool. Equation (8) defines a
set of integer variables zi,v,t that represent the number of VMs of type v assigned to
resource pool i at time t. Condition (3) in combination with (2) and (9) guarantees
that a nonempty set of VMs is assigned to each resource pool. Moreover, condition (4)
imposes the set of VMs assigned to each resource pool to be homogeneous. Indeed, if
wi,v = 0 the total number of VMs of type v assigned to resource pool i is forced to
be zero as well and this happens for all v ∈ V but one (eq. (2)). Besides, if wi,v =
1 the number of VMs assigned to the resource pool i is at least 1, for eq. (3), and
at most N , which is an arbitrary large integer number. Finally, equations (5) and (6)



A Multi-model Optimization Framework 67

Table 1. Optimization model parameters

System parameters
Index
t ∈ T time interval
i ∈ I resource pool or application tiers
k ∈ K class of request
v ∈ V type of virtual machine
Parameters
Λt number of incoming requests (workload) at time t
αk proportion of requests of class k in the workload
pk,c probability of request of class k to be served by component c
μv
k,c maximum service rate of requests of class k on component c hosted on a VM of type v

Uk set of components serving request k
Ic set of components that are co-located with c

Cv,t cost of a single machine of type v at time t

Mv memory of a virtual machine of type v

M i memory constraint for tier i
Rk,c maximum average response time for the k-class of requests on component c

Table 2. Optimization model decision variables

Optimization model decision variables.
wi,v binary variable that is equal to 1 if the VMs type v is assigned to the i-th tier and equal

to 0 otherwise
zi,v,t number of virtual machines of type v assigned to the i-th resource pool at time t

represent memory and QoS constraints, respectively, while (7) is the M/G/1 equilibrium
condition.

As previously discussed, to evaluate the average response time of the Cloud applica-
tion we model each VM container as an M/G/1 queue. However, in general, a request
of class k is processed by more than a single component. Let Λk,t = αkΛt be the in-
coming workload at time t for request class k and Λk,c,t = pk,cΛk,t the arrival rate of
request class k at component c. The response time of requests in class k can then be
obtained by:

Rk,t =
∑

c∈Uk

pk,cRk,c,t =
∑

c∈Uk

pk,c

1

μṽ
k,c

1−
∑

c̃∈Ic

∑

k̃∈K

Λk̃,c̃,t

μṽ
k̃,c̃

zic,ṽ,t

(10)

whereUk is the set of components serving class k requests and Ic represents the set of
components that are co-located with c on the same VM (Ic can be obtained by standard
PCM allocation diagrams, see Figure 1). In other words, the average response time is
obtained by summing up the time spent by the request in each component weighted
by the probability of the request to actually be processed by that component. Notice
that Rk,c,t depends on the type and number of VMs (ṽ and zic,ṽ,t, respectively) the
component c is allocated in at time t.
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In order to simplify expression (10) we consider the lowest CPU machine a reference
machine and calculate the maximum service rates for each request class and component,
μk,c. In this way μv

k,c can be written as:

μv
k,c = μk,c Sic = μk,c

∑

v

Sv wic,v (11)

where Sv is the speed ratio between the reference machine and a VM of type v, while
ic is the index of the resource pool where component c is allocated.

Let zi,t =
∑

v zi,v,t be the number of VMs of the selected type (only one type can
be selected (eq.2) ) for resource pool i at time t. Therefore the following expression
holds:

μv
k,c zic,v,t = μk,c Sic zic,t = μk,c

∑

v

Sv zic,v,t (12)

Under M/G/1 assumptions the response time of a request of class k processed by com-
ponent c hosted on a VM of type v is given by:

Rk,c,t =

1

μk,c Sic

1−
∑

c̃∈Ic

∑

k̃∈K

Λk̃,c̃,t

μk̃,c̃ Sic zic,t

(13)

By replacing (11) and (12) in (10) we can write the following constraint on the
response time of requests of class k:

Rk,t =
∑

c∈Uk

pk,c Rk,c,t =
∑

c∈Uk

pk,c

1

μk,c Sic

1− Λt

Sic zic,t

∑

c̃∈Ic

∑

k̃∈K

αk̃pk̃,c̃
μk̃,c̃

≤ Rk, (14)

Equation (14) is non-linear due to the presence of productSi zi,t in the denominator;
in order derive a linear model, which can be solved efficiently by MILP solvers, we
explode it into a set of stricter constraints defined over the average response time of
each component traversed by the request.

To do so we split the response time constraint among components of a path and take
the most stringent constraint among the conditions generated by all the possible paths
that the request can traverse. In other words, let:

rk,c,u =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

μk,c∑

c∈u

1

μk,c

if c belongs to path u

0 otherwise

(15)

and let: Rk,c = minu rk,c,u Rk. Instead of using constraint (13) for the response
time we introduce the constraint family: Rk,c,t ≤ Rk,c and after some algebra we get
constraint (6).
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Finally, constraint (7) represents the M/G/1 equilibrium condition obtained from (13)
imposing the denominator to be greater than zero.

3.3 Local Search Optimization

The aim of this section is to provide a brief description of the optimization algorithm
implemented by the SPACE4Cloud [5] tool that we used to further optimize the so-
lution obtained by the MILP optimization problem. One of the key differences be-
tween the two optimization processes is the fact that the performance model used by
SPACE4Cloud, the LQN model, is more complex and accurate than the M/G/1 models
used in the analytic formulation of the optimization problem. Another differentiating
factor is the way SPACE4Cloud explores the free space, in fact it uses an heuristic ap-
proach that divides the problem into two levels delegating the assignment of the type of
VMs to the first (upper) level and the definition of the number of replicas to the second
(lower) level. The first level implements a stochastic local search with tabu memory, at
each iteration the type of the VMs used for a particular tier is changed randomly from
all the available VMs, according to the architectural constraints. The tabu memory is
used to store recent moves and avoid cycling of the candidate solutions around the same
configurations. Once the VM size is fixed the solution may enter in a repair phase dur-
ing which the number of VMs is increased until the feasibility is restored (switching
to slower VMs can make the current system configuration unfeasible). The solution is
then refined by gradually reducing the number of VMs until the optimal allocation is
found. This whole process is repeated for a pre-defined number of iterations updating
the final solution each time a feasible and cheaper one is found.

4 Experimental Results

The proposed optimization approach has been evaluated for a variety of system and
workload configurations. Our solution will be compared with current approaches for
capacity allocation and according to threshold based the auto-scaling policies that can
be implemented at IaaS providers.

Analysis performed in this Section are intended to be representative of real Cloud
applications. We have used a very large set of randomly generated instances, obtained
varying the performance model parameters according to the ranges used by other liter-
ature approaches [4], [3], [36], [39] and from real system [7] (see Table 3). VMs costs
and capacities have been taken from Amazon EC2, Microsoft Azure, and Flexiscale.

As, in [8,4], the request class service time threshold has been set equal to:

Rk = 10
∑

c∈Uk

pk,c
μv
k,c

where we considered as reference VM, the Amazon EC2 small with index v.
Workloads have been generated by considering the trace of a large Web system in-

cluding almost 100 servers. The trace contains the number of sessions, on a per-hour
basis, over a one year period. The trace follows a bimodal distribution with two peaks
around 11.00 and 16.00. Multiple workloads have been obtained by adding random
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Table 3. Ranges of model parameters

Parameter Range
αk [0.1; 1] %
pk,c [0.01; 0.5]

μv
k,c [50; 2800] req/sec

Cvp,i [0.06; 1.06] $ per hour
←−
M i [1;4] GB
N 5000 VMs
Rk,c [0.005; 0.01] sec

Table 4. MILP sets cardinalities

Description Variation
range

Number of resource containers |I| [1; 9]

Time Intervals |T | [4; 24]

Number of Requests Classes |K| [1; 10]

Number of VM types |V| [1; 12]

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9

O
pt

im
iza

tio
n 

Ti
m

e 
(s

ec
on

ds
)

Number of request classes

3 Containers

5 Containers

7 Containers

9 Containers

(a) CPLEX optimization time varying the num-
ber of containers and request classes.

0

10

20

30

40

50

60

70

80

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

Co
st

 ($
)

Evaluation time (seconds)

MILP Initial solution Heuristic initial solution
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white noise to each sample as in [4] and [24]. The MILP optimization model sets cardi-
nality has been varied as reported in Table 4. The number of applications components
has been varied between 1 and 10.

The next Section reports the results of the scalability of the MILP formulation. The
quality of the MILP solution is evaluated in Section 4.2.

4.1 Scalability Analysis

Tests have been performed on a VirtualBox virtual machine based on Ubuntu 12.10
server running on an Intel Xeon Nehalem dual socket quad-core system with 32 GB of
RAM. CPLEX 12.2.0.0 3 has been used as MILP solver.

In order to guarantee statistical independence of our scalability results, for each test
we considered ten different instances with the same size. The results reported here have
been obtained by considering 10,000 total runs.

Figure 4(a) reports a representative example and shows how CPLEX optimization
time (i.e., the time required to optimally solve the model) for optimizing a system with
10 components varies by changing the number of containers and request classes. On
average CPLEX is able to find a solution in 0.5-3 seconds. In the very worst case,
considering a system including 5 containers, 9 requests classes and 9 components the
optimization time was 8.72 seconds.

3 http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Table 5. Results comparison

First Feas.
Time Savings

Final Opt.
Time Savings

First Feas.
Cost Savings

Final Opt.
Cost Savings

MILP Feas.
Initial Sol.

HEU Feas.
Initial Sol.

-57.2% 414.5% 130.7% 98.5% 78.5% 82.0%

4.2 Initial Solution Quality Evaluation

In general the performance of a heuristic based optimization approach is measured by
assessing final local solutions values and the time needed to generate such solutions. We
evaluate the benefits of the MILP formulation by comparing the final solution that can
be obtained by SPACE4Cloud considering as initial solution the MILP configuration
and the one obtained by the following heuristic:

– for all containers, the cheapest VM type available at the Cloud provider satisfying
also the memory constraint (5 ) is adopted;

– as in other literature approaches [36,39] and coherently to the auto-scaling policies
that can be implemented by current IaaS providers4, the number of VMs of each
resource pool is determined such that the average CPU utilization is lower than a
given threshold ρ.

In our experiments we set ρ = 0.6 as in [39]. More in details, the performance
metrics we considered in our comparison are:

– the time required by SPACE4Cloud to find the first feasible solution;
– the time required by SPACE4Cloud to converge to the final local optimum;
– the cost of the first feasible solution;
– the cost of the final local optimum;
– the percentage of initial feasible solutions obtained by the MILP and heuristic ap-

proach.

Table 5 summarizes the results achieved. The results reported here have been ob-
tained by considering 100 total runs. Figures report the average percentage improve-
ments that can be obtained by adopting the MILP formulation. The precentages have
been evaluated by considering the ratio (Y −X)/X , where X and Y are the MILP and
heuristic performance, respectively (negative values means that the heuristic solution
performs better). The first two columns report the percentage time saving obtained to
identify the first feasible solution and the final local optimum. The third and fourth
columns report the percentage of cost reduction of the first feasible and final local
optimum solution, while the last two columns report the average percentage of QoS
constraints that are satisfied by the two initial solutions. Even if the MILP approach
introduces an overhead to find the first feasible solution (the first feasible solution is ob-
tained by the heuristic with around 57% lower time), the hybrid approach outperforms
the heuristic, reducing the time to converge to the final local optimum and improving
significantly the cost of the final optimum solution.

4 http://aws.amazon.com/elasticbeanstalk/

http://aws.amazon.com/elasticbeanstalk/
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As an example, Figure 4(b) reports the execution trace of SPACE4Cloud for opti-
mising a system including 5 containers, 9 request classes, and 9 components. On the x
axis the overall optimization time is reported (including the time required to determine
the initial solution by the MILP or the heuristic and the local search execution time),
while the y axis reports the Cloud daily resource cost. The blue and red lines are the
costs of the best current solution obtained by considering as initial solution the MILP
and the heuristic solution, respectively. The initial gap shows the time required by iden-
tifying the first initial solution (which is more evident for the MILP trace where around
3 seconds are needed). Even if the evaluation of the MILP solution introduces an initial
delay, the local search performance are significantly improved. In this specific case the
final solution is around 88% cheaper, while the time required by the local search to
identify the final local optimum is reduced by almost an order of magnitude.

5 Related Work

In the last two decades prediction and assessment of QoS characteristics of complex
software systems has emerged as an important requirement. An effective way of deal-
ing with this requirement is to integrate non functional properties prediction techniques
into the software development process by means of appropriate tools and techniques.
In these kind of approaches a model of the software architecture is annotated with non
functional elements that are used to predict the performance of the application. The
output of this analysis is used by application designers as feedback to modify the archi-
tecture in order to meet the requirements.

The Model-Driven Quality Prediction (MDQP) approach is to model the application
with UML models, in order to support the specification of non functional properties
the Object Management Group (OMG) introduced two profiles called Schedulability,
Performance and Time (SPT) [31] and Modeling and Analysis of Real-Time and Em-
bedded Systems MARTE [32]. This approach of extending UML is not the only one
that deals with the analysis of non functional properties of software systems, Becker
et al. developed the PCM [10], a language that can be used to model an application
and its non functional properties and, with the support of the PCM-Bench tool, derive
a LQN model to estimate the performance of the running system. The automated trans-
formation of architecture-level models to predictive models is the second phase of the
MDQP process (see, e.g., [37]). Many meta-models have been built to support perfor-
mance prediction, some surveys of these models, their capability and their applicability
to different scenarios can be found in [9,23,1]. The output of the performance analysis
performed using these models is used to optimize the architecture of the application at
design time in (semi-)automatic way.

We divide the most relevant approaches extending the classification presented by
Martens et al. in [27]. The classes used to categorize the different solutions are: rule-
base, meta-heuristic, generic Design Space exploration (DSE), quality-driven model
transformations.

Rule-Based Approaches. Rule-based approaches use feedback rules to modify the ar-
chitecture of the application. The QVT-Rational framework proposed in [13,14] extends
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the Query, View, Transformation language defined by OMG by adding the support for
feedback rules for semi-automatic generation of system architectures. The PUMA [37]
framework aims at filling the gap between the design model and the performance mod-
els and has been extended with support for feedback rules specification in JESS [38].
Other language-specific tools, like the one proposed by Parsons et al. [34] for Java EE,
are able to identify performance anti-patterns in existing systems specified by a set of
rules; the tool reconstruct the model of the application using different monitoring tech-
niques and analyze the generated model against the stored rules. Rule-based model to
model transformation approaches has been proposed by Kavimandan and Gokhale [20]
to optimize real-time QoS configuration in distributed and embedded systems.

Meta-Heuristics. Meta-heuristics use particular algorithms that are specifically de-
signed to efficiently explore the space of design alternatives and find solutions that
are optimized with respect to some quality criteria. In [25], Li et al. propose the Au-
tomated Quality-driven Optimization of Software Architecture (AQOSA) toolkit that
implements some advanced evolutionary optimization algorithms for multi-objective
problems, the toolkit integrates modelling technologies with performance evaluation
tools in order to evaluate the goodness of generated solution according to a cost func-
tion. Aleti et al. proposed a similar approach in [2]; they presented the ArcheOpterix
framework that exploits evolutionary algorithms to derive Pareto optimal component
deployment decisions with respect to multiple quality criteria. Meedeniva et al. de-
veloped a multi-objective optimization strategy on top of ArcheOpterix in [28] to find
trade-off between reliability and energy consumption in embedded systems. PerOpteryx
[21] use a similar approach to optimize software architectures modeled with the Palla-
dio framework [10] according to performance, reliability and cost. Other approaches
combine analytical optimization techniques with evolutionary algorithms to find Pareto
optimal solutions, an example of this is presented by Koziolek et al. in [22] with a par-
ticular focus on availability, performance and cost. A tabu search (TS) heuristic has
been used by Ouzineb et al. [33] to derive component allocation under availability con-
straints in the context of embedded systems. The SASSY [29] framework developed by
Menascé et al. starts from a model of a service-oriented architecture, performs service
selection and applies patterns like replication and load balancing in order to fulfill qual-
ity requirements. Finally, Frey et al. [18] proposed a combined metaheuristic-simulation
approach based on a genetic algorithm to derive deployment architecture and runtime
reconfiguration rules while moving a legacy application to the Cloud environment.

Generic Design Space Exploration (GDSE). Generic Design Space Exploration ap-
proaches encode feedback rules into a Constraint Satisfaction Problem (CSP) in order to
explore the design space. The DeepCompass [12] framework proposed by Bondarev et
al. perform design space exploration according to a performance analysis of component-
based software on multiprocessors systems. The DESERT framework [30,15] performs
a general exploration of design alternatives by modeling system variations in a tree
structure and using Boolean constraints to cut branches without feasible solutions.
The latest version of this framework, DESERT-FD [15] automates the constraint gen-
eration process and the design space exploration. The GDSE [35] framework pro-
posed by Saxena et al.is a meta-programmable system domain-specific DSE problems,
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it provides a language to express constraints and support different solvers for candi-
date solution generation. A similar approach is proposed by Jackson et al. in the For-
mula [19] framework; Formula allows the specification of non-functional requirements,
models and meta-models by first-order logic with arithmetic relations, the problem is
solved by the Z3 Satisfiability Modulo Theory (SMT) solver to generate several design
alternatives that comply with the specified requirements.

Most of the presented works are tailored to solve very particular problem and lack
of generalization on the quality attributes supported for the design space exploration.
Moreover, only one approach [18] tackles directly the problem of building architectures
for the Cloud environment but it focuses on the migration of legacy applications.

6 Conclusions

In this paper, a hybrid approach for the cost minimization of Cloud based applications
has been proposed. The MILP formulation that implements the first step of the hybrid
approach is able to identify a promising initial solution for a local search optimiza-
tion procedure which outperforms, both in terms of overall optimization time and final
solution costs, first principles heuristics based on utilization thresholds. The proposed
approach can lead to a reduction of Cloud application costs and to an improvement
of the quality of the final system, because an automated and efficient search is able to
identify more and better design alternatives.

Ongoing work focuses on the extension of the MILP formulation and the local search
to multiple Cloud deployments and on QoS analyses of real case studies.
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ment tool - proof of concept. Project deliverable (2013)

6. Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web services based pro-
cesses. Journal of Systems and Software 83(8), 1512–1523 (2010)

7. Ardagna, D., Panicucci, B., Trubian, M., Zhang, L.: Energy-aware autonomic resource allo-
cation in multitier virtualized environments. IEEE Trans. Serv. Comp. 5(1), 2–19 (2012)

8. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans.
Soft. Eng. 33(6), 369–384 (2007)

9. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction
in software development: A survey. IEEE Trans. Soft. Eng. 30(5), 295–310 (2004)



A Multi-model Optimization Framework 75

10. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-driven
performance prediction. Journal of Systems and Software 82(1), 3–22 (2009)

11. Birke, R., Chen, L.Y., Smirni, E.: Data centers in the cloud: A large scale performance study.
In: CLOUD 2012 (2012)

12. Bondarev, E., Chaudron, M.R.V., de Kock, E.A.: Exploring performance trade-offs of a jpeg
decoder using the deepcompass framework. In: WOSP 2007 (2007)

13. Drago, M.L.: Quality Driven Model Transformations for Feedback Provisioning. PhD thesis,
Italy (2012)

14. Drago, M.L., Ghezzi, C., Mirandola, R.: A quality driven extension to the qvt-relations trans-
formation language. Computer Science - R&D 27(2) (2012)

15. Eames, B., Neema, S., Saraswat, R.: Desertfd: a finite-domain constraint based tool for de-
sign space exploration. Design Automation for Embedded Systems 14(1), 43–74 (2010)

16. Franceschelli, D., Ardagna, D., Ciavotta, M., Di Nitto, E.: Space4cloud: A tool for system
performance and costevaluation of cloud systems. In: Multi-cloud 2013 (2013)

17. Franks, G., Hubbard, A., Majumdar, S., Neilson, J., Petriu, D., Rolia, J., Woodside, M.: A
toolset for performance engineering and software design of client-server systems. Perfor-
mance Evaluation 24, 1–2 (1996)

18. Frey, S., Fittkau, F., Hasselbring, W.: Search-based genetic optimization for deployment and
reconfiguration of software in the cloud. In: ICSE 2013 (2013)

19. Jackson, E., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components, platforms and
possibilities: towards generic automation for mda. In: EMSOFT 2010 (2010)

20. Kavimandan, A., Gokhale, A.: Applying model transformations to optimizing real-time qos
configurations in dre systems. Architectures for Adaptive Software Systems, 18–35 (2009)

21. Koziolek, A.: Automated Improvement of Software Architecture Models for Performance
and Other Quality Attributes. PhD thesis, Germany (2011)

22. Koziolek, A., Ardagna, D., Mirandola, R.: Hybrid multi-attribute QoS optimization in com-
ponent based software systems. Journal of Systems and Software 86(10), 2542–2558 (2013)

23. Koziolek, H.: Performance evaluation of component-based software systems: A survey.
Performance evaluation 67(8), 634–658 (2010)

24. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and performance
management of virtualized computing environments via lookahead control. Cluster Comput-
ing 12(1), 1–15 (2009)

25. Li, R., Etemaadi, R., Emmerich, M.T.M., Chaudron, M.R.V.: An evolutionary multiobjec-
tive optimization approach to component-based software architecture design. In: CEC 2011
(2011)

26. Martens, A., Ardagna, D., Koziolek, H., Mirandola, R., Reussner, R.: A hybrid approach for
multi-attribute qoS optimisation in component based software systems. In: Heineman, G.T.,
Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 84–101. Springer, Heidelberg
(2010)

27. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software ar-
chitecture models for performance, reliability, and cost using evolutionary algorithms. In:
WOSP/SIPEW 2010 (2010)

28. Meedeniya, I., Buhnova, B., Aleti, A., Grunske, L.: Architecture-driven reliability and energy
optimization for complex embedded systems. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.)
QoSA 2010. LNCS, vol. 6093, pp. 52–67. Springer, Heidelberg (2010)
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Abstract. The application of design patterns through mutation opera-
tors in search-based design may improve the quality of the architectures
produced in the evolution process. However, we did not find, in the liter-
ature, works applying such patterns in the optimization of Product Line
Architecture (PLA). Existing works offer manual approaches, which are
not search-based, and only apply specific patterns in particular domains.
Considering this fact, this paper introduces a meta-model and a muta-
tion operator to allow the design patterns application in the search-based
PLA design. The model represents suitable scopes, that is, set of archi-
tectural elements that are suitable to receive a pattern. The mutation
operator is used with a multi-objective and evolutionary approach to ob-
tain PLA alternatives. Quantitative and qualitative analysis of empirical
results show an improvement in the quality of the obtained solutions.

Keywords: Software product line architecture, design patterns, search-
based design.

1 Introduction

Software Product Line (SPL) encompasses commonality and variability that are
present in several software products of a specific domain. Commonality refers
to elements which are common to all products whereas variability comprises
variable elements. Variabilities are represented by variation points and variants.
Variation points are associated with variants that represent alternative designs.
The Product Line Architecture (PLA) is a key asset that provides a common
overall structure containing all the SPL commonalities and variabilities. The
architecture of each product is derived from the PLA [19].

The PLA design is a crucial and people-intensive SPL engineering activity.
This is due to the growing complexity of the software systems and, in general,
there are different quality metrics to be considered by the architect, such as that
ones related to modularity and extensibility. In addition to that, the applica-
tion of design patterns is important to obtain higher quality solutions. Design
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patterns, such as the ones grouped in the GoF catalog [13], document common
solutions from several projects widely used among developers. Patterns lead to
improve cohesion and coupling, which are directly connected to the software
reusability. However, the use of metrics and the application of design patterns,
in practice, are still hard tasks to many architects, mainly to novices.

We observe that the PLA design optimization is a problem that can be prop-
erly solved in the Search-Based Software Engineering (SBSE) field. In this sense,
the work of Colanzi [6] introduces a multi-objective search-based approach for
PLA optimization. The approach produces a set of good solutions with the best
trade-off among different objectives, such as the SPL extensibility and modular-
ity. The focus is the UML class diagrams, since this kind of model is commonly
used to model software architectures in the detailed level [8]. A representation to
the problem was proposed, as well as feature-driven search operators. Features
are prominent characteristics of the products and plays an important role in
the SPL context. However, the approach of Colanzi [6] does not address another
important PLA design task, mentioned above, the application of design patterns.

The application of patterns has been focused by search-based design
works [22]. Cinnéide and Nixon [4] investigate the use of patterns in the refac-
toring context, and Räihä et al. [23,24] in the synthesis of software architectures
with Genetic Algorithms (GA). Although the ideas found in related work can
be applied in the SPL context, they do not take into account specific PLA char-
acteristics, such as variation points and variants. Works [18,27] considering such
characteristics offer approaches that are not search-based, and, in many cases,
present results from manual application of patterns, which are valid only in par-
ticular contexts. This lack of works is due to two main reasons. The definition of
specific SPL patterns is a current research subject, not completely explored yet,
and the search-based PLA design (SBPD) is an incipient field. Even though,
there are evidences that, in intermediate or advanced PLA designs, mutation
operators that apply design patterns or architectural styles would contribute to
obtain better PLAs [7].

Another reason is that there are some challenges to be overcome to allow au-
tomatic application of patterns. It is necessary not only to know design patterns,
but also to recognize and determine domain specific patterns based on the SPL
requirements [20]. Coplien [9] stated that patterns are not meant to be executed
by computers, but rather to be used by engineers with perception, taste, experi-
ence and aesthetics sense. Essentially, the idea is to use these virtues to analyze
design patterns and to encapsulate the analytic results into algorithms capable
of automatically identifying and applying them in software architectures.

Considering such challenges and the importance of design patterns, this paper
contributes to the automatic application of design patterns in SBPD in three
ways: i) introducing a metamodel to represent and automatically identify suitable
scopes associated with design patterns in SBPD. A suitable scope is a part of a
class diagram that has architectural elements satisfying minimum requirements
for the application of a specific pattern; ii) defining a mutation operator to
apply patterns only in suitable scopes, represented by the introduced model.
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The operator includes verification and application methods to effectively apply
the design patterns; and iii) presenting empirical results on the application of
the proposed operator in three SPLs. The defined operator is implemented in
the context of the search-based approach of Colanzi [6] and the empirical results
show an improvement in the quality of the PLAs obtained.

The paper is organized as follows. Section 2 reviews the approach of Colanzi
for SBPD [6]. Section 3 introduces the metamodel to represent suitable scopes.
Section 4 describes the mutation operator. Section 5 presents empirical results
with three real PLAs. Section 6 discusses related work. Finally, Section 7 con-
cludes the paper.

2 A Search-Based Approach for PLA Design

Colanzi [6] proposed a multi-objective optimization approach for PLA design,
which is used in this paper. The approach receives as input a PLA modeled
in a UML class diagram containing the SPL variabilities. To this input a rep-
resentation is generated, according to a metamodel defined in [8]. Such model
represents architectural elements such as components, interfaces, operations and
their inter-relationships. Each element is associated with features that it realizes
by using UML stereotypes. A feature can be either common to all SPL products
or variable being present only in some products. Variable elements are associated
with variabilities that have variation points and their variants.

The PLA is optimized by using multi-objective algorithms. Two fitness func-
tions are used [6]: i) CM (related to Conventional Metrics) is an aggregation
of: cohesion, coupling and size of architectural elements; and ii) FM (related
to Feature-driven Metrics, specific for SPL) is an aggregation of metrics that
measure feature scattering, feature interaction and feature-based cohesion [25].

This approach also contains some mutation operators to improve the modu-
larity and extensibility of PLA features [8]: Move Method; Move Attribute; Add
Class; Move Operation; Add Component; and Feature-driven Mutation that aims
at modularizing a feature tangled with others in a component. It selects a ran-
dom component cx, and if it has architectural elements assigned to different
features, a random feature fx is selected to be modularized in a new component
cz. All architectural elements from cx assigned to fx are moved to cz, which in
turn becomes client of cx.

In addition to these operators, we acknowledge that the use of mutation oper-
ators to apply design patterns may contribute to obtain better solutions [7,23],
which in turn are more flexible, understandable, and able to accommodate new
features during the SPL maintenance or evolution. The application of design
patterns in the approach described here is addressed in the next sections.

3 Representing Pattern Application Scopes

As mentioned before, to apply design patterns in SBPD it is necessary the au-
tomatic identification of suitable scopes. A suitable scope is a part of a class
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diagram that has architectural elements satisfying minimum requirements for
the application of a pattern. Design patterns should be applied only in suitable
scopes when the flexibility they provide is really needed, otherwise, an indiscrim-
inately pattern application could result in the introduction of anomalies [13].

Guizzo et al. [15] analyzed GoF patterns [13] and determined their application
feasibility in the approach of Colanzi [6]. The analysis considered the impact
on metrics used in the fitness and the possibility of automatic identification of
suitable scopes. Four design patterns were considered feasible: Strategy, Bridge,
Facade and Mediator. The first two have specific applicability to SPL, and due to
this they are focused in our work. Briefly, Strategy is used to freely interchange
algorithms of an algorithm family, and Bridge to decouple the abstraction of its
implementation, making both independent and interchangeable.

To allow automatic identification of suitable scopes, it is necessary to provide
an easy way to deal with architectural elements associated with each pattern
during the mutation process. To do this, Figure 1 presents a generic meta-
model that represents suitable scopes. If a scope is suitable for the application
of a design pattern, it is called “Pattern application Scope” (PS). The notation
“PS<Pattern Name>” is used to designate a scope for a specific design pattern,
e.g., PS<Strategy>. A scope may be a PS for more than one design pattern,
thus any of the feasible pattern for this scope can be applied. In addition, there is
a category of PS specific for SPL scopes: “Pattern application Scope in Product
Line Architecture” (PS-PLA), denoted by “PS-PLA<Pattern Name>”.

Fig. 1. Metamodel representing PS and PS-PLA

A PS/PS-PLA is a scope composed by at least one architectural element,
which in turn may be present in multiple PSs/PSs-PLA. In fact, for a scope to
be considered a PS to a particular design pattern, it needs to meet all the PS
requirements that the design pattern requires. In addition to this, for a scope to
be considered a PS-PLA, besides meeting all the PS requirements, it needs to
meet also the PS-PLA requirements of the design pattern. These requirements
are incorporated into verification methods (introduced in Section 4). Moreover,
when a pattern is applied it influences some software metrics that are used by
the evolutionary algorithms to evaluate the fitness of the achieved solutions.

Regarding the relation between PS and PS-PLA, we have: a) a PS-PLA<X>
is obligatorily a PS<X>. If a scope is not a PS<X>, it cannot be in any cir-
cumstance a PS-PLA<X>; b) a PS<X> is not necessarily a PS-PLA<X>. If a
scope is not a PS-PLA<X>, it can still be a PS<X>; and c) a design pattern
X can be applied to any PS<X>, regardless the type of the architecture of the
scope (conventional or PLA).
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The PS and PS-PLA of each pattern are represented by instantiating the
metamodel of Figure 1. The scope identification is given by some criteria.
To exemplify the model instantiation, consider Figure 2, associated with the
PS<Strategy> and PS-PLA<Strategy>. They include minimum requirements
for the identification (“PS Requirement” and “PS-PLA Requirement” from Fig-
ure 1). The design pattern itself and the influenced software metrics were omit-
ted. The architectural elements encompassed by PS and PS-PLA<Strategy>
are a Context, which uses at least one Class or Interface that compose an Algo-
rithm Family. For PS-PLA<Strategy>, Context must be a variation point and
the Classes/Interfaces from the Algorithm Family must be variants.

Fig. 2. Metamodel representing PS<Strategy> and PS-PLA<Strategy>

4 The Pattern-Driven Mutation Operator

Algorithm 1 presents the Pattern-Driven Mutation Operator proposed. First, a
design pattern DP is randomly selected from the set of patterns (line 4). Then
the mutation operator uses fs(A) to obtain a scope S from the architecture A
(line 5). A possible implementation for fs(A) is to select a random number of
random architectural elements (classes and interfaces) from A.

Algorithm 1. Pseudocode for the mutation operator

1 Input: A - Architecture to be mutated; ρmutation - Mutation probability.
2 Output: The mutated architecture A
3 begin
4 DP ← randomly select a feasible design pattern;
5 S ← fs(A);
6 if DP.verification(S, ρpla) and ρmutation is achieved then
7 DP.apply(S);
8 end
9 return A;

10 end

The verification method verify() of DP checks whether the scope S is a
PS/PS-PLA<DP> (line 6). The parameter ρpla is a random number to de-
termine which verification method of DP will be used. If ρpla probability is
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not achieved, then the PS verification of DP is used, otherwise the PS-PLA
verification is used. Therefore, if the verification method returns true and the
mutation probability ρmutation is achieved, then the method apply() applies DP
to S (line 7). At the end, the architecture A is returned (line 9). Each design
pattern has its own verification and application methods. In the next sections
we present the verification and application methods of Strategy and Bridge.

4.1 Verification Methods

Each pattern has a method named verify() for PS verification. It receives a scope
S as parameter and does several verifications on the elements of S to check if S
is suitable to receive the application of DP , i.e., to check if S is a PS<DP>.

The verification method for PS<Strategy> checks if the scope has a set of
architectural elements whih are part of a common algorithm family. After this,
it verifies if at least one of the scope elements has a usage or a dependency
relationship with an algorithm element, thus having the role of context. In this
work, an algorithm family is composed by at least two classes/interfaces with:
i) a common prefix or suffix in their names; or ii) at least one method with a
common name and a same return type. Even though, different definitions for
algorithm families could be used by other designers.

In SPL Engineering, a feature can be considered one concern to be realized.
Concerns are used by the verification method of Bridge to identify elements
whose functionalities are related to some feature. In this work, concerns are
associated with architectural elements by UML stereotypes.

The verification method for PS<Bridge> is similar to the method for
PS<Strategy>, with an additional verification that checks if at least two el-
ements from an algorithm family have at least one common concern assigned
to them. Having a common concern assigned to a set of elements ensures their
participation in a common functionality, so it can be abstracted by the Bridge
pattern. We assume a concern is: i) any feature directly assigned to a class or
interface; and ii) any feature assigned to the methods of a class or interface.

Additionally, we also define PS-PLA verification methods for Bridge and Strat-
egy. The PS-PLA verification methods also check if the scope S is a PS-PLA
for a specific pattern. The verification methods for PS-PLA<Strategy> and PS-
PLA<Bridge> check if: i) context is a variation point; and ii) all elements from
the algorithm family are variants.

4.2 Application Methods

The method named apply() performs the mutation. It applies the design pattern
in the scope (PS or PS-PLA) by changing, removing and/or adding architectural
elements. The application methods and some generic mutation examples are de-
scribed below. Application methods identify the elements to be mutated in the
scope and add a specific stereotype to the elements of the pattern structure, but
these steps are implicit in the description. The attributes were suppressed in the
diagrams due to lack of space and because they are not mutated by our operator.
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The application methods first verify whether the respective design pattern
is already applied to the scope. If yes, the method corrects, if necessary, any
incoherence caused by other mutation operators in the elements associated with
the pattern structure. Such corrections may be related to elements that should
be part of the pattern structure or missing relationships.

Figure 3 presents an example of mutation performed by the method apply().
The architectural element “Client” in the PS<Strategy> has the role of context,
whereas the concrete classes “AlgorithmA” and “AlgorithmB” are considered
algorithms from an algorithm family because they have a common prefix in their
names or a common method. The result of the mutation is shown in Figure 3.b.

Fig. 3. Mutation example using the Strategy pattern

To reach this result, the Strategy apply() method either searches for any in-
terface that has all the methods of the algorithm family and is implemented by
any of the algorithm elements, or creates an interface Strategy for the algorithm
family if such interface does not exist. After that, it declares in the Strategy in-
terface all methods from the algorithm family elements and makes all algorithm
elements to implement the Strategy interface and its methods. Then, it makes
context and all other elements which use the elements from the algorithm family
to use the Strategy interface instead. The relationship to the interface will be the
same as before the mutation. If the architecture being mutated is a PLA and
there is a variability whose variants are all part of an algorithm family, it moves
this variability to the Strategy interface and defines it as variation point.

In the example, the Strategy interface “AlgorithmStrategy” was created to ab-
stract all algorithms from the algorithm family: “AlgorithmA” and “AlgorithmB”,
which were decoupled from “Client” and can be interchanged dynamically. The
method foo() is now declared and abstracted by the new interface.

In the same way, Figure 4 shows a mutation example for the Bridge pattern
using its apply() method. “Client” has the role of context, whereas “ClassA” and
“ClassB” are from an algorithm family and the concern x is assigned to them.
These classes are considered algorithms from an algorithm family because they
have a common prefix in their names or a common method (foo()).

To reach this result, the Bridge apply() method either searches for any ab-
stract class (abstraction) that has all methods and concerns from the algorithm
family and aggregates at least one interface of any algorithm element, or cre-
ates one if such class does not exist. After this, it declares in the abstraction
class all methods from the algorithm elements and associates that class with
all concerns of these elements. For each common concern assigned to the ele-
ments of the algorithm family, it either searches for an interface (implementation)
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Fig. 4. Mutation example using the Bridge pattern

that: is aggregated by the abstraction class; is associated with the concern; and
has all methods (from the algorithm elements) that are associated with the
concern, or creates such interface if it does not exist. Then, it adds to the im-
plementation interfaces the methods associated with their respective concerns,
and makes the algorithms to implement the implementation interfaces associated
with their concerns. It creates an aggregation relationship between the abstrac-
tion class and each implementation interface, if such relationships does not exist,
and also creates a default concrete class and makes it to extend the abstraction
class, if such class does not exist. At the end, it makes all elements which use
the algorithms from the algorithm family to use the abstraction class instead. If
the architecture being mutated is a PLA and there is a variability whose vari-
ants are all part of an algorithm family, then it moves this variability to the
implementation interfaces and defines them as variation points.

The Bridge pattern has two main roles in its structure: abstraction (“XAb-
straction” in the example) and implementation (“XImplementation”). The dif-
ference between them is that, whereas implementation defines which algorithm
(“ClassA” or “ClassB”) must be executed, abstraction defines how this execu-
tion is done. By detaching them, it is possible to vary them independently.
For instance, if there were two concerns “X” and “Y”, two implementation in-
terfaces would have been created (“XImplementation” and “YImplementation”),
then “ClassA” could be used to realize concern “X”, while “ClassB” could be used
to realize concern “Y”. Furthermore, if only concern “X” was assigned to foo(),
then it would be present in “XImplementation” and not in “YImplementation”.

5 Empirical Study

An empirical study was conducted in order to answer the following research ques-
tion: “Is the Pattern-Driven Mutation Operator beneficial for SBPD in terms of
extensibility and modularity?”. As mentioned before, the approach of Colanzi [6]
aims at improving the PLA extensibility and modularity. The application of de-
sign patterns on PLA design by using the proposed Pattern-Driven Mutation
Operator would obtain even better results with respect to these objectives.

In order to answer the research question, three experiments were configured,
identified by: i) PLAM (PLAMutation) using only the operators of Colanzi’s ap-
proach [8], named here traditional operators; ii) DPM (DesignPatternMutation)
using only the Pattern-Driven Mutation Operator ; and iii) PLADPM (PLAand-
DesignPatternMutation) using both kinds of operators. The results obtained in
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these three experiments were analyzed quantitatively, in terms of the fitness
values (FM and CM values), and qualitatively, in terms of the solutions quality.

Three real PLAs were used. AGM (Arcade Game Maker [26]) encompasses
three arcade games. MOS (Microwave Oven Software) [14] offers options from
basic to top-of-the-line microwave ovens. The SSS (Service and Support Sys-
tem) [1] consists of applications with the purpose of letting a user or customer
to request or receive technical assistance from a third party or computerized fac-
tor. Table 1 contains PLA information, such as the original fitness values (FM
and CM), number of packages, interfaces, classes and variabilities.

Table 1. Characteristics of the PLAs

PLA Fitness (FM, CM) #Packages #Interfaces #Classes #Variabilities

AGM (789.0, 6.1) 9 15 31 5
MOS (567.0, 0.1) 14 15 26 10
SSS (118.0, 1.0) 6 0 30 11

We use NSGA-II [10], implemented by extending the framework jMetal [11].
NSGA-II is the algorithm generally used in related work [6,22]. No other algo-
rithm was used because the goal of this study is only the proposed operator
evaluation. Other algorithms can be evaluated in further studies.

The parameters were configured according to the experiments conducted by
Colanzi. The maximum number of generations was set as 300 and it was used as
stop criterion for all experiments. The population size value was 100. For the tra-
ditional mutation operators, used in the experiments PLAM and PLADPM, the
mutation probability was 90%. For the Pattern-Driven Mutation Operator ap-
plication, an empirical tuning [3] with the mutation values of 90%, 50% and 10%
was conducted. Considering the hypervolume [28] of these three configurations,
Friedman test [12] did not attest statistical difference among them. This can be
explained by the capacity of Pattern-Driven Mutation Operator to encompass
almost all elements that should be mutated in its operation and to correct the
structures of design patterns. In this sense, a minimal quantity of mutation is
enough to apply a design pattern or to correct it, while several mutations apply a
design pattern only once in a scope, skip the next applications and only execute
few corrections. We adopted the probability of 10%, since with this probability,
the experiments were executed faster.

In the experiment PLADPM, first of all, a mutation operator was randomly
selected and only after this the mutation probability was set. If the Pattern-
Driven Mutation Operator were selected, the used mutation probability was
10%, otherwise, if a traditional operator were selected, the probability was 90%.

The initial population of each experiment is generated using one original in-
stance of the used PLA and the remaining ones are obtained by applying a
random mutation operator available in the experiment to the original PLA.

We performed 30 algorithm executions for each experiment and PLA. Each ex-
ecution generated an approximated Pareto front (PFa). Considering all solutions
of each experiment, the best-known Pareto front (PFk) [5] was obtained by joining
the 30 PFa and removing dominated and repeated solutions. Since the true Pareto
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front (PFt) is not known, the PFt for each PLA was obtained by the union of all
sets PFk and by removing dominated and repeated solutions.

We used hypervolume [28] to assess the quantitative quality of the gener-
ated solutions in our experiments. Briefly, hypervolume measures the area of
the search space which is covered (dominated) by a Pareto front. Therefore, the
higher the hypervolume value, the better the Pareto front. Besides using hyper-
volume as a quantitative indicator, we conducted a qualitative analysis to the
solutions. We selected some solutions with the best Euclidean Distance to the
ideal solution (ED) from each obtained Pareto front and analyzed them under
the architects point of view to determine if they are coherent and anomaly free.
ED measures how close a solution is to a fictional ideal solution (a solution with
the best values for each objective), thus the solution with the lowest ED is the
closest solution to the ideal one. It has the best trade-off between all solutions.

5.1 Results and Analysis

Table 2 presents quantitative results from each experiment. The second column
shows the number of solutions in PFt of each PLA. The third, fifth and seventh
columns show the cardinality of each PFk, and, between parenthesis, the number
of solutions in PFk that are part of PFt. The fourth, sixth and eighth columns
show the fitness values of each solution in PFk. Solutions highlighted in bold are
also in PFt. For AGM, the solutions found by the PLAM experiment are the best
ones and most numerous. These solutions dominated all other solutions found
by the other two experiments. For MOS, the PLADPM experiment is better.
It presents a greater number of optimal solutions, including most solutions of
PFt and both solutions found in PLAM (one of these solutions is the original
MOS PLA). For SSS, the PLADPM and DPM experiments found the same two
solutions (which are in PFt), including the only one found by PLAM, which in
this case is the original SSS PLA. The algorithm could not find many solutions
because of the small search space of this PLA.

To evaluate the quality of each PFk we used the hypervolume. Table 3 shows
for each PLA in each experiment the mean hypervolume and the standard de-
viation in parenthesis (respectively, Columns 2, 3 and 4). The best hypervol-
ume values are highlighted in bold. We used Friedman test at a 5% significance
level [12] to perform a statistical comparison. For AGM, the PLAM experiment
presented the best mean hypervolume, but Friedman test does not show dif-
ference between its results and PLADPM results. There is statistical difference
only between PLAM and DPM results. For MOS, PLADPM is better than the
other experiments, always with statistical significance. For SSS, PLADPM and
DPM results are better than PLAM ones, with statistical difference. PLADM
and DPM are statistically equivalent.

We observed that the PLADPM results are better than the DPM ones. A
possible reason for this is that each operator of PLADPM (the pattern-driven
operator and the traditional operators [8]) helps each other to trespass their local
optimum, consequently bringing more diversity of solutions and improving the
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Table 2. Experiments Results

PLA PFt
PLAM PLADPM DPM

PFk Fitness (FM, CM) PFk Fitness (FM, CM) PFk Fitness (FM, CM)

AGM 27 27 (27)

(657,2.059)(595,3.100)

(605,3.091)(585,4.083)

(831,2.025)(641,2.077)

(730,2.031)(706,2.040)

(717,2.034)(656,2.067)

(698,2.042)(651,2.071)

(631,3.059)(633,3.056)

(770,2.026)(753,2.029)

(762,2.026)(726,2.033)

(684,2.045)(674,2.048)

(670,2.053)(592,4.062)

(567,4.111)(571,4.091)

(640,2.111)(620,3.077)

(625,3.067)

17 (0)

(925,2.053)(610,6.100)

(611,6.083)(616,4.100)
(684,2.083)(735,2.056)

(734,2.059)(633,4.083)
(673,2.111)(701,2.077)

(681,2.100)(719,2.071)
(729,2.062)(652,4.062)
(646,4.067)(640,4.077)

(622,4.091)

6 (0)
(789,6.143)(922,6.053)
(892,6.067)(968,6.040)

(936,6.048)(941,6.045)

MOS 10 2 (2) (567,0.100)(543,0.125) 11 (9)

(543,0.125)(567,0.100)

(737,0.067)(853,0.033)

(847,0.034)(690,0.091)

(812,0.045)(781,0.059)

(708,0.083)(855,0.029)

(784,0.048)

7 (3)

(543,0.125)(567,0.100)

(878,0.059)(690,0.071)

(1138,0.053)(1030,0.056)
(831,0.067)

SSS 2 1 (1) (118,1.000) 2 (2) (118,1.000)(121,0.500) 2 (2) (118,1.000)(121,0.500)

Table 3. Hypervolume Results

PLA
Mean Hypervolume (Standard Deviation)

PLAM PLADPM DPM

AGM 1098.4 (254.8) 683.8 (271.3) 23.7 (0.7)
MOS 73.8 (0.0) 94.4 (2.4) 84.8 (1.5)
SSS 0.31 (0.0) 0.36 (0.0) 0.36 (0.0)

evolutionary process and its results. Therefore, it seems that using both kinds of
operators is a better choice than using only Pattern-Driven Mutation Operator.

In terms of solutions quality, a qualitative analysis shows the Pattern-Driven
Mutation Operator does not introduce anomalies or incoherence in the generated
PLAs. This happened because our operators are able to correct inconsistencies
in the design patterns structures (as presented in Section 4.2). To illustrate this
and how the operator works, Figure 5 presents an excerpt of a PLA design
(solution) obtained in the PLADPM experiment with AGM. The picture shows
the application of the Strategy design pattern.

Before the mutation, “PlayGameGUI” (context) was using the three algorithm
elements “IPlayBrickles”, “IPlayPong” and “IPlayBowling” directly with three de-
pendency relationships. These algorithms had the same three methods before the
mutation: checkInstallation(), play() and checkDatePlayed(). After the mutation,
a strategy interface “IPlayStrategy” was created to abstract the three elements
and context started using this interface instead. This mutation decouples context
class from the algorithm elements and make them interchangeable. This muta-
tion also improved the PLA extensibility, since the designer can add or remove
algorithms without directly affecting the classes which use them. For the other
PLAs, the results were similar, but involving more elements of different types
and packages in the mutations.
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Fig. 5. PLA design achieved by applying Strategy

Figure 6 presents part of a solution obtained from PLADPM experiment with
MOS PLA by applying Bridge design pattern.

Fig. 6. PLA design achieved by applying Bridge

Before the experiment, in the original MOS PLA, the context class “Mi-
crowaveOvenControl” was using the four implementation interfaces (“IBeeper”,
“ILamp”, “IHeatingElement” and “ITurntable”) directly. In fact, these interfaces
are all from output components. After the mutation these interfaces were ab-
stracted by two abstraction classes from Bridge pattern (“InitializeAbstraction”
and “InitializeAbstractionImpl”). Now the designer can add new output elements
by creating an aggregation between the abstraction class “InitializeAbstraction”
and the new interface. With this mutation, the Bridge design pattern helps the
context class to be decoupled from the implementation interfaces and to make
these interfaces interchangeable. The solution is a coherent and anomaly-free ap-
plication of the Bridge pattern. In addition, it is an architecture more extensible
by making it able to easily accommodate new elements, and more modularized
by keeping the elements in their components regarding their own operations.

It is hard to automatically determine if the flexibility of a pattern is needed
in a scope. This decision is intellectual and should come from the designer. Our
approach applies the patterns where they should be applied. When the final
results are generated, the designer must choose architectures that fit for his/her
purposes. In our experiment, there was only one instance of a design pattern by
solution. In some cases the two design patterns were applied, but in different
scopes of a same solution and not sharing elements.
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As a conclusion of this study, and answering our research question, we ob-
serve that the application of design patterns helped to improve the design of
the three PLAs presented in this section. The design patterns were applied in
a coherent way, improved directly the hypervolume values and gave to the user
a higher diversity of non-dominated solutions. Using the Pattern-Driven Muta-
tion Operator contributed to find better solutions in terms of extensibility and
modularity. It seems that the use of the proposed operator with the traditional
ones is the best choice for a general case.

6 Related Work

We have not found in the literature works applying design patterns in the search-
based optimization of PLA, maybe because SPL patterns is not a completely
established research field. Works on this subject offer manual approaches and
only apply specific patterns in particular domains [18,27]. Keepence and Man-
nion [18] developed a method that uses design patterns to model variabilities
in object-oriented SPL models. They defined three patterns to model different
variant types: (i) Single Adapter pattern, (ii) Multiple Adapter pattern and (iii)
Optional pattern. The first two patterns allow modeling a group of mutually
exclusive variants and a group of inclusive variants, respectively. The third pat-
tern allows modeling optional variants. It is not possible to automatically apply
these patterns in the context of our work, since they have some implementation
details that cannot be identified in a class diagram. Ziadi et al. [27] proposed an
approach based on the Abstract Factory design pattern to derive product models
from a PLA modeled by UML. Their approach includes the usage specification
of this pattern and an algorithm using OCL (Object Constraint Language) for
the model derivation. However, the Abstract Factory was not used in our work,
because it could not have its suitable scopes identified automatically.

Works most related to ours are from the search-based software design area [22].
However, they do not address specific characteristics of PLA design. Search-based
algorithms have been used for finding optimal sequences of design pattern trans-
formations to increase structural quality of software architectures [2,16,17,21].
Such works optimize the architectural design indirectly. Also, they do not find
the appropriate place to apply the design patterns.

Cinnéide and Nixon [4] propose a semi-automated approach for applying pat-
terns in systems using code refactoring. They assessed the approach application
to the whole GoF catalog [13]. However, it delegates to the designer the deci-
sion of what pattern to apply and where. Räihä et al. [23,24] apply the design
patterns Facade, Adapter, Strategy, Template Method and Mediator for synthe-
sizing software architectures with genetic algorithms. The patterns are applied
by mutation operators in order to build more modifiable and efficient solutions
through the evolutionary process. Their approach ensures a valid automated
application of design patterns. However, it does not necessarily mean that the
design patterns are applied into suitable scopes. Furthermore, they adopted a
different architecture representation from ours.
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7 Concluding Remarks

This paper introduced an automatic way to apply design patterns in a search-
based PLA design approach. We defined a metamodel to represent and iden-
tify suitable scopes associated with the design patterns, reducing probability of
anomalies introduction. The model is used by a mutation operator, which in-
cludes verification and application methods to transform the PLA designs. The
operator was implemented with NSGA-II and empirically evaluated.

The Pattern-Driven Mutation Operator contributed to find better solutions
in terms of extensibility and modularity. For all SPLs, the use of the introduced
operator with traditional operators obtained statistically better or equivalent
results, considering the hypervolume. In a qualitative analysis, we observed co-
herent and anomaly-free application of design patterns in several scopes.

We intend to implement the mutation operator for other patterns, such as Fa-
cade and Mediator. We also intend to investigate the use of mini-patterns (such
as the ones presented in [4]) to increase reuse, and the possibility of combining
design patterns to improve the quality of the generated solutions. Future works
can involve dynamic UML models, such as interaction and communication dia-
grams. Another possibility is to implement an interactive approach, so that the
user can intervene directly with the approach to add his/her aesthetic experience
in the evolution of PLAs and consequently to improve the results.
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Abstract. Software Product Lines (SPLs) are families of software prod-
ucts that can be configured and managed through a combination of fea-
tures. Such products are usually represented with a Feature Model (FM).
Testing the entire SPL may not be conceivable due to economical or time
constraints and, more simply, because of the large number of potential
products. Thus, defining methods for generating test configurations is re-
quired, and is now a very active research topic for the testing community.
In this context, mutation has recently being advertised as a promising
technique. Mutation evaluates the ability of the test suite to detect de-
fective versions of the FM, called mutants. In particular, it has been
shown that existing test configurations achieving the mutation criterion
correlate with fault detection. Despite the potential benefit of mutation,
there is no approach which aims at generating test configurations for
SPL with respect to the mutation criterion. In this direction, we intro-
duce a search-based approach which explores the SPL product space to
generate product test configurations with the aim of detecting mutants.

Keywords: Software Product Lines, Test Configuration Generation,
Search-Based Software Engineering, Mutation, Feature Models.

1 Introduction

Software Product Lines (SPLs) extend the concept of reusability by allowing to
configure and build tailored software product through a combination of differ-
ent features [1]. Each feature represents a functionality or an abstraction of a
functional requirement of the software product and is itself built from compo-
nents, objects, modules or subroutines. Thus, an SPL is defined as a family of
related software products that can easily be configured and managed, each prod-
uct sharing common features while having specific ones. The possible products
of an SPL are usually represented through a Feature Model (FM) which defines
the legal combination between the features of the SPL, facilitates the derivation
of new products and enables the automated analysis of the product line [2].

SPLs bring many benefits such as code resuability, a faster time to market,
reduced costs and a flexible productivity [3]. However, SPLs are challenging to
test due to the large amount of possible software that can be configured [4].
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For instance, 20 optional features lead to 220 possible products to configure,
meaning more than a million of different software product that should be tested
independently. Such a testing budget is usually unavailable for economic, tech-
nical or time reasons, preventing the SPL from being exhaustively tested. Thus,
defining methods for generating test suites while giving enough confidence in
what is tested is required, and is now a very active research topic for the testing
community [5,6,7]. In this respect, Combinatorial Interaction Testing (CIT) [8]
is a popular technique that has been applied to SPLs to reduce the size of the
test suites. CIT operates by generating only the product configurations exercis-
ing feature interactions. While CIT has been shown to be effective for disclosing
bugs [9,10], recent work has shown mutation as a promising alternative to the
CIT criterion, also correlating with fault detection [11] for existing test suites.

Mutation evaluates the effectiveness of a test suite in terms of its ability to
detect faults [12]. It operates by first creating defective versions of the artifact
under test, called mutants and then by evaluating the ability of the test suite
to detect the introduced mutants. Mutation has been identified as a powerful
technique in several work, e.g., [13,14]. In this paper, defective versions of the
FM are produced. A mutant is thus an altered version of the rules defining
the legal feature associations. Such mutants are useful as they represent faulty
implementations of the FMs that should be tested. Thus, while CIT measures the
number of feature interactions of the FM exercised by the test suite, mutation
measures the number of mutants detected by the test suite. However, and despite
the potential benefit of mutation, there is no approach with the purpose of
generating product configurations for SPL with respect to the mutation criterion.

Towards this direction, we devise the first approach which generates SPL
test configurations using mutation of the FM. Since the SPL product space is
too large to be exhaustively explored, we introduce a search-based technique
based on the (1+1) Evolutionary Algorithm (EA) [15,16] in conjunction with a
constraint solver in order to only deal with products that are conform to the
FM. In order to guide the search towards the detection of mutants, four search
operators are proposed to both add and remove test configurations from the test
suite. The proposed approach solves the challenge of generating a test suite with
respect to the mutation criterion. Experiments on 10 FMs show the ability of the
proposed approach to generate test suites while with the purpose of mutation.

The remainder of this paper is organized as follows. Section 2 introduces
the background concepts underlying the proposed approach. Section 3 describes
the approach itself. Section 4 presents the conducted experiments. Finally,
Section 5 discusses related work before Section 6 concludes the paper.

2 Background

2.1 Software Product Line Feature Models

A Feature Model (FM) encompasses the different features of the SPL and the
constraints linking them. Thus, it defines the possible products that can be
configured in an SPL. For instance, consider the FM of Figure 1. It contains 9
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features. Some features are mandatory, which means included in every software
product, e.g., Draw. There are other type of constraints for the features, such as
implications or exclusion. For example, the presence of the Color feature in the
software product requires the Color Palette one to be present too.

The FM can be represented as a boolean formula. In this paper, each con-
straint is represented in Conjunctive Normal Form (CNF). Such formulas are a
conjunction of n clauses C1, ..., Cn, where a clause is a disjunction of m literals.
Here, a clause represents a constraint between features of the FM and a literal
represent a feature that is selected (fj) or not (fj):

FM =
n∧

i=1

(
m∨

j=1

lj

)

︸ ︷︷ ︸
constraints

, where lj = fj or fj .

For instance, the FM of Figure 1 encompasses n = 18 constraints represented
as follows in Conjunctive Normal Form:

f1, (f2 ∀ f1), (f1 ∀ f2), (f3 ∀ f1), (f1 ∀ f3), (f4 ∀ f1), (f5 ∀ f1), (f1 ∀ f5), (f6 ∀ f3), (f7 ∀
f3), (f3∀f6∀f7), (f8∀f5), (f9∀f5), (f5∀f8∀f9), (f8∀f9), (f7∀f4), (f4∀f8), (f9∀f4),
where RasterGraphicsEditor ⇒≤ f1, Draw ⇒≤ f2, Selection ⇒≤ f3, ColorPalette ⇒≤ f4,
Rendering ⇒≤ f5, Rectangular ⇒≤ f6, ByColor ⇒≤ f7, BlackWhite ⇒≤ f8, Color ⇒≤ f9.

Thus, with respect to the FM of Figure 1, the corresponding boolean formula is
a conjunction between all the constraints:

FM =
f1≥(f2∀f1)≥(f1∀f2)≥(f3∀f1)≥(f1∀f3)≥(f4∀f1)≥(f5∀f1)≥(f1∀f5)≥(f6∀f3)≥(f7∀
f3)≥(f3∀f6∀f7)≥(f8∀f5)≥(f9∀f5)≥(f5∀f8∀f9)≥(f8∀f9)≥(f7∀f4)≥(f4∀f8)≥(f9∀f4).

2.2 Software Product Line Test Configurations

We denote as a test configuration (TC) or product configuration to test the list of
features of the FM that are present or not in a given product. For instance, with

Fig. 1. A Feature Model of a raster graphic editor Software Product Line
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respect to Figure 1, TC1 = {f1, f2, f3, f4, f5, f6, f7, f8, f9} is a TC representing
the software product proposing all the features except the rectangular selection
and the black and white rendering. This TC satisfies the constraints of the
FM that are described in the previous subsection. On the contrary, TC2 =
{f1, f2, f3, f4, f5, f6, f7, f8, f9} violates the constraint which specifies that f2 =
Draw is a mandatory feature. In the remainder of this paper, only TCs satisfying
the constraints of the FM are considered. To this end, a satisfiability (SAT)
solver is used. Finally, we denote as test suite (TS) a set of TCs.

3 Mutation-Based Generation of Software Product Line
Test Configurations

The approach for generating TCs starts by creating mutants of the SPL FM.
Then, a search-based process based on the (1+1) Evolutionary Algorithm (EA)
[15,16] makes use of both the FM and the mutants to produce a set of test
configurations. The (1+1) EA is a hill climbing approach which has been proven
to be effective in several studies [17,18]. The overview of the approach is depicted
in Figure 2. The following sections describe the different steps of the approach.

3.1 Creation of Mutants of the Feature Model

The first step of the approach creates altered versions of the FM. Each altered
version is called a mutant and contains a defect within the boolean formula of
the FM. For instance, the two following mutants are produced from the FM
example of Figure 1:

M1 =
�
f1≥(f2∀f1)≥(f1∀f2)≥(f3∀f1)≥(f1∀f3)≥(f4∀f1)≥(f5∀f1)≥(f1∀f5)≥(f6∀f3)≥(f7∀
f3)≥(f3∀f6∀f7)≥(f8∀f5)≥(f9∀f5)≥(f5∀f8∀f9)≥(f8∀f9)≥(f7∀f4)≥(f4∀f8)≥(f9∀f4).

M2 =

f1≥(f2
�
≥f1)≥(f1∀f2)≥(f3∀f1)≥(f1∀f3)≥(f4∀f1)≥(f5∀f1)≥(f1∀f5)≥(f6∀f3)≥(f7∀

f3)≥(f3∀f6∀f7)≥(f8∀f5)≥(f9∀f5)≥(f5∀f8∀f9)≥(f8∀f9)≥(f7∀f4)≥(f4∀f8)≥(f9∀f4).

In M1, a literal has been negated whereas in M2, an operator OR has been
replaced by an AND one. It should be noted that the proposed approach is
independent from the way the mutants have been created and from the changes
they operate compared to the original FM.

Search-based 
processMutants

Feature
Model Time/generations

Product 
configurations

Fig. 2. Overview of the approach for generating test configurations
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3.2 The Search-Based Process

Once the mutants are created, the search-based process starts to generate a
set of test configurations. The different steps of the approach are described in
Algorithm 1 and detailed in the following. First, an initial population is created
and its fitness is evaluated (line 1 and 2). Then, the population is evolved (line
3 to 10): search-operators try to improve the population by adding or removing
test configurations.

Individual. An individual I or potential solution to the problem is a set of
k ≥ 1 test configurations that are conform to the FM: I = {TC1, ..., TCk}.

Population. The population P is composed of only one individual: P = {I}.

Initial Population. The individual of the initial population is initialized by
generating randomly a test configuration that is conform to the FM by using a
SAT solver.

Fitness Evaluation. The fitness f of an individual I is calculated by evaluating
how many mutants are not satisfied by at least one of the test configurations of I.
This is called mutation score. More formally, if we denote as M = {M1, ...,Mm}
the m mutants of the FM, the fitness f of an individual I is evaluated as follows:

F (I) =
|{Mi ∈ M | ∃TCj ∈ I |TCj does not satisfy Mi}|

m
= mutation score,

where |A| denotes the cardinality of the set A. It should be noted that all the
test configurations considered are satisfying the FM since they belong to I.

Search Operators. The approach makes use of four search operators that op-
erate on an individual I. The operators are divided into two categories: operators
that add a new test configuration and operators that remove a test configuration.
The operators are depicted in Figure 3.

Algorithm 1. Generation of SPL Test Configurations
1: Create an initial population P with one individual I : P = {I} containing one test configuration
2: Evaluate the fitness f of I : f = F (I)
3: while budget (time, number of generations) do
4: Select a search operator with a probability p
5: Generate a new individual I′ using the selected search operator
6: Evaluate the fitness f ′ = F (I′)
7: if f ′ ≥ f then
8: I = I′

9: end if
10: end while
11: return I
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Feature
Model

Individual

SAT
Solver

(a) Add a random test configura-
tion.

Individual
Random product 
configuration removed

(b) Remove a random test config-
uration

Mutants Feature
Model

Individual

SAT
Solver

4. Product 
configuration added

1. Evaluation

2. Score-based selection 

3. Assume
altered 
constraint 
negation

(c) Smart add of a test configuration

Mutants

Individual

3. Product 
configuration removed

1. Evaluation

2. Score-based selection

(d) Smart remove of a test configuration

Fig. 3. The search operators used to generate a test configuration set

– Add a random test configuration. This operator is presented in
Figure 3(a). It adds to the considered individual a test configuration ran-
domly chosen from the space of all the test configurations of the FM .

– Remove a random test configuration. This operator is depicted in
Figure 3(b). It randomly removes a test configuration from the individual.

– Smart add of a test configuration. This operator is presented in Figure
3(c). First, the altered constraints of the mutants are collected. Then, for
each constraint, the number of test configurations from I that do not satisfy
it is evaluated. This can be view as a mutant constraint score. Then, using
this score, a proportionate selection is performed in order to choose one of
these constraints. The idea is to promote the constraint that is the less not
satisfied by the test configurations of I. Then, the operators tries to select
a test configuration which is at the same time satisfying the FM and the
negation of the selected constraint. Doing so will result in a test configuration
that is able to violate a clause of the mutant and thus do not satisfy it.
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– Smart remove of a test configuration. This operator is illustrated in
Figure 3(d). For each test configuration of I, it is evaluated the number
of mutants that are not satisfied. This can be view as a test configuration
score. Then, using this score, a proportionate selection is performed in order
to choose which test configuration to remove from I. The idea is to promote
the removal of test configurations that are not satisfying the less amount of
mutants.

4 Experiments

In this section, the proposed search-based approach, that we will denote as SB
is evaluated on a set of FMs. The objective of these experiments is to answer
the two following research questions:

– [RQ1] Is the proposed approach capable of generating test configurations lead-
ing to an improved mutation score?

– [RQ2] How does the proposed approach compare with a random one in terms
of mutation score and number of test configurations generated?

The first research question aims at evaluating whether the mutation score is
increasing over the generations of SB and if at a point it is able to converge. We
expect to see the mutation score increasing over the generations and stabilize
at a time. In practice, it means that the approach is capable of improving the
solution and reach a good enough mutation score.

The second question amounts to evaluate how SB compares with a naive ap-
proach. Since no other technique exists to perform a mutation-based generation
of TCs for SPLs, we compare it to a random one. To this end, two bases of
comparison are used. The first one is the evaluation of the mutation score when
generating the same number of test configurations with both approaches. The
second baseline evaluates the number of configurations required by the random
approach to achieve the same level of mutation score as SB. It is expected that a
higher mutation score than random for the same number of configurations will be
observed and we expect a random generation to necessitate more configurations
than SB to achieve a given mutation score.

In order to answer these two questions, an experiment is performed on 10 FMs
of various size taken from the Software Product Line Online Tools (SPLOT)
[19], which is a widely used repository in the literature. The FMs used in the
experiments are described in Table 1. For each FM, it presents the number of
features, the number of constraints, the number of possible products and the
number of mutants used. The mutants have been created using the mutants
operator presented in Table 2 and taken from [20,21]. The mutants leading to
an invalid FM formula (e.g., a ∧ ¬a) and equivalent mutants (mutants that can
never be detected because they are always satisfied by any test configuration) are
not considered in this work. Finally, in order to generate random configurations
from the FM and the mutants, the PicoSAT SAT solver [22] is used.
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Table 1. The feature models used for the experiments

Feature Model Features Constraints Possible products Mutants

Cellphone 11 22 14 119
Counter Strike 24 35 18,176 208
SPL SimulES, PnP 32 54 73,728 291
DS Sample 41 201 6,912 1,086
Electronic Drum 52 119 331,776 664
Smart Home v2.2 30 82 3.87×109 434
Video Player 71 99 4.5×1013 582
Model Transformation 88 151 1.65×1013 851
Coche Ecologico 94 191 2.32×107 1,030
Printers 172 310 1.14×1027 1,829

Table 2. Mutation operators used in the experiments in order to alter feature models

Mutation Operator Action

Literal Omission (LO) A literal is removed
Literal Negation (LN) A literal is negated
OR Reference (OR) An OR operator is replaced by AND

4.1 Approach Assessment (RQ1)

Setup. SB has been performed 30 times independently per FM with 1,000
generation with an equal probability p = 0.25 to apply one of the four operators.

4.2 Results

The results are recorded in Figure 4 and Table 3. The figure presents the evolu-
tion of the mutation score averaged on all the FM and all the 30 runs while the
table presents detailed results per FM. With respect to Figure 4, one can see
the ability of the approach to improve the mutation score over the generations
and stabilize around 0.8. With respect to Table 3, one may observe that the ap-
proach is able to improve the mutation score for each of the considered FM, with
improvements of 68% in average for the DS Sample FM. Besides, there are very
small (0.03) or non-existent variations among the different final mutation score
achieved over the 30 runs, fact demonstrating the ability of SB to reach a good
solution at each execution of the approach. Finally, it should be noticed that
SB achieves the above-mentioned results using only a small number of genera-
tions (1,000 generations). This is an achievement since search-based techniques
usually require thousands of executions in order to be effective [18].

4.3 Answering RQ1

The results presented in the previous section demonstrate the ability of SB to
both improve the mutation score over the generations and converge towards
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Table 3. Comparison between the initial and final mutation score achieved by the
proposed search-based approach on the 30 runs for 1,000 generations

Generation 1 Generation 1,000
Feature Model \ Mutation score min max avg min max avg

Cellphone 0.39 0.66 0.5 0.79 0.79 0.79
Counter Strike 0.37 0.56 0.45 0.79 0.79 0.79
SPL SimuleES, PnP 0.42 0.62 0.49 0.7 0.7 0.7
DS Sample 0.17 0.27 0.22 0.9 0.9 0.9
Electronic Drum 0.38 0.56 0.44 0.78 0.78 0.78
Smart Home v2.2 0.45 0.66 0.54 0.89 0.89 0.89
Video Player 0.36 0.55 0.45 0.69 0.72 0.71
Model Transformation 0.41 0.61 0.5 0.86 0.86 0.86
Coche Ecologico 0.44 0.57 0.49 0.8 0.8 0.8
Printers 0.35 0.45 0.41 0.74 0.75 0.75

an acceptable mutation score. Indeed, some mutants may not be detectable if
they are either leading to an invalid formula or an equivalent to the original
FM formula (i.e., there is no test configuration that cannot satisfy it), thus
limiting the maximum score achievable by the approach. In this work, we only
focus on the process of generating the test suite to maximize the mutation score.
Finally, we observe improvements in the mutation score of over 60% and a quick
convergence, with very small variations between each of the 30 runs, thus giving
confidence in the validity of the search approach.

4.4 Comparison with Random (RQ2)

Setup SB has been performed 30 times independently per FM with 1,000 gen-
eration allowed. An equal probability p = 0.25 to apply one of the four operators
has been set. For each run of SB, a random one has been conducted in order to
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0.8
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Fig. 4. Evolution of the mutation score over the 1,000 generations of the proposed
approach averaged on all the feature models for the 30 runs
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Table 4. Comparison between the search-based approach (SB) and a random one on
the following basis: (a) same number of test configurations and (b) same mutation score
(MS). Each approach has been performed 30 times independently. #Conf denotes the
number of test configurations. The execution time is in seconds.

SB approach Rand. same #Conf Rand. same MS

Feature Model 30 runs #Conf MS Time MS Time #Conf Time

min 3 0.79 2 0.48 0 4 0

Cellphone max 4 0.79 3 0.79 0 42 0

avg 3.46 0.79 2.66 0.67 0 12.4 0

min 7 0.8 9 0.68 0 22 0

Counter Strike max 11 0.8 11 0.75 1 109 2

avg 9.53 0.8 10.6 0.72 0.16 43.73 0.56

min 3 0.7 11 0.61 0 4 0

SPL SimulES, PnP max 5 0.7 13 0.7 1 30 1

avg 4.36 0.7 11.9 0.66 0.1 9.66 0.16

min 16 0.9 46 0.56 0 32 1

DS Sample max 17 0.9 49 0.77 1 114 8

avg 16.03 0.9 46.8 0.70 0.2 60.26 2.9

min 5 0.78 22 0.66 0 9 0

Electronic Drum max 8 0.78 27 0.77 1 29 1

avg 6.83 0.78 24.8 0.72 0 15.46 0.3

min 7 0.88 26 0.79 0 13 0

Smart Home v2.2 max 11 0.88 30 0.88 1 43 2

avg 8.36 0.88 28 0.84 0.1 22.7 0.66

min 14 0.69 53 0.62 0 161 19

Video Player max 22 0.72 65 0.65 1 1,000* 532

avg 18.86 0.71 59 0.64 0.5 518 183

min 8 0.86 54 0.77 0 15 0

Model Transfo. max 12 0.86 67 0.85 1 56 4

avg 9.36 0.86 59.2 0.82 0.2 31.13 1.86

min 11 0.8 75 0.71 0 17 1

Coche Ecologico max 14 0.8 89 0.77 1 57 7

avg 11.76 0.8 80 0.74 0. 31.36 2.9

min 25 0.74 443 0.67 2 149 110

Printers max 35 0.75 567 0.72 3 1,000* 4,928

avg 30 0.75 513 0.70 2.4 481 1,264

*The number of test configurations required by random to achieve the same mutation
score as SB has been limited to 1,000.

(a) evaluate the mutation score achieved when randomly generating the same
number of TCs as the number proposed by SB, and (b) evaluate the amount of
generated TCs required by the random approach in order to achieved the same
mutation score. In the latter case, a limit of 1,000 TCs has been set.

Results. The results are recorded in Table 4. It presents the minimum, maxi-
mum and average number of TCs, mutation score (MS) achieved and execution
time in seconds for the following approaches: SB, random based on the same
number of test configurations as SB and random based on the same mutation
score as SB. Besides, Figure 5 depicts the distribution of the values over the 30
runs and Figure 6 presents the average values. From these results, one can see
that SB is quite stable, with small variations in both the mutation score and
number of configurations achieved (5(b) and 5(a)). Compared to random based
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Fig. 5. Search-based approach VS Random: distribution of the mutation score and
number of test configurations on the 30 runs
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Fig. 6. Search-based approach VS Random: average values of the mutation score and
number of test configurations on the 30 runs
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on the same number of configurations, SB always performs better in terms of
mutation score. For instance, for the DS Sample FM, there is a difference of
0.34 on minimum mutation score achieved and 0.2 on the average one (Table 4).
Regarding the comparison based on the mutation score, the random approach
requires much more TCs to achieve the same mutation score. For instance, with
respect to the Video Player FM, the random approach requires in average more
than 500 TCs to reach a mutation score of 0.71 while SB only needs less than 20
(Figure 6(a)). In addition, there were some cases, e.g., the Printers FM where
the random approach was not able to achieved the same mutation score as the
one reached by SB, requiring more than 1,000 TCs and more execution time
than SB.

Answering RQ2. Our results show that SB outperforms the random approach.
We observed a difference between random and SB of up to 34 % in favor of SB.
Additionally, the random technique requires much more test configurations to
achieve a given mutation score. In some cases, it is not even able to terminate,
requiring more than 20 times more TCs. This shows the ability of SB to generate
TCs while at the same time maximizing the mutation score that can be achieved.

4.5 Threats to Validity

The experiments performed in this paper are subject to potential threats towards
their validity. First, the FMs employed are only a sample and thus the general-
ization of theses results to all possible FMs is not certain. In particular, using
different models might lead to different results. In order to reduce this threat, we
selected 10 FMs of different size and complexity. Thus, we tried to use a diversify
and representative set of subjects. A second potential threat can be due to the
experiments themselves. First, there is a risk that the observed results happened
by chance. To reduce this threat, we have repeated the execution of both the
proposed approach and the random one 30 times per FM. Doing so allows re-
ducing risks due to random effects. Another threat can be due to the SAT solver
used. Indeed, there is a risk that another solver will lead to different results.
We choose the PicoSAT solver as it was easy to modify it to produce random
solutions. The same threat holds for the mutation operator used. We tried to em-
ploy various mutation operators that are relevant for FM formulas. This paper
aims at generating test configurations with the aim of detecting mutants. The
ability of finding faults is not evaluated. Regarding the mutation score achieved,
it is expected that giving more time to the search-based approach will provide
better results. Even if small differences are observed in the mutation score com-
pared to the random approach, this can be in practice leading to finding more
faults [11,17]. Finally, the presented results could be erroneous due to potential
bugs within the implementation of the described techniques. To minimize such
threats, we divided our implementation into separated modules. We also make
publicly available the source code and the data used for the experiments.
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5 Related Work

The use of metaheuristic search techniques for the purpose of the automatic gen-
eration of test data has been a burgeoning interest for researchers [23]. In this
context, several work have investigated the product configuration generation for
SPLs using a metaheuristic search. For instance, in [24], Ensan et al. aim at gen-
erating a test suite with a genetic algorithm by exploring the whole SPL product
space, including product that do not fulfill the FM constraints. In this work, we
only explore the space of product satisfying the FM, by using a SAT solver. The
importance but also the overhead induced by constraint solvers has been shown
in [4,25] and used in some work for the purpose of CIT. For instance, in [26],
Garvin et al. proposed a simulated annealing approach for generating configura-
tions based on CIT. In [27], a multi-objective genetic algorithm in conjunction
with a SAT solver was proposed by the authors with CIT as one of the objec-
tive to fulfill. There are also work exploring the whole search space to compute
the optimal test suite according to CIT, such as [28]. In this work, we propose
a simple hill-climbing-based approach in conjunction with the SAT solver. The
difference is that we do not consider CIT as an objective. The product config-
uration generation process is guided by the mutation score. An exact solving
technique can only be used for moderate size search spaces. In this paper, we
focus on larger SPLs where the product space cannot be fully explored. Finally,
there are work focusing on test case generation for each software product [29].

Mutation has been widely used for the purpose of testing and test generation,
e.g., [30,31]. With respect to the mutation of models such as FMs for SPL,
Henard et al. [20] introduced some operators and used mutants of FM in order
to evaluate the ability of a given test suite to find them. While the concept
of mutation score was used, it was only a way to evaluate a given test suite.
In this paper, the mutation score is used to guide the search for generating
test suites. Besides, it has been shown that measuring the mutation score of
a test suite with respect to a CIT model like FMs rather than measuring the
number of interactions covered gives a stronger correlation to code-level faults
[11]. In this paper, we used FMs represented as boolean formulas from which we
created mutants. There are several work who investigated the mutation of logic
formulas. For instance, Gargantini and Fraser devised a technique to generate
tests for possible faults of boolean expressions [32]. In this work, the smart add
search operator also aims at triggering the fault introduced in the mutant by
using a SAT solver. In the context of logic-based testing, Kaminski et al. [33]
proposed an approach to design tests depending on logical expressions. In this
paper, mutation operators are applied on the logic formula of the FM. The
objective is only to generate test configurations according to the mutants of the
FM formula.

6 Conclusion and Future Work

This paper devised an approach for generating test configurations for SPLs based
on mutation. The novelty of the proposed technique is the use of mutation of the
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FM to guide the search, thus focusing on possible faulty implementation of the
FM that should be tested. To the authors knowledge, it is the first approach that
is performing so. The conducted experiments show the benefit of the approach
compared to a random one as it is able to both reduce the test suite size while
significantly increasing the mutation score. To enable the reproducibility of our
results, our implementation and the FMs used are publicly available at:

http://research.henard.net/SPL/SSBSE_2014/.

Future work spans in the three following directions. First, we will investigate
the influence of the parameters and study different variants of the algorithm. In
particular, we will compare with standard genetic algorithms. Second, we will
propose new operators for improving the search process. Finally, we will under-
take supplementary experimentations to further validate the presented findings.
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IT4Innovations Centre of Excellence, Brno University of Technology, Czech Republic
{ihruba,krena,iletko,ipluhackova,vojnar}@fit.vutbr.cz

Abstract. Testing of multi-threaded programs is a demanding work due to the
many possible thread interleavings one should examine. The noise injection tech-
nique helps to increase the number of thread interleavings examined during re-
peated test executions provided that a suitable setting of noise injection heuristics
is used. The problem of finding such a setting, i.e., the so called test and noise
configuration search problem (TNCS problem), is not easy to solve. In this pa-
per, we show how to apply a multi-objective genetic algorithm (MOGA) to the
TNCS problem. In particular, we focus on generation of TNCS solutions that
cover a high number of distinct interleavings (especially those which are rare)
and provide stable results at the same time. To achieve this goal, we study suitable
metrics and ways how to suppress effects of non-deterministic thread scheduling
on the proposed MOGA-based approach. We also discuss a choice of a concrete
MOGA and its parameters suitable for our setting. Finally, we show on a set of
benchmark programs that our approach provides better results when compared to
the commonly used random approach as well as to the sooner proposed use of
a single-objective genetic approach.

1 Introduction

Multi-threaded software design has become widespread with the arrival of multi-core
processors into common computers. Multi-threaded programming is, however, signif-
icantly more demanding. Concurrency-related errors such as data races [9], atomicity
violations [21], and deadlocks [3], are easy to cause but very difficult to discover due to
the many possible thread interleavings to be considered [22,8]. This situation stimulates
research efforts towards advanced methods of testing, analysis, and formal verification
of concurrent software.

Precise static methods of verification, such as model checking [6], do not scale well
and their use is rather expensive for complex software. Therefore, lightweight static
analyses [2], dynamic analyses [9], and especially testing [26] are still very popular in
the field. A major problem for testing of concurrent programs is the non-deterministic
nature of multi-threaded computation. It has been shown [22,8] that even repeated exe-
cution of multi-threaded tests, when done naı̈vely, does often miss many possible behav-
iors of the program induced by different thread interleavings. This problem is targeted
by the noise injection technique [8] which disturbs thread scheduling and thus increases
chances to examine more possible thread interleavings. This approach does significantly
improve the testing process provided that a suitable setting of noise injection heuristics
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is used. The problem of finding such a setting (together with choosing the right tests and
their parameters), i.e., the so-called test and noise configuration search problem (TNCS
problem), is, however, not easy to solve [13].

In this paper, we propose an application of a multi-objective genetic algorithm
(MOGA) to solve the TNCS problem such that the solutions provide high efficiency
and stability during repeated executions. By efficiency, we mean an ability to examine
as much existing and important program behavior with as low time and resource require-
ments as possible. On the other hand, stability stands for an ability of a test setting to
provide such efficient results in as many repeated test executions as possible despite the
scheduling non-determinism. Such requirements on the tests and testing environment
(and hence noise generation) can be useful, for instance, in the context of regression
testing [26], which checks whether a previously working functionality works in a new
version of the system under test too and which is executed regularly, e.g., every night.

Our proposal of a MOGA-based approach for testing of concurrent programs aims
both at high efficiency as well as stability, i.e., we search for such tests, test param-
eters, noise heuristics, and their parameters that examine a lot of concurrency behav-
ior in minimal time and that provide such good results constantly when re-executed.
With that aim, we propose a multi-objective fitness function that embeds objectives of
different kinds (testing time, coverage related to finding common concurrency errors
like data races and deadlocks, as well as coverage of general concurrency behavior).
Moreover, the objectives also embed means for minimizing the influence of scheduling
non-determinism and means emphasizing a desire to search for less common behav-
iors (which are more likely to contain not yet discovered errors). Further, we discuss
a choice of one particular MOGA from among of several known ones—in particular,
the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and two versions of the
Strength Pareto Evolutionary Algorithm (SPEA and SPEA2)—as well as a choice of
a configuration of its parameters suitable for our setting. Finally, we show on a number
of experiments that our solution provides better results than the commonly used ran-
dom setting of noise injection as well as the approach of solving the TNCS problem via
a single-objective genetic algorithm (SOGA) presented in [13].

2 Related Work

This section provides a brief overview of existing approaches for testing and dynamic
analysis of multi-threaded programs as well as of applications of meta-heuristics to the
problems of testing and analysis of multi-threaded programs.

Testing Multi-Threaded Programs. Simple stress testing based on executing a large
number of threads and/or executing the same test in the same testing environment many
times has been shown ineffective [23,22,8]. To effectively test concurrent programs,
some way of influencing the scheduling is needed. The noise injection technique [8]
influences thread interleavings by inserting delays, called noise, into the execution of
selected threads. Many different noise heuristics can be used for this purpose [20]. The
efficiency of the approach depends on the nature of the system under test (SUT) and the
testing environment, which includes the way noise is generated [20]. A proper choice
of noise seeding heuristics (e.g., calling sleep or yield statements, halting selected
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threads, etc.), noise placement heuristics (purely random, at selected statements, etc.),
as well as of the values of the many parameters of these heuristics (such as strength,
frequency, etc.) can rapidly increase the probability of detecting an error, but on the
other hand, improper noise injection can hide it [17]. A proper selection of the noise
heuristics and their parameters is not easy, and it is often done by random. In this paper,
we strive to improve this practice by applying multi-objective genetic optimization.

An alternative to noise-based testing is deterministic testing [12,22,30] which can
be seen as execution-based model checking. This approach is based on deterministic
control over the scheduling of threads, and it can guarantee a higher coverage of dif-
ferent interleavings than noise-based testing. On the other hand, its overhead may be
significantly higher due to a need of computing, storing, and enforcing the considered
thread interleavings. Since the number of possible interleavings is usually huge, the ap-
proach is often applied on abstract and/or considerably bounded models of the SUT. It
is therefore suitable mainly for unit testing.

Both of the above mentioned approaches can be improved by combining them with
dynamic analysis [9,21,3] which collects various pieces of information along the exe-
cuted path and tries to detect errors based on their characteristic symptoms even if the
errors do themselves not occur in the execution. Many problem-specific dynamic anal-
yses have been proposed for detecting special classes of errors, such as data races [9],
atomicity violations [21], or deadlocks [3].

Meta-heuristics in Testing of Concurrent Programs. A majority of existing works in
the area of search-based testing of concurrent programs focuses on applying various
meta-heuristic techniques to control state space exploration within the guided (static)
model checking approach [11,27,1]. The basic idea of this approach is to explore areas
of the state space that are more likely to contain concurrency errors first. The fitness
functions used in these approaches are based on detection of error states [27], distance
to error manifestation [11], or formula-based heuristics [1] which estimate the num-
ber of transitions required to get an objective node from the current one. Most of the
approaches also search for a minimal counterexample path.

Applications of meta-heuristics in deterministic testing of multi-threaded programs
are studied in [5,28]. In [5], a cross entropy heuristic is used to navigate deterministic
testing. In [28], an application of a genetic algorithm to the problem of unit test gen-
eration is presented. The technique produces a set of unit tests for a chosen Java class.
Each unit test consists of a prefix initialising the class (usually, a constructor call), a set
of method sequences (one sequence per thread), and a schedule that is enforced by
a deterministic scheduler.

In [13], which is the closest to our work, a SOGA-based approach to the TNCS
problem is proposed and experimentally shown to provide significantly better results
than random noise injection. On the other hand, the work also shows that combining
the different relevant objectives into a scalar fitness function by assigning them some
fixed weights is problematic. For instance, some tests were sometimes highly rated due
to their very quick execution despite they provided a very poor coverage of the SUT
behavior. Further, it was discovered that in some cases, the genetic approach suffered
from degradation, i.e., a quick loss of diversity in population. Such a loss of diversity
can unfortunately have a negative impact on the ability of the approach to test different
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program behaviors. Finally, it turned out that candidate solutions which were highly
rated during one evaluation did not provide such good results when reevaluated again. In
this paper, we try to solve all of the above problems by using a MOGA-based approach
enhanced by techniques intended to increase the stability of the approach as well as to
stress rare behaviors.

3 Background

In this section, we briefly introduce multi-objective genetic algorithms, the TNCS prob-
lem, and the considered noise injection heuristics. Moreover, we provide an overview
of our infrastructure and test cases used for an evaluation of our approach.

Multi-objective Genetic Algorithms (MOGA). The genetic algorithm is a biology-
inspired population-based optimization algorithm [31,7]. The algorithm works in itera-
tions. In each iteration, a set of candidate solutions (i.e., individuals forming a population)
is evaluated through a fitness function based on some chosen objective(s). The obtained
fitness is then used by a selection operator to choose promising candidates for further
breeding. The breeding process employs crossover and mutation operators to modify
the selected individuals to meet the exploration and/or exploitation goals of the search
process.

In single-objective optimization, the set of candidate solutions needs to be totally
ordered according to the values of the fitness function. The traditional approach to solve
a multi-objective problem by single-objective optimization is to bundle all objectives
into a single scalar fitness function using a weighted sum of objectives. The efficiency
of this approach heavily depends on the selected weights which are sometimes not easy
to determine.

On the other hand, multi-objective optimization treats objectives separately and com-
pares candidate solutions using the Pareto dominance relation. A MOGA searches for
non-dominated individuals called Pareto-optimal solutions. There usually exists a set of
such individuals which form the Pareto-optimal front. Solutions on the Pareto-optimal
front are either best in one or more objectives or represent the best available trade-off
among considered objectives. There exist several algorithms for multi-objective op-
timization that use different evaluation of individuals, but all of them exploit the non-
dominated sorting. In this paper, we consider the Non-Dominated Sorting Genetic Algo-
rithm II (NSGA-II) [7] and two versions of the Strength Pareto Evolutionary Algorithm
(SPEA and SPEA2) [31].

The Test and Noise Configuration Search Problem. The test and noise configuration
search problem (the TNCS problem) is formulated in [13] as the problem of selecting
test cases and their parameters together with types and parameters of noise placement
and noise seeding heuristics that are suitable for certain test objectives. Formally, let
TypeP be a set of available types of noise placement heuristics each of which we as-
sume to be parametrized by a vector of parameters. Let ParamP be a set of all possi-
ble vectors of parameters. Further, let P ⊆ TypeP × ParamP be a set of all allowed
combinations of types of noise placement heuristics and their parameters. Analogically,
we can introduce sets TypeS, ParamS , and S for noise seeding heuristics. Next, let
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C ⊆ 2P×S contain all the sets of noise placement and noise seeding heuristics that
have the property that they can be used together within a single test run. We denote
elements of C as noise configurations. Further, like for the noise placement and noise
seeding heuristics, let TypeT be a set of test cases, ParamT a set of vectors of their
parameters, and T ⊆ TypeT ×ParamT a set of all allowed combinations of test cases
and their parameters. We let TC = T × C be the set of test configurations. The TNCS
problem can now be seen as searching for a test configuration from TC according to
given objectives.

Considered Noise Injection Heuristics. We consider 6 basic and 2 advanced noise
seeding techniques that are all commonly used in noise-based testing [20]. The basic
techniques cannot be combined, but any basic technique can be combined with one
or both advanced techniques. The basic heuristics are: yield, sleep, wait, busyWait,
synchYield, and mixed. The yield and sleep techniques inject calls of the yield()
and sleep() functions. The wait technique injects a call of wait(). The concerned
threads must first obtain a special shared monitor, then call wait(), and finally release
the monitor. The synchYield technique combines the yield technique with obtaining the
monitor as in the wait approach. The busyWait technique inserts code that just loops for
some time. The mixed technique randomly chooses one of the five other techniques at
each noise injection location. Next, the first of the considered advanced techniques, the
haltOneThread technique, occasionally stops one thread until any other thread cannot
run. Finally, the timeoutTamper heuristics randomly reduces the time-outs used in the
program under test in calls of sleep() (to ensure that they are not used for synchroni-
sation). These heuristics can be used with different strength in the range of 0–100. The
meaning of the strength differs for different heuristics—it means, e.g., how many times
the yield operation should be called when injected at a certain location, for how long
a thread should wait, etc.

Further, we consider 3 noise placement heuristics: the random heuristics which picks
program locations randomly, the sharedVar heuristics which focuses on accesses to
shared variables, and the coverage-based heuristics [20] which focuses on accesses
near a previously detected context switch. The sharedVar heuristics has two parameters
with 5 valid combinations of its values. The coverage-based heuristics is controlled by
2 parameters with 3 valid combinations of values. All these noise placement heuristics
inject noise at selected places with a given probability. The probability is set globally for
all enabled noise placement heuristics by a noiseFreq setting from the range 0 (never)
to 1000 (always).

The total number of noise configurations that one can obtain from the above can be
computed by multiplying the number of the basic heuristics, which is 6, by 2 reflecting
whether haltOneThread is/is not used, 2 reflecting whether timeoutTamper is used, 100
possible values of noise strength, 5 values of the sharedVar heuristics, 3 values of of the
coverage-based heuristics, and 1000 values of noiseFreq. This gives about 36 million
combinations of noise settings. Of course, the state space of the test and noise settings
then further grows with the possible values of parameters of test cases and the testing
environment.

Test Cases and Test Environment. The experimental results presented in the rest of the
paper were obtained using the SearchBestie [19] platform based on the IBM Concurrency
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Testing Tool (ConTest) [8] and its plug-ins [16,18] to inject noise into execution of
the considered programs and to collect the obtained coverage. The used meta-heuristic
algorithms were implemented within the ECJ library [29] which cooperates with the
SearchBestie platform as well.

Among our test cases, we include five multi-threaded Java programs used in the pre-
vious work on the subject [13]: in particular, the Airlines, Animator, Crawler, Elevator,
and Rover case studies (Airlines having 0.3 kLOC, Rover having 5.4 kLOC, and the
other programs having around 1.2–1.5 kLOC of code each). Each of these programs
contains a concurrency-related error. Moreover, three further multi-threaded bench-
mark programs, namely, Moldyn, MonteCarlo, and Raytracer, from the Java Grande
Benchmark Suite [25], which contain a large number of memory accesses, have been
used (their sizes range from 0.8 to 1.5 kLOC). All considered programs have one
parametrized test that is used to execute them. All our experiments were conducted
on machines with Intel i7 processors with Linux OS, using Oracle JDK 1.6.

4 Objectives and Fitness Function

One can collect various metrics characterizing the execution of concurrent programs.
Our testing infrastructure is, in particular, able to report test failures, measure duration
of test executions, and collect various code and concurrency coverage metrics [18] as
well as numbers of warnings produced by various dynamic analyzers searching for data
races [24,9], atomicity violations [21], and deadlocks [3]. In total, we are able to collect
up to 30 different metrics describing concurrent program executions. Collecting all of
these data does, of course, introduce a considerable slowdown. Moreover, some of the
metrics are more suitable for use as an objective in our context than others.

In this section, we discuss our selection of objectives suitable for solving the TNCS
problem through a MOGA-based approach. In particular, we focus on the number of
distinctive values produced by the metrics, correlation among the objectives, and their
stability. By the stability, we mean an ability of the objective to provide similar values
for the same individual despite the scheduling non-determinism. Finally, we introduce
a technique that allows us to emphasize uncommon observations and optimize candidate
solutions towards testing of such behaviors.

Selection of suitable objectives. It has been discussed in the literature [7] that multi-
objective genetic algorithms usually provide the best performance when a relatively
low number of objectives is used. Therefore, we try to stay with a few objectives only.
Among them, we first include the execution time of tests since one of our goals is to
optimize towards tests with small resource requirements.

As for the goal of covering as much as possible of (relevant) program behavior, we
reflect it in maximizing several chosen concurrency-related metrics. When choosing
them, we have first ruled out metrics which suffer from a lack of distinct values since
meta-heuristics do no work well with such objectives (due to not distinguishing different
solutions well enough).

Subsequently, we have decided to include some metrics characterizing how well the
behavior of the tested programs has been covered from the point of view of finding three
most common concurrency-related errors, namely, data races, atomicity violations, and
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Table 1. Correlation of objectives across all considered test cases

Time Error WConcurPairs Avio∗ GoldiLockSC∗ GoodLock∗

Time 1 -0.083 0.625 -0.036 -0.038 -0.360
Error -0.083 1 -0.137 -0.213 -0.221 -0.216

WConcurPairs 0.625 -0.137 1 0.116 0.038 -0.263
Avio∗ -0.036 -0.213 0.116 1 0.021 -0.274

GoldiLockSC∗ -0.038 -0.221 0.038 0.021 1 0.770
GoodLock∗ -0.360 -0.216 -0.263 -0.274 0.770 1

deadlocks. For that, we have decided to use the GoldiLockSC∗, GoodLock∗, and Avio∗

metrics [18]. These metrics are based on measuring how many internal states of the
GoldiLock data race detector [9] or the GoodLock deadlock detector [3], respectively,
have been reached, and hence how well the behavior of the SUT was tested for the
presence of these errors. The Avio∗ metric measures witnessed access interleaving in-
variants [21] which represent different combinations of read/write operations used when
two consecutive accesses to a shared variable are interleaved by an access to the same
variable from a different thread. A good point for GoldiLockSC∗ and Avio∗ is that they
usually produces a high number of distinct values [18]. With GoodLock∗, the situation
is worse, but since it is the only metric specializing in deadlocks that we are aware of,
we have decided to retain it.

Next, in order to account for other errors than data races, atomicity violations or
deadlocks, we have decided to add one more metric, this time choosing a general pur-
pose metric capable of producing a high number of distinct tasks. Based on the results
presented in [18], we have chosen the ConcurPair metric [4] in which each coverage
task is composed of a pair of program locations that are assumed to be encountered con-
secutively in a run and a boolean value that is true iff the two locations are visited by
different threads. More precisely, we have decided to use the weighted version WCon-
curPairs of this metric [13] which values more coverage tasks comprising a context
switch.

Since correlation among objectives can decrease efficiency of a MOGA [7], we have
examined our selection of objectives from this point view. Table 1 shows the average
correlation of the selected metrics for 10,000 executions of our 8 test cases with a ran-
dom noise setting. One can see that the metrics do not correlate up to two exceptions.
WConcurPairs and Time achieved on average the correlation coefficient of 0.625 and
the GoodLock∗ and GoldiLockcSC∗ metrics the correlation coefficient of 0.7701. How-
ever, there were also cases where these metrics did not correlate (e.g., the correlation
coeffiecient of GoldiLockSC∗ and Avio∗ was 0.021). We therefore decided to reflect the
fact that some of our objectives can sometimes correlate in our choice of a concrete
MOGA, i.e., we try to select a MOGA which works well even under such circum-
stances (cf. Section 5).

Dealing with Scheduling Nondeterminism. Due to the scheduling nondeterminism,
values of the above chosen objectives collected from single test runs are unstable.

1 In this case, only three of the case studies containing nested locking and hence leading to
a non-zero coverage under GoodLock∗ were considered in the correlation computation.
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A classic way to improve the stability is to execute the tests repeatedly and use a repre-
sentative value [15]. However, there are multiple ways how to compute it, and we now
aim at selecting the most appropriate way for our setting.

Table 2. Stability of representatives

Case med mod cum
Airlines 0.033 0.054 0.051
Animator 0.012 0.027 0.092
Crawler 0.211 0.261 0.255
Elevator 0.145 0.227 0.107
Moldyn 0.020 0.025 0.024
MonteCarlo 0.015 0.019 0.022
Raytracer 0.022 0.020 0.016
Rover 0.059 0.100 0.141

Average 0.065 0.092 0.088

For each of our case studies, we randomly se-
lected 100 test configurations, executed each of
them in 10 batches of 10 runs, and computed the
representative values in several different ways for
each batch of 10 runs. In particular, we considered
median (med), mode (mod)2, and the cumulative
value (cum) computed as the sum in the case of time
and as the united coverage in case of the consid-
ered coverage metrics. We do not consider the often
used average value since we realized that the data
obtained from our tests were usually not normally
distributed, and hence the average would not repre-
sent them accurately. We did not consider other more complicated evaluations of rep-
resentative values due the high computational costs associated with using them. Subse-
quently, we compared stability of the representative values obtained across the batches.
Table 2 shows the average values of variation coefficients of the representatives com-
puted across all the considered configurations for each case study and each way of
computing a representative. Clearly, the best average stability was provided by median,
which we therefore choose as our means of computing representative values across
multiple test runs for all the following experiments.

Emphasizing rare observations. When testing concurrent programs, it is usually the
case that some behavior is seen very frequently while some behavior is rare. Since
it is likely that bugs not discovered by programmers hide in the rare behavior, we
have decided to direct the tests more towards such behavior by penalizing coverage
of frequently seen behaviors. Technically, we implement the penalization as follows.
We count how many times each coverage task of the considered metrics got covered
in the test runs used to evaluate the first generation of randomly chosen candidate so-
lutions. Each coverage task is then assigned a weight obtained as one minus the ratio
of runs in which the task got covered (i.e., a task that was not covered at all is given
weight 1, while a task that got covered in 30 % of the test runs is given weight 0.7).
These weights are then used when evaluating the coverage obtained by subsequent gen-
erations of candidate solutions.

Selected fitness function. To sum up, based on the above described findings, we propose
a use of the following fitness functions, which we use in all our subsequent experiments:
Each candidate solution is evaluated 10 times, the achieved coverage is penalized, and
the median values for the 4 selected metrics (GoldiLockSC∗, GoodLock∗, WConcur-
Pairs, and Time) are computed.

2 Taking the biggest modus if there are several modus values.
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5 Selection of a Multi-objective Optimization Algorithm

Another step needed to apply multi-objective optimization for solving the TNCS prob-
lem is to choose a suitable multi-objective optimization algorithm and its parameters.
Hence, in this section, we first select one algorithm out of three well-known multi-
objective optimization algorithms, namely, SPEA, SPEA2, and NSGA-II [7,31]. Subse-
quently, we discuss a suitable setting of parameters of the selected algorithm.

The main role of the multi-objective algorithms is to classify candidate solutions
into those worth and not worth further consideration. We aim at selecting one of the
algorithms that is most likely to provide a satisfactory classification despite the obsta-
cles that can be faced when solving the TNCS problem. As we have already discussed,
these obstacles include the following: (a) Some objectives can sometimes be able to
achieve only a small number of distinct values because the kind of concurrency-related
behavior that they concentrate on does not show up in the given test case. (b) Some of
the objectives can sometimes correlate as discussed in Section 4. (c) We are working
with a nondeterministic environment where the evaluation of objectives is not stable.
We have proposed ways of reducing the impact of these issues already in Section 4, but
we now aim at a further improvement by a selection of a suitable MOGA.

In addition, we also consider the opposite of Issue (a), namely, the fact that some
objectives can sometimes achieve rather high numbers of values. Dealing with high
numbers of values is less problematic than the opposite (since a high number of objec-
tive values can be divided into a smaller number of fitness values but not vice versa),
yet we would like to assure that the selected MOGA does indeed handle well the high
numbers of values and classifies them into a reasonable number of fitness values.

We studied the ability of the considered algorithms to deal with correlation and low
or high numbers of distinct objective values using four pairs of objectives. In these
pairs, we used the Avio∗ metric (based on the Avio atomicity violation detector [21])
and the GoldiLockSC∗ metric, which we found to highly correlate with the correlation
coefficient of 0.966 in the same kind of correlation experiments as those presented in
Section 4 (i.e., they correlate much more than the objectives we have chosen into our
fitness functions). As a representative of objectives that often achieve a small number of
values, we included the number of detected errors (Error) into the experiments, and as
a representative of those that can often achieve high values, we take the execution time
(Time). We performed experiments with 40 different individuals (i.e., test and noise
configurations) and evaluated each of them 11 times on the Crawler test case.

Table 3. Pairs of objectives and their evaluation by multi-
objective optimization algorithms

Pair of objectives SPEA SPEA2 NSGA-II
(Avio∗, GoldiLockSC∗) 4 366 106

(Time, Error) 7 437 386
(Error, GoldiLockSC∗) 8 240 199
(Time, GoldiLockSC∗) 30 410 38

Table 3 shows into how many
classes the obtained 440 results
of the above experiments were
classified by the considered al-
gorithms when using four dif-
ferent pairs of objectives. We
can see that the SPEA algorithm
often classifies the results into
a very low number of classes while SPEA2 into a large number of classes, which is
close to the number of evaluations. NSGA-II stays in all cases in between of the ex-
tremes, and we therefore consider it to provide the best results for our needs.
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Next, we discuss our choice of suitable values of parameters of the selected MOGA,
such as the size of population, number of generations, as well as the selection, crossover,
and mutation operators to be used. Our choice is based on the experience with a SOGA-
based approach presented in [13] as well as on a set of experiments with NSGA-II in our
environment. In particular, we experimented with population sizes and the number of
generations such that the number of individual evaluations in one experiment remained
constant (in particular, 2000 evaluations of individuals per experiment3). Therefore, for
populations of size 20, 40, and 100, we used sizes of 100, 50, and 20 generations,
respectively. Next, we studied the influence of three different crossover operators avail-
able in the ECJ toolkit [29] (called one, two and any) and three different probabilities
of mutation (0.01, 0.1 and 0.5). As the selection operator, we used the mating scheme
selection algorithm instead of the fitness-based tournament or proportional selection
which are commonly used in single-objective optimization but provide worse results or
are not applicable in multi-objective optimization [14]. We fixed the size of the archive
to the size of the population.

In total, we experimented with 27 different settings of the chosen MOGA (3 sizes of
population, 3 crossover operators, and 3 mutation probabilities). For each setting, we
performed 10 executions of the MOGA process which differ only in the initial random
seed values (i.e., only in the individuals generated in the first generation) on the Air-
lines, Animator, and Crawler test cases. In general, we did not see big differences in
the results obtained with different sizes of populations. On the other hand, low prob-
abilities of mutation (0.01 and 0.1) often led to degeneration of the population within
a few generations and to low achieved fitness in the last generation. A high mutation
set to 0.5 did not suffer from this problem. Further, the any crossover operator provided
considerably lower values of fitness values in the last generation, while there were no
significant differences among the one and two crossover operators.

Based on these experiments, we decided to work with 50 generations and 20 indi-
viduals in a population (i.e., compared with the above experiments, we decrease the
number of generations for the given number of individuals since at the beginning the
number of coverage tasks grew up, but after the 50th generation there was not much
change). In the breeding process, we use the mating scheme algorithm as the selection
operator with the recommended parameters α = 5, β = 3; and we use the crossover
operator denoted as two in ECJ, which takes two selected individuals (integer vectors),
divides them into 3 parts at random places, and generates a new candidate solution as the
composition of randomly chosen 1st, 2nd, and 3rd part of parents. Finally, to implement
mutation, we use an operator that randomly selects an element in the vector of a can-
didate solution and sets it to a random value within its allowed range with probability
0.5. The resulting agile exploration is compensated by the NSGA-II archive, and so the
search does not loose promising candidate solutions despite the high mutation rate.

6 Experimental Evaluation

In this section, four experimental comparisons of the proposed MOGA-based approach
with the random approach and a SOGA-based approach are presented. First, we show

3 We used 2000 evaluations because after the 2000 evaluations, saturation used to happen.
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that our MOGA-based approach does not suffer from degeneration of the search pro-
cess identified in the SOGA-based approach in [13]. Then, we show that the proposed
penalization does indeed lead to a higher coverage of uncommon behavior. Finally, we
focus on a comparison of the MOGA, SOGA, and random approaches with respect to
their efficiency and stability. All results presented here were gathered from testing of
the 8 test cases introduced in Section 3.

In the experiments, we use the following parameters of the SOGA-based approach
taken from [13]: size of population 20, number of generations 50, two different selection
operators (tournament among 4 individuals and fitness proportional4), the any-point
crossover with probability 0.25, a low mutation probability (0.01), and two elites (that
is 10 % of the population). However, to make the comparison more fair, we build the
fitness function of the SOGA-based approach from the objectives selected above5:

WConcurPairs

WConcurPairsmax
+

GoodLock∗

GoodLock∗max

+
GoldiLockSC∗

GoldiLockSC∗
max

+
timemax − time

timemax

Here, the maximal values of objectives were estimated as 1.5 times the maximal ac-
cumulated numbers we got in 10 executions of the particular test cases. As proposed
in [13], the the SOGA-based approach uses cumulation of results obtained from multi-
ple test runs without any penalization of frequent behaviors.

All results presented in this section were tested by the statistical t-test with the sig-
nificance level α = 0.05, which tells one whether the achieved results for Random,
MOGA, and SOGA are significantly different. In a vast majority of the cases, the test
confirmed a statistically significant difference among the approaches.
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Fig. 1. Degeneration of the MOGA-based and
SOGA-based search processes

Degeneration of the Search Process.
Degeneration, i.e., lack of variability
in population, is a common problem
of population-based search algorithms.
Figure 1 shows average variability of
the MOGA-based and SOGA-based ap-
proaches computed from the search pro-
cesses on the 8 considered test cases. The
x-axis represents generations, and the y-
axis shows numbers of distinct individ-
uals in the generations (max. 20). The
higher value the search process achieves
the higher variability and therefore low
degeneration was achieved. The graph
clearly shows that our MOGA-based approach does not suffer from the degeneration
problem unlike the SOGA-based approach.

4 Experiments presented in [13] showed that using these two selection operators is beneficial.
Therefore, we used them again. On the other hand, for MOGA, the mating schema provides
better results.

5 In the experiments performed in [13], the fitness function was sensitive on weight. Therefore,
we remove the weight from our new fitness function for SOGA.
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Degeneration of the SOGA-based approach, and subsequently, its tendency to get
caught in a local maximum (often optimizing strongly towards a highly positive value
of a single objective, e.g., minimum test time but almost no coverage) can in theory be
resolved by increasing the amount of randomness in the approach, but then it basically
shifts towards random testing. An interesting observation (probably leading to the good
results presented in [13]) is that even a degenerated population can provide a high cov-
erage if the repeatedly generated candidate solutions suffer from low stability, which
allows them to test different behaviors in different executions.

Table 4. Impact of the penalization built into the
MOGA approach

Test MOGA SOGA Random
Airlines 59.66 60.61 19.14
Animator 70.1 74.31 44.73
Crawler 70.73 66.32 61.19
Elevator 89.26 83.96 65.69
Moldy 68.32 44.25 39.73
Montecarlo 40.13 54.52 28.25
Raytracer 73.08 60.49 54.68
Rover 53.87 41.45 30.62

Average 65.52 60.73 43.00

Effect of Penalization. The goal of the
above proposed penalization scheme is to
increase the number of tested uncommon
behaviors. An illustration of the fact that
this goal has indeed been achieved is pro-
vided in Table 4. The table in particular
compares results collected from 10 runs
of the final generations of 20 individuals
obtained through the MOGA-based and
SOGA-based approaches with results ob-
tained from 200 randomly generated in-
dividuals. Each value in the table gives
the average percentage of uncommon be-
haviors spot by less than 50 % of candidate solutions, i.e., by less than 10 individuals.
Number 60 therefore means that, on average, the collected coverage consists of 40 %
of behaviors that occur often (i.e., in more than 50 % of the runs) while 60 % are rare.

Table 5. Efficiency of the considered approaches

Case Metrics MOGA SOGA Random
Airlines C/Time 0.06 0.06 0.04

S/Time 3.73 3.29 2.98
Animator C/Time 0.07 0.29 0.19

S/Time 0.33 1.01 0.65
Crawler C/Time 0.21 0.22 0.12

S/Time 4.15 3.84 2.05
Elevator C/Time 0.03 0.04 0.02

S/Time 2.69 3.64 1.28
Moldy C/Time 0.01 0.01 0.01

S/Time 11.73 16.83 2.56
Montecarlo C/Time 0.01 0.01 0.01

S/Time 9.52 9.66 0.01
Raytracer C/Time 0.01 0.01 0.01

S/Time 7.16 5.13 0.69
Rover C/Time 0.11 0.10 0.08

S/Time 5.17 2.49 2.18

Avg. impr. 2.01 2.11

In most of the cases, if some
approach achieved the highest per-
centage of uncommon behaviors un-
der one of the coverage metrics, it
achieved the highest numbers un-
der the other metrics as well. Ta-
ble 4 clearly shows that our MOGA-
based approach is able to provide
a higher coverage of uncommon be-
haviors (where errors are more likely
to be hidden) than the other consid-
ered approaches.

Efficiency of the Testing. Next, we
focus on the efficiency of the gener-
ated test settings, i.e., on their ability
to provide a high coverage in a short
time. We again consider 10 test-
ing runs of the 20 individuals from
the last generations of the MOGA-
based and SOGA-based approaches
and 200 test runs under random generated test and noise settings. Table 5 compares the
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efficiency of these tests. In order to express the efficiency, we use two metrics. Namely,
C/Time shows how many coverage tasks of the GoldiLockcSC∗ and GoodLock∗ metrics
got covered on average per time unit (milisecond). Next, S/Time indicates how many
coverage tasks of the general purpose WConcurPairs coverage metric got covered on
average per a time unit. Higher values in the table therefore represent higher average ef-
ficiency of the testing runs under the test settings obtained in one the considered ways.
The last row gives the average improvement (Avg. impr.) of the genetic approaches
against random testing. We can see that both genetic approaches are significantly bet-
ter than the random approach. In some cases, the MOGA-based approach got better
evaluated while SOGA won in some other cases. Note, however, that as shown in the
previous paragraph, the MOGA-based approach is more likely to cover rare tasks, and
so even if it covers a comparable number of tasks with the SOGA-based approach, it is
still likely to be more advantageous from the practical point of view.

Table 6. Stability of testing

Case MOGA SOGA Random
Airlines 0.06 0.17 0.29
Animator 0.02 0.11 0.12
Crawler 0.38 0.38 0.26
Elevator 0.50 0.48 0.58
Moldyn 0.11 0.20 0.70
Montecarlo 0.13 0.11 0.89
Raytracer 0.16 0.46 0.76
Rover 0.08 0.10 0.32

Average 0.18 0.25 0.49

Stability of Testing. Finally, we show that
candidate solutions found by our MOGA-
based approach provide more stable re-
sults than the SOGA-based and random ap-
proaches. In particular, for the MOGA-based
and SOGA-based approaches, Table 6 gives
the average values of variation coefficients of
the coverage under each of the three consid-
ered coverage criteria for each of the 20 can-
didate solutions from the last obtained gener-
ations across 10 test runs. For the case of ran-
dom testing, the variation coefficients were
calculated from 200 runs generated randomly. The last row of the table shows the av-
erage variation coefficient across all the case studies. The table clearly shows that our
MOGA-based approach provides more stable results when compared to the other ap-
proaches.

7 Threats to Validity

Any attempt to compare different approaches faces a number of challenges because
it is important to ensure that the comparison is as fair as possible. The first issue to
address is that of the internal validity, i.e., whether there has been a bias in the experi-
mental design or stochastic behavior of the meta-heuristic search algorithms that could
affect the obtained results. In order to deal with this issue, Section 5 provides a brief
discussion and experimental evidence that supports the choice of the NSGA-II MOGA
algorithm out of the three considered algorithms. In order to address the problem of
setting the various parameters of meta-heuristic algorithms, a number of experiments
was conducted to choose configurations that provide good results in the given context.
Similarly, our choice of suitable objectives was done based on observations from previ-
ous experimentation [18]. Care was taken to ensure that all approaches are evaluated in
the same environment.

Another issue to address is that of the external validity, i.e., whether there has been
a bias caused by external entities such as the selected case studies (i.e., programs to be
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tested in our case) used in the empirical study. The diverse nature of programs makes it
impossible to sample a sufficiently large set of programs. The chosen programs contain
a variety of synchronization constructs and concurrency-related errors that are common
in practice, but they represent a small set of real-life programs only. The studied execu-
tion traces conform to real unit and/or integration tests. As with many other empirical
experiments in software engineering, further experiments are needed in order to confirm
the results presented here.

8 Conclusions and Future Work

In this paper, we proposed an application of multi-objective genetic optimization for
finding good settings of tests and noise. We discussed a selection of suitable objectives
taking into account their usefulness for efficiently finding concurrency-related errors
as well as their properties important for the process of genetic optimization (numbers
of distinct values, correlation) as well as for stability. We also proposed a way how
to emphasize uncommon behaviors in which so-far undiscovered bugs are more likely
to be hidden. Further, we compared suitability of three popular multi-objective genetic
algorithms for our purposes, which showed that the NSGA-II algorithm provides the
best ability to classify candidate solutions in our setting. Finally, we demonstrated on
a set of experiments with 8 case studies that our approach does not suffer from the
degeneration problem, it emphasizes uncommon behaviors, and generates settings of
tests and noise that improve the efficiency and stability of the testing process.

As a part of our future work, we plan to further improve the efficiency and stability
of the generated test and noise settings. For this purpose, we would like to exploit the
recently published results [10] indicating that searching for a test suite provides better
results than searching for a set of the best individuals.
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Abstract. Release planning is a mandatory part of incremental and iterative 
software development. For the decision about which features should be imple-
mented next, the values of features need to be balanced with the effort and  
readiness of their implementation. Traditional planning looks at the sum of the 
values of individual and potentially isolated features. As an alternative idea,  
a theme is a meta-functionality which integrates a number of individual features 
under a joint umbrella. That way, possible value synergies from offering  
features in conjunction (theme-related) can be utilized.   

In this paper, we model theme-based release planning as a bi-objective 
(search-based) optimization problem. Each solution of this optimization problem 
balances the preference between individual and theme-based planning objectives. 
We apply a two-stage solution approach. In Phase 1, the existing Non-dominated 
Sorting Genetic Algorithm-II (NSGA-II) is adapted. Subsequently, the problem 
of guiding the user in the set of non-dominated solutions is addressed in Phase 2. 
We propose and explore two alternative ways to select among the (potentially 
large number) Pareto-optimal solutions. The applicability and empirical analysis 
of the proposed approach is evaluated for two explorative case study projects 
having 50 resp. 25 features grouped around 8 resp. 5 themes. 

1 Introduction 

In iterative and incremental development, release planning (RP) is the process of se-
lecting and assigning features of a product to a sequence of consecutive product re-
leases such that the most important technical, resource, budget and risk constraints are 
met [24]. RP is a cognitively and computationally challenging problem.  

Theme-based RP model is a specific form of release planning with the aim of deli-
vering a group of features in a release that are inter-related to each other in a specific 
context [1]. The motivation for theme-based RP is that certain features would have 
higher value if they are released along with a set of inter-dependent features, leading 
to better overall release value and customer satisfaction. With regard to theme-based 
RP, there have been initial attempts to group features into themes and perform release 
planning based on those themes [1,14].  
 Since the creation of individual value and theme-based value are conflicting  
objectives, maximization of both objectives in RP is a multi-objective optimization 
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problem by nature. In this paper, our first goal is to formulate theme-based RP as a  
bi-objective optimization problem. We will apply the well proven NSGA-II [9]  
algorithm as a solution approach and evaluate the solutions based on the presence of 
features from various themes. To the best of our knowledge, this paper will be the 
first to propose multi-objective formulation of theme-based RP.  

In multi-objective release optimization, the Pareto-front is a set of complementary 
best solutions which can be used by product managers to select a solution that does a 
balance between competing objectives. In this paper, our second goal is to assist 
product managers to identify those solutions that best balance the competing concerns 
of themes. In line with this goal, we show how the solutions in the Pareto-front can be 
ranked by taking consideration of product managers’ preferences. We conduct case 
studies on two data sets to validate our approach and to answer the questions about (i) 
the impact of theme-based considerations on the structure and value of the release 
plans generated (case study 1) and (ii) the usefulness of theme-based preferences for 
selecting the final Pareto solution (case study 2). 

The rest of the paper is organized as follows: Section 2 discusses existing ap-
proaches for RP, while Section 3 gives an introduction to NSGA-II. The bi-objective 
formulation of theme-based RP and the solution approach including the recommenda-
tion approach for how to select the final solution out of the set of Pareto solutions, is 
described in Section 4. The results of the two explorative case studies are reported in 
Section 5. The paper concludes in Section 6 with a summary and an outlook to future 
research. 

2 Related Work 

Bagnall et al. [4] first suggested the term Next Release Problem (NRP) and described 
various meta-heuristic optimization algorithms for solving it. It was a single objective 
formulation of the problem where release planning is defined only for the next re-
lease. The objective was to maximize the total number of customers satisfied under a 
single cost constraint. This approach does not consider the stakeholders priority for a 
feature. Greer and Ruhe presented EVOLVE, an iterative approach for RP using a 
genetic algorithm [15]. In this approach, the objectives were to maximize total benefit 
and minimize the total penalties. These two objectives were combined into a single 
objective using linear combination. The numbers of releases were not decided a pri-
ori. Exact approaches to tackle the single objective formulation of requirements selec-
tion problems can be found in Akker et al. [2,3]. 

Zhang et al. proposed multi-objective formulation of the NRP problem [28] and 
did experiments with two meta-heuristics: NSGA-II [9] and MOCell [19]. In their 
formulation, they considered two objectives: maximization of value of features and 
minimization of cost associated with the features.  Saliu and Ruhe [26] formulated a 
two-objective RP that balances the tension between user-level and system-level re-
quirements. In [5,7,8,12], several other multi-objective formulation of the RP and 
NRP problem were proposed. These approaches considered a subset of the objectives: 
stakeholder’s satisfaction, business value, risk or cost associated with implementing 
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various features, for maximization or minimization purpose. Mostly academic and 
synthetic data sets were used in the case studies conducted. In [5,7,8], feature inter-
dependencies were taken into account, while dependency constraints were ignored in 
[12]. Unlike the other approaches, the approach proposed in [5] can tackle multi-
objective formulation in two cases: when the number of releases is known and when it 
is not known a priori. Over the last few years, several Ant Colony Optimization based 
approaches were also proposed for NRP and RP [10,11]. 

Considering theme-based release planning, there have been initial attempts to 
group features into themes and perform release planning based on those themes 
[1,14]. In [1], an analytical approach for theme-detection was proposed using existing 
feature dependencies. Two kinds of feature dependencies (coupling and precedence) 
were used to construct a feature dependency graph, which was later used to extract 
clusters using the Chinese Whispers (CW) algorithm [6]. Each cluster represented a 
theme. In this paper, the terms cluster and theme are used interchangeably. Synergy 
constraints were formulated between all pairs of features in a cluster, with an incre-
ment factor for a pair. Later, EVOLVE II [24] was applied to perform theme-based 
release planning. It was shown that features belonging to a cluster tend to be released 
more closely.  

In [14], feature trees were proposed for release planning with an industrial case 
study. Feature trees represented dependencies in the implementation order. AND, OR 
and REQUIRES relationships between requirements were captured in the feature 
trees. The AND relationship was specifically exploited to group requirements. In this 
approach, theme detection and decision making process was mostly manual. From our 
literature review, we identified that there is no multi-objective formulation of theme-
based RP, even though it is intuitive to formulate it in a multi-objective way. In this 
paper, we will address this gap in the literature and propose a multi-objective formu-
lation of theme-based RP. For simplicity, in our formulation, we will focus on a single 
(next) release of the RP.  

3 Background 

3.1 Pareto-Optimal Solutions 

We consider a bi-objective maximization problem with two functions F1(x), F2(x).  
For some feasible area X, an n-tuple x' X is said to be a Pareto-optimal solution if 
there is no x X such that [16]: 

(i) Fi (x) � Fi (x') ∀i {1, 2} and 

(ii) Fi (x) � Fi (x') 

Pareto optimal solutions are often referred to as non-dominated solutions. The goal 
of any solution approach is to find as many Pareto-optimal solutions as possible [21]. 
The Pareto-optimal solutions provide alternatives to decision makers from which one 
can be finally chosen. 

∈
∈

∈



126 M.R. Karim and G. Ruhe 

 

3.2 NSGA-II 

NSGA-II is a multi-objective Evolutionary Algorithm (EA) [9]. It was demonstrated 
by Zhang et al. [28] and Durillo et al. [12] that NSGA-II shows better performance in 
terms of the number of obtained solutions when compared to other techniques. Fur-
thermore, it computes the highest number of solutions which were contained in best 
front known for each tested instance [12]. 

The NSGA-II procedure is shown in Fig. 1. NSGA-II makes use of a population 
(P) of N candidate solutions (known as individuals). In this algorithm, a combined 
population Rt = Pt ∪ Qt of size 2N is formed, where Pt is the first population, Qt is the 
second population generated by conducting crossover and mutation on the first popu-
lation. Initially, Pt is generated randomly. Once formed, the combined population Rt is 
sorted according to non-domination criteria. Then, solutions belonging to the best 
non-dominated set F1 in the combined population are chosen. If the size of F1 is 
smaller than N, remaining members of the population Pt+1 are chosen from the subse-
quent non-dominated fronts (F2 , F3,.. Fl-1). To choose exactly N individuals, solutions 
of the last front (say Fl) is sorted in descending order using the crowded-distance 
operator [9] and only the required number of solutions is chosen to make the size of 
N. The new population Pt+1 of size N is now used for selection, crossover and muta-
tion to create a new population Qt+1 of size N.   
 

while not termination criteria do
  Rt  = Pt  ∪  Qt; 
  F  =  non-dominated-sort (Rt); 
  Pt+1  =  Ø; 
  i  = 1; 
 
  while |Pt+1| + |Fi| <=  N do 
       compute crowding-distance on Fi; 
       Pt+1  =  Pt+1 ∪ Fi  ; 
                      i  =  i + 1; 
  end 
 
  Sort the last front Fi ; 
  Rem = Fi  [1 : (N − |Pt+1|)]; 
  Pt+1  =  Pt+1 ∪ Rem; 
  Qt+1  =  make-new-pop(Pt+1); 
  t  =  t + 1; 
    end 

Fig. 1. Algorithm for NSGA-II [9] 

In NSGA-II, binary tournament selection with crowded-distance operator is used 
as an individual selection criterion. To select one individual from multiple individuals 
with differing non-domination ranks, the solution with the lower (better) rank is given 
preference. If both solutions have the same non-domination ranks, the solution that is 
located in a lesser crowded region is preferred.  
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3.3 Preference Building Based on Lexicographic Ordering 

3.3.1 Lexicographical Ordering 
For a given set of vectors (being of the same dimension or not), a lexicographical 
ordering is defined (similar to the arrangement of words in a dictionary) as the order-
ing of all the vectors such that (i) the vectors are in strict decreasing order related to 
their values of the first vector component), (ii) in case the values are the same for the 
first component, the decreasing order applies to the second component of the vectors, 
and (iii) the second principle is applied iteratively up to the component where vectors 
differ from each other for the first time. 

For our purposes, we apply the lexicographical order to a set of vectors representing 
a set of Pareto solutions and their evaluation in terms of the theme coverage metric M1.  

3.3.2 Theme-coverage Metric 
For a given cluster Cj of features representing a theme and a given assignment x of 
features to the next release, the theme coverage metric M1(Cj,x) is defined as:  

M1(Cj,x) =  (1)

Therein, Nj is the total number of features in cluster Cj and Tj is the total number of 
features of Cj assigned to the next release. This metric expresses the percentage of 
features of cluster j assigned to the next release and was proposed in [1]. We will 
utilize this metric to provide recommendations to product managers for selecting 
among Pareto solutions.  

3.3.3 Lexicographical Ordering Related to Theme-coverage 
Suppose, we have a preference vector v = (v1, v2,...,vk). Each entry vj in this vector v 
refers to a cluster. The preference vector v stores different clusters in the order of high 
preference to low preference.  

Now, we form a m × k matrix A. Each row vector Ai  ∈ Թk  of the matrix A 
represents the ith Pareto-optimal solution. Each entry aij in the row vector Ai  is 
formed as follows: 

aij = E(i,M1(Cj,x))   for all i,j (2)

The function E returns the value of metric M1 for the cluster Cj in the ith Pareto-
optimal solution associated with a particular release plan x. The resulting matrix A is: 

A=ቬa11 a12 a13 … a1ka21 a22 a23 … a2k… … … … …am1 am2 am3 … amkቭ (3)

Once this matrix A is formed, row vectors are sorted such that the preference values 
are in decreasing order. This is achieved using lexicographic ordering as explained in 
Section 3.3.1. The sorted row vectors give us the rank of the Pareto-optimal solutions. 

100 *  
N

T

j

j
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4 Bi-objective Theme-Based Release Planning 

We formulate the balance between planning for maximum value of (semantically 
unrelated) features (but being of high individual value) and the orientation towards 
meta-functionalities of semantically related features (called themes) as a bi-objective 
release planning problem.  

4.1 Decision Variables 

We consider a set of features F = {f(1),…,f(N)}. The goal of RP is to select a subset 
of features to be assigned to the next release. The next release plan is represented by a 
vector of Boolean decision variables x = (x(1),x(2),…,x(N)) with 

x(n) = 1, if feature f(n)  is assigned to next release 

x(n) = 0, if feature f(n) is postponed 
(4)

4.2 Constraints 

The generated release plans must satisfy a set of constraints. These constraints could 
be related to resources, budget or feature dependencies. Each effort or budget con-
straint can be represented as: 

¦n: x(n)=1 r(n,t) ≤ Cap(k) for k = 1…K (5)

In (5), r(n,t) represents the consumption of resource type t by feature f(n). The generated 
release plan must satisfy all the constraints related to different resource types. Next, there 
can be several types of feature dependency constraints: precedence, coupling, synergy 
constraints etc. If feature f(n) and f(m) is in weak precedence relation Rp, then the fol-
lowing relationship should hold between the respective decision variables x(n) and x(m): 

x(n) ≤ x(m) for all (n,m) ∈ Rp (6)

This indicates that the features f(n) needs to be offered before f(m) or in the same 
release. If feature f(n) and f(m) is in coupling relation Rc, then  the following rela-
tionship should hold between the decision variables x(n) and x(m): 

x(n) = x(m) for all (n,m) ∈ Rc (7)

This dependency specifies that the features f(n) and f(m) need to be released (or post-
poned) together. If features f(n) and f(m) have a synergy dependency (belonging to a 
joint theme), then the value of both of these features increase by a fixed percentage in 
case they are offered together in conjunction. We can define the synergy as follows: 

syn(n,m) =  (val(n) + val(m))*inc(n,m) for all (n,m) ∈ Rs (8)

In (8), inc(n,m) is the increment factor due to a synergy constraint, while val(n) and 
val(m) represent the values of the features f(n) and f(m), respectively. 
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4.3 Objectives 

4.3.1 Individual Feature Value Objective 
For a given release plan x, stakeholders feature points for a feature f(n) is a measure 
describing the contribution of the feature to the overall satisfaction [24]. This measure 
is defined as a linear combination of criteria related scores given by a set of stake-
holders. The scoring is defined on a nine-point scale {1...9}. The value of the first 
objective is defined as the total stakeholders feature points received from all features 
selected in the next release. 

Suppose there are N features, Q planning criteria (e.g. value, time-to-market) and P 
stakeholders. Now, the first objective function F1(x) is based on an additive and linear 
function defined as follows:  

F1(x) = Ȉ n=1…N x(n)*score(n) (9)

where score(n) of feature f(n) is defined as: 

score(n) = Ȉ q= 1…Q  weight_criterion(q)*score(q,n) (10)

In (10), weight_criterion(q) indicates the weight of planning criterion q, while 
score(q,n) is the weighted (normalized) average of the stakeholder scores (defined on 
a nine-point scale) related to this criterion: 

score(q,n) = Ȉ p= 1…P  weight_stake(p)*score(n,p,q) (11)

In (11), weight_stake(p) refers to the weight of stakeholder p, while score(n,p,q) re-
fers to the value assigned to the feature f(n) by stakeholder p for criterion q.  

4.3.2 Objective Based on Theme Synergies  
The second objective function is looking at the synergies obtained from delivering 
features as part of themes. The value of this objective is defined over all pairs of fea-
tures creating a value synergy: 

F2(x) = ¦(n,m) ∈ Rs  (val(n) + val(m))*inc(n,m) (12)

The objective F2(x) is different from the second objective in [29] which was proposed 
to analyze requirements interaction. In [29], the second objective was formulated to 
minimize the sum of the cost associated with individual features as well as the cost 
incurred due to value and cost related dependencies between features. In our approach, 
the objective is to maximize F2(x), to promote offering of features from themes. 

4.4 Decision Support for Bi-objective Release Planning   

4.4.1 Bi-objective Release Planning 
The bi-objective RP tackled in this paper consists of two parts. The first one is to 
determine a set of Pareto-optimal solutions balancing individual and theme-based 
consideration of release values:  
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Max {(F1(x), F2(x)): x from X defined by (4) - (8)} (13) 

The second part is to look at all the solutions of (13) and to determine the most pre-
ferred Pareto solution defined as the one being most strongly aligned with a given 
preference relation of themes. 

4.4.2 Decision Support for Selection of the Most Preferred Pareto Solution 
In multi-objective formulation, the Pareto-front contains a set of complementary solu-
tions. The decision-maker needs to decide on a reasonable compromise. This deci-
sion-making process is a challenging task since it is a human-centered process with a 
high level of fuzziness [23]. With more than three objectives, it is also not possible to 
visualize the Pareto-front to facilitate proper decision making by humans [17]. In 
addition to that, multi-objective evolutionary algorithms requires a very large number 
of solutions (e.g. 62500 solutions with four objectives) to approximate the Pareto-
front with the increase in the number of objectives [18]. It becomes very difficult to 
choose a single solution from such a high number of available solutions. For these 
reasons, it is important to propose new approaches to rank a set of Pareto-solutions. 

In this paper, we propose two decision support approaches to rank the Pareto-
optimal solutions, which are described below: (i) Ranking based on alignment of solu-
tions with theme preferences, and (ii) Ranking based on weights of themes. 

In the first approach, a product manager provides the preference of themes as a 
preference vector of clusters. Suppose, there are 8 clusters and the provided prefe-
rence vector is: {7, 3, 5}. This vector indicates that the product manager prefers high-
est theme-coverage from cluster 7, followed by cluster 3 and 5. Once the preference is 
given, the approach described in Section 3.3.3 is used to come up with a ranking of 
the Pareto-optimal solutions. 

Pareto solutions can also be ranked using weight of the themes. Instead of provid-
ing partial or total ranking of the themes, a product manager can provide the weight of 
the themes. The weight of each theme called weight(Cj) can be any value from 0 to 9 
(the higher the value, the higher the importance). The score p(x) for each Pareto solu-
tion is defined as follows: 

p(x) = Ȉj M1(Cj,x) * weight(Cj) (14)

where M1(c, x) is the value of the metric M1 for the cluster c under a release plan x 
and weight(c) is the assigned weight for the cluster c. The higher the score, the higher 
the rank and attractiveness of the respective solution. 

5 Empirical Evaluation 

5.1 Case Study Projects 

We evaluated the proposed approach for two data sets. The first data set (data set 1) 
[27] is based on Microsoft Word, a word processor. This data set has 50 features, 2 
planning criteria, 4 stakeholders, 5 resource types and 81 feature interdependencies. 
The second data set (data set 2) [27] is related to the ReleasePlanner™ product  
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development planning tool [22]. ReleasePlanner™ is a proprietary decision support 
system used for the generation of strategic and operational release planning. The re-
lated data set has 25 features, 4 planning criteria, 9 stakeholders, 7 resource types and 
39 feature inter-dependencies. For the data set 1, there are 8 clusters of features, while 
data set 2 has 5 clusters. 

In this paper, we did not use any automatic tool to generate any themes or clusters 
from features. Our experiments and analysis were based on the assumption that fea-
tures are pre-assigned to clusters and pair wise synergy constraints are available for 
subset of all possible pairs of features in each cluster. The clusters in the data set 1 
were generated in [1] using Chinese Whispers (CW) algorithm [6]. The clusters in the 
data set 2, on the other hand, were formed manually. Detail descriptions about the 
clusters of the used data sets can be found in [27]. 

5.2 Tuning of Parameters 

The proposed approach was implemented in the jMetal [13] framework, a widely used 
tool for conducting multi-objective experiments. We used a simple binary GA encod-
ing in NSGA-II. Each experiment with NSGA-II was executed for 500 generations. 
To accommodate randomness, each experiment was replicated 50 times. All distinct 
(in terms of features selected) Pareto-optimal solutions from the overall set of all trials 
were considered as final solutions.  

To select an initial population size we experimented with several values of the size: 
100, 250, 500 and single-point crossover with crossover probability Pc of 0.9 and 
bitwise mutation with mutation probability Pm = 1/n (where n is the number of fea-
tures). In our experiments, for the data set 1 and data set 2, we achieved almost the 
same number of Pareto-optimal solutions with different population sizes. We noticed 
that with population size 100, the proposed approach generated 43 Pareto-optimal 
solutions for the data set 1, while with the other population sizes 250 and 500, it gen-
erated 41 Pareto-optimal solutions in both cases.  

The results for the other data set also showed similar trend. For the data set 2, with 
population size 100, the proposed approach generated 7 Pareto-optimal solutions, 
whereas with population size 250 it generated 6 Pareto-optimal solutions, while with 
500 individuals in the population, it generated 4 Pareto-optimal solutions. For both 
data sets, the computational time was much lower with population size of 100 than 
with other sizes. In addition, the difference in the number of solutions was not signifi-
cant. So, to achieve solutions within reasonable computation time, we chose 100 as 
the population size for our experiments.  

Subsequently, we performed several experiments with the selected population size 
and different values of crossover probability Pc = 0.9, 0.8, 0.7, 0.6, 0.5, 0.1 and differ-
ent values of mutation probability Pc = 0.9, 0.8, 0.7, 0.6, 0.5, 0.1, 0.01, 1/n (where n is 
the number of features). In the data set 1, for all crossover probability settings, the 
number of Pareto-optimal solutions was high when used with low mutation probabili-
ties like 0.01 and 1/n. For the data set 2, on the other hand, we did not observe any 
significant differences in terms of the number of solutions found in all the experi-
ments conducted. As our results were not consistent across these two data sets, we 
chose fairly standard crossover and mutation probability settings Pc = 0.9 and Pm = 
1/n for all further experiments.  
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5.3 Case Study Results 

First, we analyze the results in terms of the number of Pareto-optimal solutions 
found. From our results, we notice that for the data set 1, there are 43 Pareto optimal 
solutions, while for the data set 2, there are only 7 Pareto-optimal solutions. Fig. 2 
shows the Pareto front for the data set 1. There is a clear trade-off between the over-
all value of a solution (objective F1) and the total increments due to synergy depen-
dencies (objective F2).  

For analysis purpose, we also pick two extreme Pareto-optimal solutions: one that 
achieves highest value for the stakeholder satisfaction related objective F1 (Solution 
A) and one that achieves highest value for the synergy related objective F2 (Solution 
B). In Fig. 3, for solution A and B, the assigned features in the next release and the 
postponed features are represented as two matrices. In both columns of each of the 
two matrices, features from cluster 1, 2, 7 and 8 are shown in row 2, 3, 4 and 5, re-
spectively. In this figure, we do not show features from those clusters which are post-
poned in both solutions.  

We see that solution A offers features from four different clusters to maximize 
stakeholder satisfaction. Solution B, on the other hand, mainly focuses on offering 
features from two clusters, emphasizing a more theme-centric release plan. Since 
there are 43 Pareto-optimal solutions for the data set 1, without proper decision sup-
port, it is difficult to decide which one is the best solution in terms of a specific 
theme-coverage. 

 

    

Fig. 2. Pareto-front for the data set 1. Each rectangle shows the values for the metric M1 for 
different clusters in a solution. Ci refers to the value of M1 for the ith cluster. A and B represent 
two extreme solutions: one that achieve maximum value for F1 and  one that achieve highest 
value for F2, respectively. 
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Fig. 3. Release plan without (Solution A) and with (Solution B) theme focus. Features from 
cluster 1, 2, 7 and 8 are shown in row 2, 3, 4 and 5, respectively. When features from a cluster 
are postponed in both solutions, that cluster is not shown.   

Table 1 shows the objective function values and theme-coverage details for all the 
Pareto-optimal solutions for the data set 2. From F1 and F2 values, it is evident that 7 
solutions map to three different points in the objective space. The reason is that mul-
tiple solutions offering different feature sets map into the same point in the objective 
space. It is also evident from this table that solution 1 is the most theme-centric as it 
offers features mainly from cluster 2 and cluster 5. Other solutions are the trade-off 
between theme-incorporation and stakeholders satisfaction. From our discussion on 
the Pareto-optimal solutions for the two data sets, we can see that solutions might 
have varying structures as well as different objective values. This is why, in theme-
based bi-objective optimization, it is difficult to choose a single solution. 

Table 1. Ranking of solutions for the data set 2 using M1 and theme preference: C5 � C2 � C1 

Solution 
# 

F1 F2 C5 C2 C1 C3 C4 

1 64864.00 102.90 83.33 80.00 0.00 0.00 0.00 
2 74944.00 74.55 83.33 60.00 20.00 25.00 0.00 
3 64864.00 102.90 66.67 80.00 0.00 50.00 0.00 
4 67815.00 93.45 66.67 60.00 0.00 0.00 40.00 
5 74944.00 74.55 50.00 60.00 20.00 25.00 40.00 
6 67815.00 93.45 50.00 60.00 20.00 0.00 60.00 
7 74944.00 74.55 50.00 60.00 20.00 25.00 40.00 

 



134 M.R. Karim and G. Ruhe 

 

5.3.1 Theme-Based Decision Support Using Lexicographic Ordering 
One of the goals in this paper is to show how decision support can assist product 
managers in choosing a RP solution. We now explain how the lexicographic ordering 
of the Pareto-optimal solutions can be performed using the M1 metric values for each 
cluster. Suppose for the data set 1, a product manager's preference of clusters is: { 7, 
8, 2}. This indicates that the product manager prefers to incorporate more features 
from cluster 7, followed by cluster 8 and 2. To come up with the lexicographic order-
ing, first, all the 43 solutions were sorted in decreasing order using M1 values for clus-
ter 7  (most preferred). Several solutions were found with equal values for this me-
tric. So those solutions were sorted in decreasing order in terms of M1 values for clus-
ter 8, the next preferred cluster. Again, several solutions ended up with the same value 
for the metric M1. Finally, the lexicographic ordering was achieved by sorting those 
solutions in decreasing order, based on the M1 values for the cluster 2, the least pre-
ferred cluster. 

Solutions B, C and D in Fig. 2 show the top ranked solutions after lexicographic 
ordering. All the three solutions offer 90% from cluster 7 and 100% from cluster 8. 
But the top ranked solution (Solution C) offers highest 61.11% features from cluster 
2. In Table 1, for the data set 2, we show the ranking of 7 Pareto-optimal solutions 
obtained using lexicographic ordering, with the preference of clusters as {5, 2, 1}. It 
is evident that the proposed approach based on lexicographic ordering can assist  
product managers to rank the solutions and choose one solution.  

5.3.2 Theme-based Decision Support Using Weighted Themes  
Solutions can be ranked using weight of the themes. Suppose that the assigned 
weights for cluster 1 to cluster 5 for the data set 2 are:  w(1)=7, w(2)=8, w(3)=2, 
w(4)=5 and w(5)=9. Highest weight is given to cluster 5, while the lowest weight is 
given to cluster 3. The ranking of the 7 Pareto-optimal solutions based on the scores 
computed using Eq. 14 is given in Table 2. The ranking obtained using this approach 
is different from the ranking obtained using the lexicographic ordering (see Table 1). 
We can see that solution 1 and 2 in Table 1 has swapped their places in Table 2.  
There are changes in the ranking of the other solutions as well. However, the ranking 
obtained with the two approaches can be made identical. To achieve this, we have  
to assign weights to the clusters following the product manager’s preference order.  
 

Table 2. Ranking of solutions for the data set 2 using metric M1 and weight of clusters: 
w(1)=7, w(2)=8, w(3)=2, w(4)=5 and w(5)=9 

Solution # C5 C2 C1 C3 C4 

1 83.33 60.00 20.00 25.00 0.00 
2 83.33 80.00 0.00 0.00 0.00 
3 50.00 60.00 20.00 0.00 60.00 
4 66.67 80.00 0.00 50.00 0.00 
5 50.00 60.00 20.00 25.00 40.00 
6 50.00 60.00 20.00 25.00 40.00 
7 66.67 60.00 0.00 0.00 40.00 
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In addition, the weights need to be assigned in decreasing order (higher to lower 
weights). For other clusters not specified in the preference, weight of zero must be used. 

5.4 Discussion and Threats to Validity 

From our explorative case studies on the two data sets, we can confirm that Pareto-
optimal solutions show clear trade-off between overall stakeholder satisfaction and 
theme incorporation. We also see that lexicographic ordering or theme weight based 
ranking of the Pareto-optimal solutions can help product managers to pick a solution 
that best match the given priority of themes.  

However, there are some threats to validity: First, the result is based on just two 
data sets. The proposed approach should be validated with more real world data sets. 
Second, the scalability of the approach needs to be tested with data sets containing 
significant number of features and feature inter-dependencies. Third, we used only 
one theme-coverage metric to come up with ordering of the solutions. Other metrics 
can be designed to validate the results (see [1] for additional metric suggestions). 
Fourth, in the two data sets used, following the work in [1], synergy constraints were 
defined only between pair of features in a cluster. Synergy constraints should be de-
fined involving more than two features in the data sets to be used in future. 

6 Summary and Outlook to Future Research 

Consideration of themes is a new way to increase the attractiveness and meaningful-
ness of release planning results. In this paper, we have demonstrated how theme-
based RP can be formulated as a bi-objective optimization problem that can be 
tackled with NSGA-II. We have also proposed two ways of ranking the solutions in 
the Pareto-front by taking consideration of product managers' preferences of theme-
coverage. Our case study results show how multi-objective formulation can identify 
solutions that balance the competing concerns of theme incorporation and overall 
value of features selected for the next release.  

There are several ideas to conduct future research. In this work, we did not try to 
evaluate the quality of Pareto-optimal solutions in terms of convergence to the true 
unknown Pareto-front as well as in terms of the spread of the solutions. In future, 
these will be taken into account. We generated plans for a single release of the RP. In 
RP, we usually plan for several releases ahead. In future, this work will be extended 
to perform RP for more than one release. For our experiments, we relied on the con-
straint-handling mechanism of NSGA-II as specified in [9]. We believe that the quali-
ty of Pareto-optimal solutions in terms of the features offered might be improved if 
other constraint handling mechanisms are employed. Finally, there is a plan to con-
duct more empirical investigations to study the acceptance of the proposed solutions 
in a real-world context. 
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Abstract. When tested at the system level, many programs require
complex and highly structured inputs, which must typically satisfy some
formal grammar. Existing techniques for grammar based testing make
use of stochastic grammars that randomly derive test sentences from
grammar productions, trying at the same time to avoid unbounded re-
cursion. In this paper, we combine stochastic grammars with genetic
programming, so as to take advantage of the guidance provided by a
coverage oriented fitness function during the sentence derivation and
evolution process. Experimental results show that the combination of
stochastic grammars and genetic programming outperforms stochastic
grammars alone.

Keywords: Genetic programming; grammar based testing; stochastic
grammars.

1 Introduction

Search based test data generation has been the subject of active research for
a couple of decades now, and a number of techniques and tools have been de-
veloped as a result [1–3]. However, there is still the need for test data genera-
tion techniques applicable to programs whose inputs exhibit complex structures,
which are often governed by a specification, such as a grammar. We refer to
such systems as grammar based systems. An example of such systems is Rhino,
a compiler/interpreter for the JavaScript language. Test cases to this system are
JavaScript programs that respect the rules of the underlying JavaScript grammar
specification. Despite some efforts made in recent years in this direction [4–6],
there is no solution that is effective in achieving the desired level of adequacy
and is scalable to reasonably large/complex grammars.

The challenge in generating test cases for grammar based systems lies in choos-
ing a set of input sentences, out of those that can be potentially derived from the
given grammar, in such a way that the desired test adequacy criterion is met.
In practice, the grammars that govern the structure of the input are far from
trivial. For instance, the JavaScript grammar, which defines the structure of the
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input for Rhino, contains 331 rules and many of these rules are deeply nested
and recursive. One way to deal with this problem is through the use of stochastic
grammars, where the application of rules is controlled by probability distribu-
tions crafted so as to reduce the risk of infinite or unbounded recursion. Such
probabilities can also be learned from a corpus, so as to increase the chances
of generating sentences that resemble those observed in the field. On the other
hand, Genetic Programming (GP) [7] has been used, albeit with relatively sim-
pler structures, to evolve tree structures suitable for a particular objective (e.g.,
failure reproduction [8]). We propose a novel combination of stochastic gram-
mars and GP that integrates the effectiveness of stochastic grammars, capable of
controlling infinite recursion and of generating realistic sentence structures, with
the evolutionary guidance of GP, capable of evolving inputs from the grammar
so as to achieve high system-level branch coverage. Evaluation on three grammar
based systems shows that this combined approach is effective both in achieving
high system coverage and in revealing real and seeded faults.

The remainder of this paper is organized as follows: in Section 2 we present
basic background on stochastic grammars and evolutionary test case generation.
Section 3 presents the proposed approach and its implementation, while experi-
mental results are described in Section 4. Closely related works are discussed in
Section 5 and finally Section 6 outlines future works and concludes the paper.

2 Background

This section provides basic background on two topics that are extensively used
in the paper: (1) stochastic grammars, and (2) evolutionary algorithms.

2.1 Stochastic Grammars

Notation and definitions: Figure 1 shows a simple context free grammar
(CFG) G = (T,N, P, s), with four terminal symbols (contained in set T ), one
non-terminal symbol (setN), three production rules (π1, π2, π3) and start symbol
s. A derivation for the sentence “(n)+n” and the associated parse tree are also
shown in Figure 1.

A CFG can be used as a tool to randomly generate strings that belong to the
language L(G), expressed by grammar G, by means of the process described in

T = {n, (, ),+}
N = {E}
s = E
π1 : E → E + E
π2 : E → (E)
π3 : E → n

E ⇒π1

E + E ⇒π2

(E) + E ⇒π3

(n) + E ⇒π3

(n) + n

Fig. 1. An simple grammar, a derivation for the string “(n)+n” and its syntax tree
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Algorithm 1. Generation of a string using a CFG

S ← s
k = 1
while k < MAX ITER and S has the form α · u · β, where α ∈ T ∗ and u ∈ N do

π ← choose(Pu)
S ← α · π(u) · β
k = k + 1

end while
if k < MAX ITER then

return S
else

return TIMEOUT
end if

Algorithm 1. The algorithm applies a production rule, randomly chosen from
the subset of applicable rules Pu (by means of the function choose), to the
left-most non terminal u of the working sentential form S, so obtaining a new
sentential form that is assigned to S. The algorithm iterates until there are no
more non-terminal symbols to substitute (i.e., S ∈ T ≥, since it does not have the
form α · u · β with u ∈ N) or a maximum number of iterations is reached. The
behavior of Algorithm 1 can be analyzed by resorting to the notion of Stochastic
Context-free Grammars [9].

Definition 1 (Stochastic Context-free Grammar). A Stochastic Context-
free Grammar S is defined by a pair (G, p) where G is a CFG, called the core
CFG of S, and p is a function from the set of rules P to the interval [0, 1] ⊆ R,
namely p : P → [0, 1], satisfying the following condition:

∑

u→β∈Pu

p(u → β) = 1, for all u ∈ N (1)

Condition (1) ensures that p is a (discrete) probability distribution on each
subset Pu ⊆ P of rules that have the same non-terminal u as left hand side.

An invocation of Algorithm 1 can be seen as realizing a derivation in a stochas-
tic grammar based on G where probabilities are defined by the function choose.
The number of iterations that Algorithm 1 needs to produce a sentence depends
on the structure of the grammar G and on the probabilities assigned to rules. As
a matter of fact, interesting grammars contain (mutually) recursive rules. If re-
cursive rules have a high selection probability p, the number of iterations needed
to derive a sentence from the grammar using Algorithm 1 can be very large, in
some cases even infinite, and quite likely beyond the timeout limit MAX ITER.

Consider the grammar in Figure 1, with p(π3) = q, p(π2) = 0 and p(π1) = 1−q.
The probability that the generation algorithm terminates (assuming MAX ITER
= ∞) depends on q. If q < 1/2 the probability that the algorithm terminates is
less than 1 and it decreases at lower values of q, reaching 0 when q = 0.

This example shows that when Algorithm 1 is used in practice, with a finite
value of MAX ITER, the timeout could be reached frequently with some choices
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of probabilities p, resulting in a waste of computational resources and in a small
number of sentences being generated. A method to control how often recursive
rules are applied is definitely needed. We discuss two methods widely adopted
in practice: the 80/20 rule and grammar learning.

The 80/20 Rule: Given a CFG G = (T,N, P, s), for every non-terminal u ∈ N ,
Pu is split into two disjoint subsets P r

u and Pn
u , where P

r
u (respectively Pn

u ) is the
subset of rules in Pu which are (mutually) recursive (respectively non-recursive).
Probabilities of rules are then defined as follows:

p(α → β) =

{
q/|Pn

u |, if α → β ∈ Pn
u

(1− q)/|P r
u |, if α → β ∈ P r

u

so as to assign a total probability q to the non-recursive rules and 1 − q to
the recursive ones. A commonly used rule of thumb consists of assigning 80%
probability to the non-recursive rules (q = 0.80) and 20% to the recursive rules.
In practice, with these values the sentence derivation process has been shown
empirically to generate non-trivial sentences in most cases, while keeping the
number of times the timeout limit is reached reasonably low.

Learning Probabilities from Samples: Another approach to assign rule
probabilities to a CFG consists of learning the probabilities from an available
corpus. If the grammar is not ambiguous, every sentence has only one parse tree
and probabilities can be easily assigned to rules by observing how many times
a rule is used in the parse tree for each sentence in the corpus. In the presence
of ambiguity, learning can take advantage of the Inside-outside algorithm [10].
The inside-outside algorithm is an iterative algorithm based on expectation-
maximization. Starting from randomly chosen probability values, it repeatedly
refines the rule probabilities so as to maximize the corpus likelihood.

2.2 Evolutionary Algorithms

Evolutionary algorithms search for approximate solutions to optimization prob-
lems, whose exact solutions cannot be obtained at acceptable computational
cost, by evolving a population of candidate solutions that are evaluated through
a fitness function. Genetic algorithms (GAs) have been successfully used to gen-
erate test cases for both procedural [2] and object-oriented software [3]. GAs
evolve a population of test cases trying to maximize a fitness function that mea-
sures the distance of each individual test case from a coverage target still to
be reached. The genetic operators used for evolutionary test case generation in-
clude test case mutation operators (e.g., mutate primitive value) and crossover
between test cases (e.g., swap of the tails of two input sequences) [1].

Whole Test Suite Generation: Whole test suite generation [3] is a recent
development in the area of evolutionary testing, where a population of test suites
is evolved towards satisfying all coverage targets at once. Since in practice the
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infeasible (unreachable) targets for a system under test (SUT) are not generally
known a priori, generating test data considering one coverage target at a time
is potentially inefficient as it may waste a substantial amount of search budget
trying to find a solution for infeasible targets. Whole test suite generation is not
affected by this problem as it does not try to cover one target at a time. Rather,
the fitness of each test suite is measured with respect to all coverage targets.
That is, when a test suite is executed for fitness evaluation, its performance is
measured with respect to all test targets.

Genetic Programming: Genetic programming [7] follows a similar process as
GAs. However, the individuals manipulated by the search algorithm are tree-
structured data (programs, in the GP terminology) rather than encodings of
solution instances. While there are a number of variants of GP in the literature, in
this work we focus on Grammar Guided GP (GGGP) [7]. In GGGP, individuals
are sentences generated according to the formal rules prescribed by a (context
free) grammar. Specifically, initial sentences are generated from a CFG and new
individuals produced by the GP search operators (crossover and mutation) are
guaranteed to be valid with respect to the associated CFG.

An individual (a sentence from the grammar) in the population is represented
by its parse tree. Evolutionary operators (crossover and mutation) play a cru-
cial role in the GP search process. Subtree crossover and subtree mutation are
commonly used operators in GP. The instances of these operators that we use
in our approach are described in detail in Section 3.

3 Combined Approach

Our approach combines grammar-guided genetic programming with a suitable
fitness function so as to evolve test suites for system-level branch coverage of the
SUT. Since we perform whole-test suite optimization, which is more appropriate
for system level testing, we evolve both test suites and the test cases inside the
test suites. For test suite evolution we use GA, while for test case evolution we
use grammar guided GP (see Section 2).

3.1 Representation of Individuals

Individuals manipulated by the GA are test suites. Each test suite is composed
of test cases. A test case is a single input to the SUT. In other words, a test case
is a well-formed sentence derived from the grammar of the SUT. Hence, a test
suite in the GA is a set of sentences, represented by their parse trees.

3.2 Initialization

The initial population of test suites is obtained by generating input sentences ac-
cording to the stochastic process described in Algorithm 1 and by grouping them
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randomly into test suites. Stochastic sentence generation uses either heuristically
fixed or learned probabilities, as discussed in Section 2.

3.3 Fitness Evaluation

The GA evaluates each individual (test suite) by computing its fitness value. For
this purpose, the tree representation of the test cases in the suite is unparsed
to a string, which can be passed to the SUT as input. The GA determines the
fitness value by running the SUT with all unparsed trees from the suite and
measuring the amount of branches that are covered, as well as the distance from
covering the uncovered branches.

During fitness evaluation, branch distances [1] are computed from all possible
branches in the SUT, spanning over multiple classes. The fitness of the suite
is the sum of all such branch distances. This fitness function is an extended
form of the one employed by Fraser et al [3] for unit testing of classes. GA uses
Equation 2 to compute the fitness value of a test suite T , where |M | is the total
number of methods in the SUT; |MT | is the number of methods executed by T
(hence |M −MT | accounts for the entry branches of the methods that are never
executed); d(bk, T ) is the minimum branch distance computed for the branch bk;
a value of 0 means the branch is covered.

fitness(T ) = |M | − |MT |+
∑

bk∈B

d(bk, T ) (2)

3.4 Genetic Operators

In our approach, genetic operators work at two levels: at the upper level, GA
operators are used to evolve test suites (TS); at the lower level, GP operators are
used to evolve the parse trees that represent the input sentences of the test cases
contained in a test suite. Evolution at the lower level is regarded as a special
kind of mutation (namely, parse tree mutation) at the upper level. Hence, GP
operators are activated according to the probability of parse tree mutation set in
the upper GA level. In particular, the GP operator subtree mutation is applied to
a test case that belongs to test suite T with probability 1/|T |. The GP operator
subtree crossover is applied with probability α.

GA Operators [3]

TS Mutation: insert new test cases: with a small probability β a new test
case is added to T ; additional test cases are added with (exponentially)
decreasing probability. The new test cases to insert are generated by applying
Algorithm 1.

TS Mutation: delete test cases: with a small probability γ a test case is
removed from T . The test case which covers the least number of branches
is selected for removal, so as to keep the most promising individuals in the
test suite.
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TS Crossover: Given two parent test suites T1 and T2, crossover results in off-
spring O1 and O2, each containing a portion of test cases from both parents.
Specifically, the first δ|T1| tests from T1 and the last (1−δ)|T2| tests from T2

are assigned to O1; while the first δ|T2| tests from T2 and the last (1− δ)|T1|
tests from T1 are assigned to O2, for δ ∈ [0, 1] .

GP Operators [7]

Subtree mutation: Subtree mutation is performed by replacing a subtree in
the tree representation of the individual with a new subtree, generated from
the underlying stochastic grammar by means of Algorithm 1. Figure 2 shows
an example of subtree mutation applied to a test case.

  n      

( E )    n

  E   /  E

      E   

n    n    n

( E ) E + E

  E   /  E

      E   
   (n)/n                     (n)/n+n

Fig. 2. Subtree mutation: a subtree (circled) is replaced with a new one generated from
the grammar using Algorithm 1

Subtree crossover: Figure 3 shows an example of subtree crossover between
two test cases in a test suite T . Two subtrees rooted at the same non terminal
are selected in the parent trees and swapped, so as to originate two new
offspring trees.

  n      

( E )    n

  E   /  E

      E   

n    n

n   E + E

  E   x  E

      E   
   (n)/n                     nxn+n

n   n   

E + E    n

  E   /  E

      E   

  n

n   ( E )

  E   x  E

      E   
   n+n/n              nx(n)

Fig. 3. Subtree crossover: subtrees of the same type (circled) from parents are ex-
changed to create children

3.5 Implementation

We implemented the proposed approach in a prototype (hereafter referred to as
StGP) by extending the EvoSuite test generation framework [11]. In particular,
we extended EvoSuite with: (1) a new parse-tree based representation of indi-
viduals; (2) a new initialization method, which resorts to stochastic grammar
based sentence derivation; (3) new GP operators which manipulate parse tree
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representation of individuals. Moreover, the top-level algorithm has been modi-
fied to accommodate the two levels (GA and GP) required by our approach. For
each SUT, we assume that there is a system level entry point through which it
can be invoked. In cases where such entry point is missing, we define one, acting
as a test driver for invoking the core functionalities of the SUT.

For learning rule probabilities from a corpus, we extended an existing imple-
mentation of the inside-outside algorithm1, which given a grammar and a set of
sentences produces as output a probability for each rule in the grammar.

During fitness evaluation, the tree representation of each individual test case
is unparsed to a string which is then wrapped into a sequence of Java statements.
These sequences of Java statements are then executed against the instrumented
SUT. Figure 4 shows a simplified example of this process.

  3      

(  E  )   6

  E  /   E

      E   

  (3)/6  

try{
     Driver driver = new Driver ();
     String input = "(3)/6";
     driver.entryMethod (input);
} catch (...) {
     ...
}

unparse wrap

Fig. 4. During fitness evaluation, tree representations are unparsed and wrapped into
sequences of Java statements

As recommended by Arcuri et al. [12], we have implemented StGP in such
a way that it takes advantage of accidental coverage. If the execution of a test
case covers a search target which was not covered so far, such a test case is kept
as a solution, regardless of the survival of the test suite it belongs to. At the
end of the search, such test cases are merged with the best suite evolved by the
search. In this way test cases that exercise uncovered targets but are not part of
the final “best” test suite are not lost.

We implemented a random generation technique (RND hereafter) as a baseline
for comparing the performance of StGP. RND generates a random test case from
the grammar, executes it against the SUT, and collects all covered branches [12].
It stops either when full coverage is reached or search budget is finished.

4 Experimental Results

To evaluate the effectiveness of StGP, we carried out experiments on three open
source grammar based systems with varying levels of complexity, and compared
its effectiveness with respect to the baseline (RND). Specifically, we formulated
the following research questions:

1 http://web.science.mq.edu.au/~mjohnson/Software.htm

http://web.science.mq.edu.au/~mjohnson/Software.htm
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RQ1 (combination): Does StGP achieve higher system-level coverage than
RND?

RQ2 (grammar learning): Does grammar learning contribute to further in-
crease coverage?

RQ3 (fault detection): What is the fault detection rate of StGP, with and
without learning, as compared to RND?

4.1 Metrics

For RQ1 and RQ2, the metrics used to measure the effectiveness of the tech-
niques being compared is branch coverage at the system level, computed as the
number of branches covered by the generated test cases out of the total num-
ber of branches in the SUT. In cases where there is no statistically significant
difference in coverage, a secondary metrics related to efficiency is computed.
For measuring efficiency, we determine the amount of search budget (number of
unique test cases executed) consumed to achieve the final coverage.

For RQ3 we consider two kinds of faults: real faults and mutants, injected
into the SUT by a mutation tool2. With real faults, we measure the number of
unique faults that are exposed by the test cases generated by the techniques being
compared. With mutants, we measure the mutation score, i.e., the proportion of
mutants that are killed by the generated test cases. A mutant is considered as
killed if the original and mutated programs produce different outputs when the
generated test cases are executed.

4.2 Subjects

The subjects used in our experiments are open source Java systems that accept
structured input based on a grammar. Calc3 is an expression evaluator that
accepts an input language including variable declarations and arbitrary expres-
sions. MDSL4 is an interpreter for the Minimalistic Domain Specific Language
(MDSL), a language including programming constructs such as functions, loops,
conditionals etc. Rhino5 is a JavaScript compiler/interpreter.

Considering the complexity of the input structure (specifically, the associated
grammar) they accept, these subjects are representative of small (Calc), medium
(MDSL), and large (Rhino) grammar based systems. Table 1 reports the size in
LOC (Lines Of Code) of the source code and the number of productions in the
respective grammars. Terminal productions, accounting for the lexical structure
of the tokens, are excluded. These grammars are far more complex than those
typically found in the GP literature and contain several nested and recursive
definitions. Hence, they represent a significant challenge for the automated gen-
eration of test data.

2 http://www.pitest.org
3 https://github.com/cmhulett/ANTLR-java-calculator/
4 http://mdsl.sourceforge.net/
5 http://www.mozilla.org/rhino (version 1.7R4)

http://www.pitest.org
https://github.com/cmhulett/ANTLR-java-calculator/
http://mdsl.sourceforge.net/
http://www.mozilla.org/rhino
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Table 1. Subjects used in our experimental study

Name Language Size(KLOC) # Productions
Calc Java 2 38
MDSL Java 13 140
Rhino Java 73 331

The corpus used for learning stochastic grammars is composed of sentences
we selected from the test suites distributed with the SUT (for Calc and MDSL)
and from the V8 JavaScript Engine benchmark6 (for Rhino).

4.3 Procedure and Settings

Since both StGP and RND are based on stochastic grammars, they heavily
rely on probabilistic choices. Therefore, we repeated each experiment 10 times,
and measured statistical significance of the differences using the Wilcoxon non
parametric test.

Based on some preliminary sensitivity experiments, we assigned the following
values to the main parameters of our algorithm: population size = 20, crossover
rate = 0.75, subtree crossover rate α = 0.1, new test insertion rate β = 0.1, test
deletion rate γ = 0.01. For the other parameters we kept default values set by
the EvoSuite tool. Since the subjects used in our experiments differ significantly
in size and complexity, giving the same search budget to all would not be fair.
Hence, we resorted to the following heuristic rule for budget assignment: we give
each SUT a budget of n∗|branches|, where |branches| is the number of branches
in the SUT. Based on a few preliminary experiments, we chose the value n = 5.

4.4 Results

Table 2 shows the branch coverage achieved by each technique. Results of the
Wilcoxon test of significance are also shown. For subjects MDSL and Rhino StGP
achieves statistically significantly higher coverage than RND, both with and
without learning. StGP-LRN gave consistently the highest coverage on all sub-
jects. For subject Calc all techniques achieve the same coverage. One possible
explanation could be that since this subject is small, both in terms of source
code and grammar, it is relatively easy for all techniques to achieve maximum
coverage. On the other hand, StGP-LRN consumes on average a substantially
lower search budget to achieve such coverage. The difference in budget consump-
tion with the baseline is significant at level 0.1 (p-value = 0.08). If learning is
disregarded, we can still notice that StGP outperforms RND by a statistically
significant coverage difference, with the exception of Calc, for which no coverage
difference can be observed across all test data generation techniques.

In addition, Table 2 also reports the increase in coverage,Δ(%) column in the
table, which range from 2.19% (56 branches) for MDSL to 36.04% (1218 branches)
for Rhino.
6 https://code.google.com/p/v8/

https://code.google.com/p/v8/
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Table 2. Branch coverage with p-values obtained from the Wilcoxon test. Goals is the
total number of coverage goals; Covered is the number of covered goals; Budget is the
amount of search budget consumed. Best values are shown in boldface.

RND StGP Δ(%) p-val RND-LRN StGP-LRN Δ(%) p-val
Calc Goals 439 439 439 439

Covered 334 334 0.00 NA 334 334 0.00 NA
Cov(%) 76.08 76.08 76.08 76.08
Budget 488 502 0.97 614 308 0.08

MDSL Goals 3673 3673 3673 3673
Covered 2571 2627 2.19 2.44E-4 2543 2661 4.62 1.08E-5
Cov(%) 70.00 71.53 69.25 72.44
Budget 18365 18366 18365 18366

Rhino Goals 14763 14763 14763 14763
Covered 3380 4598 36.04 1.08E-5 4504 5076 12.70 1.08E-5
Cov(%) 22.89 31.15 30.51 34.39
Budget 73815 73816 73815 73816

We can answer RQ1 positively. StGP significantly improves coverage over
RND in two out of three subjects. When achieving the same coverage, StGP
consumes a lower search budget.

As can still be seen from Table 2, learning the probabilities of the stochastic
grammar from a corpus further improves the achieved coverage, in particular
for the more complex subjects, MDSL and Rhino. Learning improves the coverage
achieved by StGP both with respect to the baseline (RND-LRN, with p-value
< 0.05; see last column of Table 2) and with respect to StGP without learning
(with p-value equal to 4.35E-04 for MDSL; 1.08E-05 for Rhino).

We can answer RQ2 positively. The coverage achieved by StGP is further
improved when the probabilities of the stochastic grammar are learned from
a corpus in two out of three subjects.

Table 3. Real faults exposed on average by each technique

Subject RND StGP p-val RND-LRN StGP-LRN p-val
Calc 9.1 7.6 0.01 8.4 6.2 0.01
MDSL 6.4 6.6 0.66 7.5 9.5 0.03
Rhino 0 0.3 0.17 1 0.7 0.27

Table 3 reports the real faults exposed by the generated test suites. The re-
ported values are averages over 10 executions. For subject Calc, the technique
that exposes the highest number of real faults is RND. This result can be ex-
plained by considering that maximum coverage is achieved quite easily by all
techniques for this subject (see Table 2). This means that the coverage oriented
fitness function used by StGP is not particularly useful in the test data genera-
tion process, while the stochastic traversal of the grammar productions produces
input data with higher fault exposing capability. Learning is also not particularly
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beneficial with Calc, the simplest among the experimental subjects. For MDSL,
StGP with learning (StGP-LRN) exposes the highest number of faults. The dif-
ference with the baseline (RND-LRN) is statistically significant (at level 0.05).
For Rhino, both RND-LRN and StGP-LRN expose around 1 fault on average (1
and 0.7, respectively), with no statistically significant difference between them.
In the case of Rhino, the most complex among the considered subjects, it is
interesting to notice that, without learning, no fault is exposed by RND, and
a small number (0.3 on average) by StGP. This is consistent with the results
on coverage (see Table 2), where the best performance is reached by techniques
that include learning. It seems that with complex subjects, grammar learning is
a strong prerequisite to achieve high coverage and high exposure of real faults.

Since mutation analysis is resource intensive, we carried out the analysis on a
selected subset of classes from each SUT. In particular, we selected classes that
are involved in deep computations inside the SUT. This means that to reach
these classes the input must be well formed and meaningful. For instance, in
Rhino the input JavaScript program needs to pass lexical and syntax checking
before reaching the Interpreter or CodeGenerator. Table 4 reports the muta-
tion scores. Similarly to the real faults discussed above, the reported values are
averages over 10 executions.

Table 4. Mutation scores achieved on average by each technique

Subject Class RND StGP p-val RND-LRN StGP-LRN p-val
Calc CalcLexer 84.88 84.50 0.11 83.18 83.49 0.56

CalcParser 56.59 49.28 0.07 65.65 60.14 0.08
MDSL Dispatcher 48.69 48.57 0.94 62.18 58.88 0.04

MiniLexer 34.20 32.31 0.14 37.09 37.09 1.00
MiniParser 35.34 35.49 0.97 48.86 52.00 0.10

Rhino CodeGenerator 45.94 55.24 1.77E-04 60.62 63.40 1.72E-04
Interpreter 20.24 30.94 1.82E-04 34.91 36.35 7.41E-04

Results on mutation analysis, reported in Table 4, are consistent with the re-
sults obtained with real faults (see Table 3). With Calc, the role of the coverage
oriented fitness function is marginal and actually there is no statistically signif-
icant difference between StGP and RND (with or without learning). It seems
that on a subject as simple as Calc, fitness guided genetic programming and
grammar learning are not useful to increase the mutation score.

On MDSL, a medium complexity subject, the situation is quite different. Learn-
ing makes a substantial difference and the highest mutation scores are achieved
always when learning is carried out (columns RND-LRN and StGP-LRN in Ta-
ble 4). On the other hand, the adoption of GP has various consequences on the
classes of this subject. In one case, it is beneficial (class MiniParser), in an-
other case it is irrelevant (class MiniLexer) and in another one RND has higher
mutation score (class Dispatcher).

On Rhino, the most complex among the analysed subjects, StGP with learning
achieves the highest mutation scores in all considered cases (see Table 4). The
difference with the baseline is statistically significant.
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We can answer RQ3 positively for medium-high complexity subjects. Real
faults are exposed equally well or better than RND by StGP with learning,
on medium-high complexity subjects; the mutation score achieved by StGP
is higher than RND on the most complex subject. With medium-high com-
plexity subjects learning plays a fundamental role in the generation of test
cases with high fault exposing capability.

Froma qualitative viewpoint, the real faults exposed in the subject programs are
of type: NullPointerException, ArithmeticException, ClassCastException,
ArrayIndexOutOfBoundsException and StackOverflowError. Furthermore,
certain types of faults are exposed only by StGP (StackOverflowError in MDSL

and Rhino; ClassCastException in Rhino).

4.5 Threats to Validity

The main threats to validity for our results are internal and external. Internal
validity threats concern factors that may affect a dependent variable and were
not considered in the study. In our case, different grammar based test data gener-
ation techniques could be used, with potentially varying effectiveness. We chose
stochastic random generation as a baseline as it is representative of state-of-the-
art techniques for random grammar based test generation. Further comparisons
with other generators are necessary to increase our confidence in the results.

External validity threats are related to the generalizability of results. We have
chosen three subjects representative of small, medium and large grammar based
systems (both in terms of size and grammar complexity). Even though these
subjects are quite diverse, generalization to other subjects should be done with
care. We plan to replicate our experiment on more subjects to increase our
confidence in the generalizability of the results.

5 Related Works

The idea of exploiting formal specifications, such as grammars, for test data
generation has been the subject of research for several decades now. In the 70s
Purdom proposed an algorithm for the generation of short programs from a CFG
making sure that each grammar rule is used at least once [13]. The algorithm
ensures a high level of coverage of the grammar rules. However, rule coverage
does not necessarily imply code coverage nor fault exposure [14].

In a recent work by Poulding et al. [5], the authors propose to automatically
optimize the distribution of weights for production rules in stochastic CFGs
using a metaheuristic technique. Weights and dependencies are optimized by a
local search algorithm with the objective of finding a weight distribution that
ensures a certain level of branch coverage.

Symbolic Execution (SE) has been applied to the generation of grammar based
data by Godefroid et al. [15] and Majumdar et al. [6]. Both approaches reason
on symbolic tokens and manipulate them via SE. The work of Godefroid et al.
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focuses on grammar based fuzzing to find well formed, but erroneous, inputs that
exercise the system under test with the intention of exposing security bugs. The
work of Majumdar et al. focuses on string generation via concolic execution with
the intention of maximizing path exploration. As both works employ SE, they
are affected by its inherent limitations, for instance scalability. Furthermore, the
success of these approaches depends on the accuracy of symbolic tokens that
summarize several input sequences into one.

In the context of generating test data from grammars for code coverage, a
recent work closely related to ours is that of Beyene and Andrews [4]. Their
approach involves generating Java classes from the symbols (terminals and non
terminals) in the grammar. The invocation of a sequence of methods on instances
of these classes results in the generation of strings compliant with the grammar.
In their work, they apply various strategies for generating method sequences,
including metaheuristic algorithms and deterministic approaches, such as depth-
first search, with the ultimate objective of finding a test suite that maximizes
statement coverage of the system under test.

Our approach differs from the aforementioned works in that our approach uses
a more guiding fitness function, directed towards high SUT coverage, combined
with well established GP operators that evolve the desired input structures.
Our fitness function is measured directly on the SUT and is based on the branch
coverage achieved with the input data, while existing works use indirect guidance
from the execution of the SUT. Furthermore our approach is able to scale easily
to large and complex systems with complex grammars.

6 Conclusions and Future Work

In this paper we have presented an approach that combines the power of stochas-
tic grammars with a coverage oriented fitness function for the generation of
branch adequate, system-level test data for grammar based systems. Experi-
mental results obtained on three grammar based systems with varying grammar
complexities show that the proposed approach is effective, particularly on the
most complex subjects. On such subjects, when grammar learning is activated,
our approach reaches the highest coverage and fault exposure capability.

To address the main threats to the validity of our results, in our future work
we will apply the proposed approach to additional subjects and we will compare
it with further grammar based testing techniques available from the literature.

References

1. McMinn, P.: Search-based software test data generation: A survey. Journal of Soft-
ware Testing, Verification and Reliability (STVR) 14, 105–156 (2004)

2. Pargas, R., Harrold, M.J., Peck, R.: Test-data generation using genetic algorithms.
Journal of Software Testing, Verification and Reliability (STVR) 9, 263–282 (1999)

3. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering 39(2), 276–291 (2013)



152 F.M. Kifetew, R. Tiella, and P. Tonella

4. Beyene, M., Andrews, J.H.: Generating string test data for code coverage. In:
Proceedings of the International Conference on Software Testing, Verification, and
Validation (ICST), pp. 270–279 (2012)

5. Poulding, S., Alexander, R., Clark, J.A., Hadley, M.J.: The optimisation of stochas-
tic grammars to enable cost-effective probabilistic structural testing. In: Proceed-
ings of the 15th Annual Conference on Genetic and Evolutionary Computation,
GECCO 2013, pp. 1477–1484. ACM, New York (2013)

6. Majumdar, R., Xu, R.G.: Directed test generation using symbolic grammars. In:
Proceedings of the 22nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 134–143 (2007)

7. McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: A survey. Genetic Programming and Evolvable Machines
11(3-4), 365–396 (2010)

8. Kifetew, F.M., Jin, W., Tiella, R., Orso, A., Tonella, P.: Reproducing field failures
for programs with complex grammar based input. In: Proceedings of the Interna-
tional Conference on Software Testing, Verification, and Validation, ICST (2014)

9. Booth, T.L., Thompson, R.A.: Applying probability measures to abstract lan-
guages. IEEE Transactions on Computers 100(5), 442–450 (1973)

10. Lari, K., Young, S.J.: The estimation of stochastic context-free grammars using
the inside-outside algorithm. Computer Speech & Language 4(1), 35–56 (1990)

11. Fraser, G., Arcuri, A.: Evosuite: Automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE 2011,
Szeged, Hungary, pp. 416–419 (2011)

12. Arcuri, A., Iqbal, M.Z., Briand, L.: Formal analysis of the effectiveness and pre-
dictability of random testing. In: Proceedings of the 19th International Symposium
on Software Testing and Analysis, ISSTA 2010, pp. 219–230. ACM, New York
(2010)

13. Purdom, P.: A sentence generator for testing parsers. BIT Numerical Mathemat-
ics 12, 366–375 (1972), doi:10.1007/BF01932308

14. Hennessy, M., Power, J.F.: An analysis of rule coverage as a criterion in generat-
ing minimal test suites for grammar-based software. In: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2005, pp. 104–113. ACM, New York (2005)

15. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In: Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 206–215 (2008)



Feature Model Synthesis

with Genetic Programming

Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed

Software Systems Engineering
Johannes Kepler University

Linz, Austria
lukas.linsbauer@jku.at, roberto.lopez@jku.at, alexander.egyed@jku.at

http://www.jku.at/isse

Abstract. Search-Based Software Engineering (SBSE) has proven suc-
cessful on several stages of the software development life cycle. It has also
been applied to different challenges in the context of Software Product
Lines (SPLs) like generating minimal test suites. When reverse engi-
neering SPLs from legacy software an important challenge is the reverse
engineering of variability, often expressed in the form of Feature Mod-
els (FMs). The synthesis of FMs has been studied with techniques such
as Genetic Algorithms. In this paper we explore the use of Genetic Pro-
gramming for this task. We sketch our general workflow, the GP pipeline
employed, and its evolutionary operators. We report our experience in
synthesizing feature models from sets of feature combinations for 17 rep-
resentative feature models, and analyze the results using standard infor-
mation retrieval metrics.

Keywords: Feature, Feature Models, Feature Set, Reverse Engineering,
Software Product Lines, Variability Modeling.

1 Introduction

Search-Based Software Engineering (SBSE) is an emerging research area that
focuses on the application of search-based optimization techniques to problems
in software engineering [1]. Examples of these techniques are hill-climbing, sim-
ulated annealing, genetic algorithms, or swarm optimization [2]. SBSE has been
applied at several stages of the software development life cycle, but most promi-
nently for software testing [3].

Genetic Programming (GP) is a form of evolutionary computation that em-
ploys a tree-based representation of computer programs whose fitness is deter-
mined on how well the encoded programs solve a computational problem [4].
However, it is also used to solve mathematical problems like symbolic regression
where the goal is to find a formula that best explains a set of sample points.

Software Product Lines (SPLs) are families of related software systems where
each product has a different combination of features [5]. Most of the industrial
applications of SPLs start from a set of system variants, each providing a different
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set of feature combinations, that must be reverse engineered into a SPL [6]. A
crucial step in this reverse engineering effort is obtaining a feature model [7] –
the de facto standard to represent the valid feature combinations – that denotes
all the desired feature combinations. Similarly to the use of GP for symbolic
regression, we use GP to find a feature model that best explains a set of product
variants.

Feature models are important to model the variability of software systems.
They describe which features can be combined and which ones cannot in order
to form products. However, often such information is not available, for example
when companies maintain portfolios of legacy software product variants that are
the result of ad hoc methods like clone and own, where a new product variant is
created by copying an existing variant and adapting it to fit another customer’s
requirements, or by making existing variants highly configurable [8]. Only once
the number of variants or possible configurations has become unmanagable com-
panies decide to reverse engineer an SPL from their existing product variants [9].
The first step to this is often the reverse engineering of a feature model. She et
al. provide two algorithms to solve this problem, a task that has been shown to
be NP-hard [10].

A recent publication by Harman et al. summarizes the developments in the
application of genetic programming and genetic improvement for reverse engi-
neering tasks and proposes new research directions where both SBSE techniques
could be employed [11]. Among these directions is SPLs for which the authors
sketch some potential research venues. In this paper we make, to the best of our
knowledge, the first application of genetic programming in the realm of SPLs.
We extend our previous work [12] where we employed a genetic algorithm for
reverse engineering feature models. We show that genetic programming provides
a more accurate representation of the feature models which, provided with more
specialized operators, can produce better reverse engineering results.

2 Feature Models and Running Example

Feature models have become the de facto standard for modelling the feature
combinations for SPLs [7]. They depict features and their relationships collec-
tively forming a tree-like structure. The nodes of the tree are the features denoted
as labelled boxes, and the edges represent the relationships among them. Fig-
ure 1 shows the feature model of our running example, the Graph Product Line
(GPL) [13], a standard SPL that has been extensively used as a case study. In
GPL, a product is a collection of algorithms applied to directed or undirected
graphs.

In a feature model, each feature (except the root) has one parent feature and
can have a set of child features. A child feature can only be included in a feature
combination of a valid product if its parent is included as well. The root feature is
always included. There are four kinds of feature relationships: i) Mandatory fea-
tures are selected whenever their respective parent feature is selected. They are
depicted with a filled circle. For example, features GraphType and Algorithms,



Feature Model Synthesis with Genetic Programming 155

Feature P0 P1 P2 P3 P4

GPL � � � � �
Driver � � � � �

Benchmark � � � � �
GraphType � � � � �
Directed � �

Undirected � � �
Weight � � � �
Search � � � � �
DFS � � �
BFS � �

Algorithms � � � � �
Num � � �
CC � � �
SCC �

Kruskal �
Prim � �
Cycle � �

Shortest �

Table 1. Sample Feature
Sets of GPL

Fig. 1. GPL Feature Model

ii) Optional features may or may not be selected if their respective parent feature
is selected. An example is feature Weight, iii) Exclusive-or relations indicate that
exactly one of the features in the exclusive-or group must be selected whenever
the parent feature is selected. They are depicted as empty arcs crossing over a
set of lines connecting a parent feature with its child features. For instance, a
graph can be either directed or undirected by selecting either feature Directed

or Undirected respectively, iv) Inclusive-or relations indicate that at least one
of the features in the inclusive-or group must be selected if the parent is selected.
They are depicted as filled arcs crossing over a set of lines connecting a parent
feature with its child features. As an example, when feature Algorithms is se-
lected then at least one of the features Num, CC, SCC, Cycle, Shortest, Prim,
and Kruskal must be selected.

Besides the parent-child relations, features can also relate across different
branches of the feature model with the so called Cross-Tree Constraints (CTCs).
Figure 1 shows the CTCs of our feature model in textual form. These constraints
as well as those implied by the hierarchical relations between features are usually
expressed and checked using propositional logic in Conjunctive Normal Form
(CNF) [14]. For instance, the CTC Num requires Search means that whenever
feature Num is selected, feature Search must also be selected. In CNF this CTC
is written as ¬Num ∈ Search.

The following definitions are based on our previous work [12]:

Definition 1. A feature set is a 2-tuple [sel,sel] where sel and sel are re-
spectively the set of selected and not-selected features of a system variant. Let FL
be the list of features of a feature model, such that sel, sel ∩ FL, sel ≥ sel =
∧, and sel ≈ sel = FL.

Definition 2. A feature set is valid if the selected and not-selected features ad-
here to all the constraints imposed by the feature model.
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For example, the feature set fs=[{GPL, Driver, Benchmark, GraphType,

Directed, Search, DFS, Algorithms, Num}, {Undirected, Weight, BFS,

CC, SCC, Kruskal, Prim, Cycle, Shortest}] is valid. In fact, it corresponds
to feature set P0 in Table 1. As another example, a feature set with features DFS
and BFS is not valid because it violates the constraint of the exclusive-or relation
which establishes that these two features cannot appear selected together in the
same feature set. For GPL case study there are 73 different valid feature sets.

Please recall that the focus of this paper is on synthesizing feature models
from feature sets. In other words, for our running example, starting from a table
such as Table 1 that includes all the valid feature sets, our goal is to derive a
feature model such as the one in Figure 1.

3 Feature Model Synthesis

This section describes the genetic programming pipeline we followed, the fea-
ture model representation we used, and the evolutionary operators that were
developed.

3.1 Genetic Programming Pipeline

The genetic programming pipeline that we employed is shown in Figure 2. It
consists of a set of operators. The gray operators are problem specific while the
white ones are generic. It starts with a Builder that produces an initial pop-
ulation of randomized individuals. The Selection selects individuals from the
current population and either passes them to the Crossover operator or to the
Reproduction operator (depending on the crossover probability). The crossover
produces offspring individuals that ideally maintain valuable traits of their par-
ent individuals according to a fitness criterion. The reproduction operator just
clones individuals. As a next step the individuals either pass through the Mu-
tation operator which performs random mutations on the individuals or again
just through the reproduction (based on the mutation probability). The part of
the pipeline that produces a new population (i.e. the next generation of individ-
uals) from an old one is called Breeding, shown as a box in our figure. Finally
the fitness of the new individuals is evaluated and they are put back into the
population to constitute the next generation. In most cases the new generation
completely replaces the old one possibly with the exception of a select number
of elite individuals (the ones with the best fitness) which survive and live on in
the next generation.

3.2 Feature Model Representation

For the feature model representation we followed a Model Driven Engineering
(MDE) approach whereby a metamodel defines the structure and semantics of
the models that can be derived from it [15]. We choose a simplified version of
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Fig. 2. Genetic Programming Pipeline Overview

Fig. 3. Feature Model Metamodel

the SPLX metamodel1, a common standard representation for feature models,
which is shown in Figure 3.

This metamodel describes the structure of a feature model individual, repre-
sented by the FeatureModel meta class. The left part describes the feature tree.
It has exactly one Root feature that, just like any other feature node (i.e. any
node that inherits from Feature), can have an arbitrary number of Mandatory
and Optional child features as well as an arbitrary number of Alternative (i.e.
exclusive-or) and Or (i.e. inclusive-or) group relations which must have at least
one GroupedFeature as a child. The right part of the metamodel describes the
CTCs of a feature model individual. It has exactly one ConstraintSet which
describes a propositional formula in CNF. It contains an arbitrary number of
Constraints which correspond to clauses in a CNF expression. A Constraint

1 http://www.splot-research.org/

http://www.splot-research.org/
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therefore contains exactly one OrClause which must have at least one Literal. A
Literal can either be an Atom which refers to a feature directly or a Not which
then refers to an Atom.

The tree structure for the genetic programming individuals reflects for the
most part this metamodel and is mostly straightforward to derive. The only
exceptions are the following:

– The abstract class Feature is represented by its own type of node even though
it is an abstract class. This Feature node is placed as a child of the inheriting
node (e.g. Mandatory, Optional, etc.). This decision was made to emphasize
the importance of features in the domain of feature models so that changes to
features in the tree are not just reflected in the change of a node’s attributes
(i.e. the name attribute) but also in the structure of the tree (i.e. the change
of a feature node).

– The class GroupedFeature is not represented as a separate node because it
does not hold any information and always appears at the same place in the
tree: between Or or Alternative nodes and their child Feature nodes.

The tree structure for the GPL feature model as shown in Figure 1 is depicted
in Figure 4. The FeatureModel node represents the whole Individual. It consists
of two children: the Root node as the root of its feature tree and the ConstraintSet
node containing its CTCs. For example the first Constraint node represents the
CTC Num requires Search.

3.3 Evaluator Definition

The Evaluator uses a fitness function to describe the fitness of an individual. The
fitness function we employed in the case of feature models is based on information
retrieval metrics (see [16]). We start by defining two auxiliary functions. In the
following definitions, let sfs be a set of feature sets (e.g. as denoted in Table 1)
which represents our input, and let fm be a candidate feature model individual
to be evaluated:

– #containedFeatureSets : SFS × FM ⇒ N, returns the number of feature
sets received as first argument sfs that are valid according to a feature model
fm.

– #featureSets : FM ⇒ N, returns the number of feature sets denoted by a
feature model fm.

An ideal candidate feature model describes exactly the feature sets contained
in sfs and no more. To express that we use the precision and recall metrics.

Definition 3. Precision. The fraction of the retrieved feature sets that are
relevant to the search.

precision(sfs, fm) =
#containedFeatureSets(sfs, fm)

#featureSets(fm)
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Definition 4. Recall. The fraction of the feature sets that are relevant to the
search that are successfully retrieved.

recall(sfs, fm) =
#containedFeatureSets(sfs, fm)

|sfs|

Our Evaluator uses the Fβ measure as fitness function which is defined as
follows [16]:

Definition 5. Fβ measure. It is a weighted measure of precision and recall.
The value of β indicates how many times the recall values weigh more in com-
parison with the precision values.

Fβ =
(1 + β2)× precision× recall

β2 × precision+ recall

To compute these metrics the feature model representation is executed in the
sense that every node is implemented as a function that manipulates a set of
feature sets in order to compute the final feature sets that are represented by
the whole feature model. For example a Mandatory node adds to every feature
set in the set its child feature, or a Constraint node removes certain feature sets
from the set.

3.4 Operators Definitions

Not all semantic constraints can be implicitly conveyed by a metamodel. In the
case of our metamodel for feature models there were additional constraints that
also apply:

– A feature is identified by its name.
– There is a fixed set of feature names in each feature model.
– Every feature appears exactly once in the feature tree part of a feature model

individual.
– CTCs must not contradict each other, i.e. the corresponding CNF of the

entire constraint set must be satisfiable.
– CTCs can only be either requires or excludes, i.e. exactly two literals per

clause with at least one being negated.
– There is a maximum number of CTCs (given as a percentage of the number

of features) which must not be exceeded.

Based on the tree structures derived from the metamodel and on these domain
constraints the necessary operators for genetic programming, namely Builder,
Crossover, and Mutator were developed.

Builder. The Builder creates random feature trees and random CTCs that con-
form to the metamodel and also adhere to the additional domain constraints. We
implemented it using the tools FaMa [17] and BeTTy [18], which are frameworks
written in Java for managing and reasoning about feature models.
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Mutator. The Mutator makes small random changes to a feature model in-
dividual. One of the following mutations is performed randomly on the feature
tree with equal probability:

– Randomly swaps two features in the feature tree.
– Randomly changes an Alternative relation to an Or relation or vice-versa.
– Randomly changes an Optional or Mandatory relation to any other kind of

relation (Mandatory, Optional, Alternative, Or).
– Randomly selects a subtree in the feature tree and puts it somewhere else in

the tree without violating the metamodel or any of the domain constraints.

The mutations performed on the CTCs, applied with equal probability, are:

– Adds a new, randomly created CTC (i.e. clause) that does not contradict
the other CTCs and does not already exist.

– Randomly removes a CTC (i.e. a clause).

Crossover. The Crossover takes two individuals from the current population,
the parents, and creates two new individuals from them, the offspring. The off-
spring should maintain desirable traits from both their parents. Just like the
other operators the crossover also has to make sure that every offspring still
conforms to the metamodel and does not violate any of the additional domain
constraints. The following describes how our crossover for feature model indi-
viduals works.

1. The offspring is initialized with the root feature of Parent1. If the root
feature of Parent2 is a different one then it is added to the offspring as a
mandatory child feature of its root feature.

2. Traverse the first parent depth first starting at the root node and add to the
offspring a random number r of features that are not already contained by
appending them to their respective parent feature already contained in the
offspring using the same relation type between them (the parent feature of
every visited feature during the traversal is guaranteed to be contained in
the offspring due to the depth first traversal order).

3. Traverse the second parent exactly the same way as the first one.
4. Go to step 2 until every feature is contained in the offspring.

The second offspring is obtained the exact same way only that the parents are
reversed (i.e. the process starts with the second parent Parent2) and the same
sequence of random numbers is used.

The crossover for CTCs is performed by building the union of CTCs of both
parents and then assigning a random subset to the first offspring and the re-
maining to the second offspring.

4 Evaluation

This section first presents the process followed for our evaluation and then ana-
lyzes its results.
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4.1 Process

We implemented the presented approach using ECJ2, a generic framework for
evolutionary computation written in Java. For the evaluation of the approach
we used 17 feature models of actual SPLs that are publicly available3. They are
shown in Table 2.

Table 2. Feature Models Summary

Feature Model Name NF NP Domain

Apache 10 256 web server

argo-uml-spl 11 192 UML tool

BDBFootprint 9 256 database

BDBMemory 19 3,840 database

BDBPerformance 27 1,440 database

Curl 14 1024 data trasfer

DesktopSearcher 22 462 file search

fame dbms fm 20 320 database

gpl 18 73 graph algorithms

LinkedList 27 1,344 data structures

LLVM 12 1,024 compiler library

PKJab 12 72 messenger

Prevayler 6 32 object persistence

SensorNetwork 27 16,704 networking

Wget 17 8,192 file retrieval

x264 17 2,048 video encoding

ZipMe 8 64 data compression
NF: Number of Features, NP: Number of Products,

*BDB: prefix stands for Berkeley DataBase.

We computed for each of these featuremodels the respective sets of valid feature
sets which we used as input to our GP pipeline. The parameter values we employed
are shown in Table 3. Note that as a fitness function in our Evaluator we use the
F1 measure, putting equal weight on recall and precision. As a base line to com-
pare our results to we used a Random Search (RS) that just randomly creates
feature models in hopes of finding a good solution. Details can be found in [19].
The number of random tries is set to the product of the maximum number of
generations and the population size of our genetic programming problem so that
the number of evaluated candidate feature model individuals is the same for
both: maxGenerations× populationSize = 100× 100 = 10000 performed eval-
uations. For the generation of random feature models again the tools FaMa [17]
and BeTTy [18] were used. Additionally we used the Genetic Algorithm (GA)

2 http://cs.gmu.edu/~eclab/projects/ecj/
3 http://www.fosd.de/fh,http://spl2go.cs.ovgu.de/,http://fosd.de/
SPLConqueror

http://cs.gmu.edu/~eclab/projects/ecj/
http://www.fosd.de/fh
http://spl2go.cs.ovgu.de/
http://fosd.de/SPLConqueror
http://fosd.de/SPLConqueror
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Table 3. Genetic Programming Parameters

Parameter Value

Fitness Function F1 measure

Crossover Probability 0.7

Feature Tree Mutation Probability 0.5

CTCs Mutation Probability 0.5

Population Size 100

Maximum Number of Generations 100

Number of Elites 1

Selection Method Tournament
Selection

Tournament Size 6

Maximum CTC Percentage* ...

... for Builder 0.1

... for Mutator 0.5

*(relative to number of features)

approach to feature model reverse engineering from our previous work [12] and
extended it to use F1 as its fitness function to allow for a comparison of the
results. Other than the fitness function nothing was changed on that approach.

For every feature model we did 30 independent runs. Table 4 shows for every
feature model the average and the best F1 value as well as the variance for
each our Genetic Programming (GP) approach, the Random Search (RS) and
our previous Genetic Algorithm (GA) approach. All the runs were performed
on a machine with an Intel R© CoreTM i5 processor with 3.1 GHz and 8 GB of
main memory. The total execution time of our genetic programming approach
for all the runs (17 feature models times 30 runs = 510 runs) was at around 13
hours with an average time per run of around 1.5 minutes. For our GPL running
example a run took on average only roughly 6 seconds.

4.2 Statistical Analysis

We performed the statistical analysis using R4, an environment for statistical
computing.

The Wilcoxon Signed-Rank Test [20] determines whether the difference of two
data samples is statistically significant (alternative hypothesis) or due to chance
(null hypothesis). We performed the test on the average F1 values to compare
our genetic programming approach against the random search baseline which
yielded a p-value of 0.00001526 which leads to rejecting the null hypothesis and
accepting the alternative hypothesis that there is a significant difference between
our genetic programming approach and the random search. Applying this same
test to compare our genetic programming approach against the genetic algorithm

4 http://www.r-project.org/

http://www.r-project.org/
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Table 4. F1 Values per Feature Model over 30 runs for Genetic Programming (GP),
Random Search (RS) and Genetic Algorithm (GA)

F1 for GP F1 for RS F1 for GA

FM Name Mean Best Variance Mean Best Variance Mean Best Variance

Apache 1.00 1.00 0.0000 0.73 0.95 0.0112 0.72 1.00 0.0160

argo-uml-spl 1.00 1.00 0.0000 0.62 0.98 0.0096 0.67 1.00 0.0188

BDBFootprint 1.00 1.00 0.0000 0.78 0.98 0.0103 0.70 1.00 0.0103

BDBMemory 0.29 0.40 0.0048 0.05 0.13 0.0004 0.16 0.32 0.0051

BDBPerformance 0.22 0.33 0.0029 0.02 0.04 0.0000 0.16 0.23 0.0020

Curl 0.77 0.89 0.0148 0.25 0.35 0.0015 0.46 0.87 0.0170

DesktopSearcher 0.29 0.34 0.0010 0.05 0.08 0.0002 0.21 0.42 0.0061

fame dbms fm 0.21 0.38 0.0078 0.04 0.08 0.0001 0.13 0.22 0.0019

gpl 0.47 0.57 0.0086 0.09 0.19 0.0009 0.22 0.41 0.0044

LinkedList 0.28 0.34 0.0028 0.02 0.04 0.0001 0.20 0.32 0.0018

LLVM 1.00 1.00 0.0000 0.53 0.70 0.0081 0.70 1.00 0.0080

PKJab 0.97 1.00 0.0048 0.50 0.66 0.0033 0.66 0.80 0.0115

Prevayler 1.00 1.00 0.0000 0.96 1.00 0.0011 0.69 1.00 0.0072

SensorNetwork 0.26 0.33 0.0016 0.02 0.05 0.0001 0.14 0.21 0.0009

Wget 0.72 0.89 0.0164 0.16 0.23 0.0008 0.40 0.61 0.0041

x264 0.47 0.68 0.0093 0.11 0.20 0.0008 0.23 0.45 0.0054

ZipMe 1.00 1.00 0.0000 0.88 1.00 0.0057 0.72 1.00 0.0160

approach resulted in a p-value of 0.0003204 also indicating a significant difference
between the two approaches.

The Â12 Effect Size Measure [20, 21] represents the probability that using
one algorithm (our genetic programming approach) yields better results than
using another algorithm (random search and genetic algorithm approach). An
Â12 measure of 0.5 would mean both algorithms perform equally well. The value
we obtained based on the average F1 values of our genetic programming ap-
proach and the random search is Â12 = 0.7750865 which means that the genetic
programming approach clearly outperforms the random search, as the probabil-
ity of achieving better results with it is at 77.5%. Computing this measure for
our genetic programming approach and the genetic algorithm approach yielded
Â12 = 0.7474048 which again means that our genetic programming approach
outperforms the genetic algorithm approach.

4.3 Threats to Validity

Following the guidelines in [22] we identified three threats to validity that are
relevant to our work. The first is the parameter settings that were used during
the evaluation, all of which are given in Table 3. Mostly standard values for
genetic programming were used except for the mutation probability where we
followed the example of [23] and used an above standard value. The second
threat is the correctness of the implementation. To address this threat we provide
an overview of our genetic programming pipeline (Figure 2), we used ECJ as
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a proven framework for evolutionary computation to implement our approach
with, and we make the full implementation and data available for replication5.
The third threat is the selection of the corpus of feature models on which the
evaluation was performed. These feature models stem from actual SPLs and we
thus believe that they are good representatives of the feature models domain.

5 Related Work

In this section, we briefly summarize the pieces of work that are closest to ours.
Our previous work studied reverse engineering feature models using a genetic

algorithm [12]. We encoded feature models based on a depth-first traversal order.
The key limitations of that approach were the relative ordering that features
should have between them and the heavy performance penalty of detecting and
fixing incorrect individuals after mutation and crossover.

The work by Haslinger et al. presents an ad hoc algorithm also to reverse
engineer feature models [24]. The main distinction with our work is that it only
reverse engineers one feature model, as opposed to potentially many equivalent
feature models in our work. The work by She et al. also provides ad hoc al-
gorithms for reverse engineering feature models, however, in contrast with our
work, they start from a set of constraints expressed either in CNF or DNF. Work
by Acher et al. relies on user-defined domain knowledge to help structure the
hierarchy between features [25]. This knowledge helps to eliminate semantically
correct (i.e. correct feature combinations) feature models that are hierarchically
incorrect (i.e. parent-child relation swapped). These two pieces of work could be
respectively leveraged to seed the initial population and guide the search in our
approach. These are two issues we plan to explore as part of our future work.

Recent work by Acher et al. presents several feature model composition oper-
ators [26]. They provide their semantics and analyze their properties. We believe
their work could help our approach to both define other crossover operators as
well as put them in a more formal footing. Doing this is part of our future work.

6 Conclusions and Future Work

In this paper we applied genetic programming to the problem of reverse engineer-
ing feature models in the context of SPLs. We showed the workflow that we fol-
lowed along with the resulting representation of feature models and the evolution-
ary operators used in our genetic programming pipeline. We reported our encour-
aging experience synthesizing 17 feature models and compared our results to a
random search baseline as well as to previous work in the area of feature model
reverse engineering and showed that our approach outperforms both.

As future work we plan to investigate the impact of seeding knowledge derived
from ad-hoc reverse engineering algorithms into our GP pipeline, as well as other
operators for crossover based on feature model composition. Currently the fitness

5 http://www.sea.uni-linz.ac.at/sbse4vm/data/ssbse.zip

http://www.sea.uni-linz.ac.at/sbse4vm/data/ssbse.zip
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of individuals is based on whether feature sets are contained or not. This is rather
coarse grain. We want to employ a more fine-grain fitness metric that works on
the level of single features instead of complete feature sets. Also we plan to
evaluate our approach using more feature models.

Acknowledgments. This research is partially funded by the Austrian Science
Fund (FWF) project P25289-N15 and Lise Meitner Fellowship M1421-N15.
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Abstract. Refactoring large systems involves several sources of uncertainty re-
lated to the severity levels of code smells to be corrected and the importance of 
the classes in which the smells are located. Due to the dynamic nature of soft-
ware development, these values cannot be accurately determined in practice, 
leading to refactoring sequences that lack robustness. To address this problem, 
we introduced a multi-objective robust model, based on NSGA-II, for the soft-
ware refactoring problem that tries to find the best trade-off between quality 
and robustness. We evaluated our approach using six open source systems and 
demonstrated that it is significantly better than state-of-the-art refactoring ap-
proaches in terms of robustness in 100% of experiments based on a variety of 
real-world scenarios. Our suggested refactoring solutions were found to be 
comparable in terms of quality to those suggested by existing approaches and to 
carry an acceptable robustness price. Our results also revealed an interesting 
feature about the trade-off between quality and robustness that demonstrates the 
practical value of taking robustness into account in software refactoring. 

1 Introduction 

Large-scale software systems exhibit high complexity and become difficult to maintain. 
It has been reported that the cost of maintenance and evolution activities comprises 
more than 80% of total software costs. In addition, it has been shown that software 
maintainers spend around 60% of their time in understanding the code. To facilitate 
maintenance tasks, one of the widely used techniques is refactoring which improves 
design structure while preserving the overall functionality of the software [12]. 

There has been much work on different techniques and tools for refactoring [12], 
[23], [21], [9]. The vast majority of these techniques identify key symptoms that cha-
racterize the code to refactor using a combination of quantitative, structural, and/or 
lexical information and then propose different possible refactoring solutions, for each 
identified segment of code. In order to find out which parts of the source code need to 
be refactored, most of the existing work relies on the notion of design defects or code 
smells. Originally coined by Fowler [12], the generic term code smell refers to struc-
tures in the code that suggest the possibility of refactoring. Once code smells have 
been identified, refactorings need to be proposed to resolve them. Several automated 
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refactoring approaches are proposed in the literature and most of them are based on 
the use of software metrics to estimate quality improvements of the system after ap-
plying refactorings [23], [21], [9], [17], [20]. 

The existing literature on software refactoring invariably ignores an important con-
sideration when suggesting refactoring solutions: the highly dynamic nature of soft-
ware development. In this paper, we take into account two dynamic aspects as follows: 

• Code Smell Severity: This is the severity level assigned to a code smell type by a 
developer. It usually varies from developer to developer, and indeed a developer’s 
assessment of smell severity will change over time as well. 

• Code Smell Class Importance: This is the importance of a class that contains a 
code smell, where importance refers to the number and size of the features that 
the class supports. A code smell with large class importance will have a greater 
detrimental impact on the software. Again, this property will vary over time as 
software requirements change [15] and classes are added/deleted/split. 

We believe that the uncertainties related to class importance and code smell severi-
ty need to be taken into consideration when suggesting a refactoring solution. To this 
end, we introduce in this paper a novel representation of the code refactoring problem, 
based on robust optimization [3], [16] that generates robust refactoring solutions by 
taking into account the uncertainties related to code smell severity and the importance 
of the class that contains the code smell. Our robustness model is based on the well-
known multi-objective evolutionary algorithm NSGA-II proposed by Deb et al. [8] 
and considers possible changes in class importance and code smell severity by gene-
rating different scenarios at each iteration of the algorithm. In each scenario, the de-
tected code smell to be corrected is assigned a severity score and each class in the 
system is assigned an importance score. In our model, we assume that these scores 
change regularly due to reasons such as developers’ evolving perspectives on the 
software or new features and requirements being implemented or any other code 
changes that could make some classes/code smells more or less important. Our multi-
objective approach aims to find the best trade-off between maximizing the quality of 
the refactoring solution in terms of the number of code smells corrected and maximiz-
ing its robustness in terms of the severity of the code smells corrected and the impor-
tance of the classes that contains the code smells. 

The primary contributions of this paper are as follows: 
• The paper introduces a novel formulation of the refactoring problem as a multi-

objective problem that takes into account the uncertainties related to code smell 
detection and the dynamic environment of software development. To the best of 
our knowledge, and based on recent search-based software engineering (SBSE) 
surveys [15], this is the first work to use robust optimization for software refac-
toring, and the first in SBSE to treat robustness as a helper objective during the 
search.  

• The paper reports on the results of an empirical study of our robust NSGA-II 
technique as applied to six open source systems. We compared our approach to 
random search, multi-objective particle swarm optimization (MOPSO) [18], 
search-based refactoring [17], [20] and a refactoring tool [24] not based on heu-
ristic search. The results provide evidence to support the claim that our proposal 
enables the generation of robust refactoring solutions without a high loss of 
quality using a variety of real-world scenarios.  
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2 Multi-objective Robust Software Refactoring 

2.1 Robust Optimization 

In dealing with optimization problems, including software engineering ones, most 
researchers assume that the input parameters of the problem are exactly known in 
advance. Unfortunately, this is an idealization often not the case in a real-world set-
ting. Additionally, uncertainty can change the effective values of some input parame-
ters with respect to nominal values. For instance, when handling the knapsack prob-
lem (KP), which is one of the most studied combinatorial problems [3], we can face 
such a problem. As stated by [3], uncertainty is unavoidable in real problem settings; 
therefore it should be taken into account in every optimization approach in order to 
obtain robust solutions. Robustness of an optimal solution can usually be discussed 
from the following two perspectives: (1) the optimal solution is insensitive to small 
perturbations in terms of the decision variables and/or (2) the optimal solution is in-
sensitive to small variations in terms of environmental parameters. Figure 1 illustrates 
the robustness concept with respect to a single decision variable named x. Based on 
the f (x) landscape, we have two optima: A and B. We remark that solution A is very 
sensitive to local perturbation of the variable x. A very slight perturbation of x within 
the interval [2, 4] can make the optimum A unacceptable since its performance f(A) 
would dramatically degrade. On the other hand, small perturbations of the optimum B, 
which has a relatively lower objective function value than A, within the interval [5,7] 
hardly affects the performance of solution B (i.e., f(B)) at all. We can say that al-
though solution A has a better quality than solution B, solution B is more robust than 
solution A. In an uncertain context, the developer would probably prefer solution B to 
solution A. This choice is justified by the performance of B in terms of robustness. It 
is clear from this discussion robustness has a price, called robustness price or cost, 
since it engenders a loss in optimality. This loss is due to preferring the robust solu-
tion B over the non-robust solution A. According to Figure 1, this loss is equal 
to abs( f (B) − f (A)) . Several approaches have been proposed to handle robustness in 

the optimization field in general and more specifically in design engineering [16]. 
 

 

Fig. 1. Illustration of the robustness concept under uncertainty related to the decision variable x. 
Solution B is more robust than solution A. 
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2.2 Multi-objective Robust Optimization for Software Refactoring 

2.2.1 Problem Formulation 
The refactoring problem involves searching for the best refactoring solution among the 
set of candidate ones, which constitutes a huge search space. A refactoring solution is a 
sequence of refactoring operations where the goal of applying the sequence to a soft-
ware system S is typically to minimize the number of code smells in S.  

We propose a robust formulation of the refactoring problem that takes class impor-
tance and smell severity into account. Consequently, we have two objective functions 
to be maximized in our problem formulation: (1) the quality of the system to refactor, 
i.e., minimizing the number of code smells, and (2) the robustness of the refactoring 
solutions in relation to uncertainty in the severity level of the code smells and in the 
importance of the classes that contain the code smells. Analytically speaking, the 
formulation of the robust refactoring problem can be stated as follows:  

 
Maximize

f1(x, S) = NCCS(x, S) NDCS (S)

f2 (x, S) = [SmellSeverity(CCSi, x, S)
i=1

NCCS

¦ + Importance(CCSi, x, S)]



®
°

¯
°

subject   to   x = (x1,..., xn ) ∈ X   

where X is the set of all legal refactoring sequences starting from S, xi is the i-th refac-
toring in the sequence x, NCCS(x,S) is the Number of Corrected Code Smells after ap-
plying the refactoring solution x on the system S, NDCS is the Number of Detected 
Code-Smells prior to the application of solution x to the system S, CCSi is the i-th Cor-
rected Code Smell, SmellSeverity(CCSi, x, S) is the severity level of the i-th corrected 
code smell related to the execution of x on S, and Importance(CCSi, x, S) is the impor-
tance of the class containing the i-th code smell corrected by the execution of x on S. 

 The smell’s severity level is a numeric quantity, varying between 0 and 1, assigned 
by the developer to each code smell type (e.g., blob, spaghetti code, functional de-
composition, etc.). We define the class importance of a code smell as follows:        

Importance(CCSi, x, S) = (NC / MaxNC(S))+ (NR / MaxNR(S))+ (NM / MaxNM (S))

3  

such that NC/NR/NM correspond respectively to the Number of Comments/ 
Relationships/Methods related to the CCSi and MaxNC/MaxNR/MaxNM correspond 
respectively to the Maximum Number of Comments/Relationships/Methods of any class 
in the system S. There are of course many ways in which class importance could be 
measured, and one of the advantages of the search-based approach is that this definition 
could be easily replaced with a different one. In summary, the basic idea behind this 
work is to maximize the resistance of the refactoring solutions to perturbations in the 
severity levels and class importance of the code smells while maximizing simultaneously 
the number of corrected code smells. These two objectives are in conflict with each other 
since the quality of the proposed refactoring solution usually decreases when the envi-
ronmental change (smell severity and/or class importance) increases. Thus, the goal is to 
find a good compromise between (1) quality and (2) robustness. This compromise is 
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directly related to robustness cost, as discussed above. In fact, once the bi-objective 
trade-off front (quality, robustness) is obtained, the developer can navigate through this 
front in order to select his/her preferred refactoring solution. This is achieved through 
sacrificing some degree of solution quality while gaining in terms of robustness.  

2.2.2  The Solution Approach 

Solution Representation. To represent a candidate solution (individual/chromosome), we 
use a vector-based representation. Each dimension of the vector represents a refactoring 
operation where the order of application of the refactoring operations corresponds to their 
positions in the vector. The standard approach of pre- and post-conditions [12], is used to 
ensure that the refactoring operation can be applied while preserving program behaviour. 
For each refactoring operation, a set of controlling parameters (e.g., actors and roles as 
illustrated in Table 1) is randomly picked from the program to be refactored. Assigning 
randomly a sequence of refactorings to certain code fragments generates the initial popula-
tion. An example of a solution is given in Figure 2 containing 3 refactorings. To apply a 
refactoring operation we need to specify which actors, i.e., code fragments, are in-
volved/impacted by this refactoring and which roles they play to perform the refactoring 
operation. An actor can be a package, class, field, method, parameter, statement or vari-
able. Table 1 depicts, for each refactoring, its involved actors and its role. 

Table 1. Refactoring types and their involved actors and roles 

Refactorings Actors Roles 

Move method 
class source class, target class
method moved method

Move field 
class source class, target class
field moved field

Pull up field class sub classes, super class
field moved field

Pull up method 
class sub classes, super class
method moved method

Push down field 
class super class, sub classes
field moved field

Push down 
method 

class super class, sub classes
method Method

Inline class class source class, target class

Extract method 
class source class, target class
method source method, new method
statement moved statements

Extract class 
class source class, new class
field moved fields
method moved methods

Move class 
package source package, target package
class moved class

Extract interface 
class source classes, new interface
field moved fields
method moved methods

 
Inline_Class (Student, Person)
Pull_Up_Method (salary, Professor, Person)
Move_Method (grade, Registration, Student)

Fig. 2. A sample refactoring solution 
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Solution Variation. For crossover, we use the one-point crossover operator. It starts 
by selecting and splitting at random two parent solutions. Then, this operator creates 
two child solutions by putting, for the first child, the first part of the first parent with 
the second part of the second parent, and vice versa for the second child. This opera-
tor must respect the refactoring sequence length limits by eliminating randomly some 
refactoring operations if necessary. For mutation, we use the bit-string mutation op-
erator that picks probabilistically one or more refactoring operations from its or their 
associated sequence and replaces them by other ones from a list of possible refactor-
ings. These two variation operators have already demonstrated good performance 
when tackling the refactoring problem [23][21]. 

Solution Evaluation. Each refactoring sequence in the population is executed on 
the system S. For each sequence, the solution is evaluated based on the two objec-
tive functions (quality and robustness) defined in the previous section. Since we are 
considering a bi-objective formulation, we use the concept of Pareto optimality to 
find a set of compromise (Pareto-optimal) refactoring solutions. By definition, a 
solution x Pareto-dominates a solution y if and only if x is at least as good as y in all 
objectives and strictly better than y in at least one objective. The fitness of a par-
ticular solution in NSGA-II [8] corresponds to a couple (Pareto Rank, Crowding 
distance). In fact, NSGA-II classifies the population individuals (of parents and 
children) into different layers, called non-dominated fronts. Non-dominated solu-
tions are assigned a rank of 1 and then are discarded temporary from the population. 
Non-dominated solutions from the truncated population are assigned a rank of 2 and 
then discarded temporarily. This process is repeated until the entire population is 
classified with the domination metric. After that, a diversity measure, called crowd-
ing distance, is assigned front-wise to each individual. The crowding distance is the 
average side length of the cuboid formed by the nearest neighbors of the considered 
solution. Once each solution is assigned its Pareto rank, based on refactoring quality 
and robustness to change in terms of class importance and smell severity levels, in 
addition to its crowding distance, mating selection and environmental selection are 
performed. This is based on the crowded comparison operator that favors solutions 
having better Pareto ranks and, in case of equal ranks, it favors the solution having 
larger crowding distance. In this way, convergence towards the Pareto optimal bi-
objective front (quality, robustness) and diversity along this front are emphasized 
simultaneously. The basic iteration of NSGA-II consists in generating an offspring 
population (of size N) from the parent one (of size N too) based on variation opera-
tors (crossover and mutation) where the parent individuals are selected based on the 
crowded comparison operator. After that, parents and children are merged into a 
single population R of size 2N. The parent population for the next generation is 
composed of the best non-dominated fronts. This process continues until the satis-
faction of a stopping criterion. The output of NSGA-II is the last obtained parent 
population containing the best of the non-dominated solutions found. When plotted 
in the objective space, they form the Pareto front from which the developer will 
select his/her preferred refactoring solution. 
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3 Design of the Empirical Study 

3.1 Research Questions and Systems Studied 

RQ1: To validate the problem formulation of our approach, we compared our 
NSGA-II formulation with Random Search. 

RQ2.1: How does NSGA-II perform compared to another multi-objective algo-
rithm in terms of robustness cost, etc.?  

RQ2.2: How do robust, multi-objective algorithms perform compared to mono-
objective Evolutionary Algorithms?   

RQ2.3: How does NSGA-II perform compare to existing search-based refactoring 
approaches?  

RQ2.4: How does NSGA-II perform compared to existing refactoring approaches 
not based on the use of metaheuristic search?  

RQ3: Insight. Can our robust multi-objective approach be useful for developers in 
real-world setting?  

In our experiments, we used a set of well-known and well-commented open-source 
Java projects. We applied our approach to six large and medium sized open source 
Java projects: Xerces-J, JFreeChart, GanttProject, ApacheAnt, JHotDraw, and Rhino . 
Table 2 provides some descriptive statistics about these six programs. We selected 
these systems for our validation because they range from medium to large-sized open 
source projects that have been actively developed over the past 10 years, and include 
a large number of code smells. In addition, these systems are well studied in the litera-
ture and their code smells have been detected and analyzed manually [17], [20], [21].  

Table 2. Software studied in our experiments 

Systems Release #Classes #Smells KLOC 

Xerces-J v2.7.0 991 66 240 

JFreeChart  v1.0.9 521 57 170 

GanttProject v1.10.2 245 41 41 

ApacheAnt  v1.8.2 1191 82 255 

JHotDraw  v6.1 585 21 21 

Rhino v1.7R1 305 61 42 

3.2 Evaluation Metrics Used 

We use the three following performance indicators [33] when comparing NSGA-II 
and MOPSO: Hypervolume (IHV), Inverse Generational Distance (IGD), Contribu-
tion (IC). In addition to these three multi-objective evaluation measures, we used 
these other metrics mainly to compare between mono-objective and multi-objective 
approaches defined as follows: 

−Quality: number of Fixed Code-Smells (FCS) is the number of code smells fixed 
after applying the best refactoring solution. 

−Severity of fixed Code-Smells (SCS) is defined as the sum of the severity of fixed 
code smells: 
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where k is the number of fixed code smells and SmellSeverity corresponds to the 
severity (value between 0 and 1) assigned by the developer to each code smell type 
(blob, spaghetti code, etc.). In our experiments, we use these severity scores 0.8, 0.6, 
0.4 and 0.3 respectively for blob, spaghetti code, functional decomposition and data 
class.  

−Importance of fixed Code-Smells (ICS) is defined using three metrics (number of 
comments, number of relationships and number of methods) as follows: 
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where importance is as defined in the previous section.  
−Correctness of the suggested Refactorings (CR) is defined as the number of se-

mantically correct refactorings divided by the total number of manually evaluated 
refactorings.   

−Computational time (ICT) is a measure of efficiency employed here since robust-
ness inclusion may cause the search to use more time in order to find a set of Pareto-
optimal trade-offs between refactoring quality and solution robustness. 

Our experimental study is performed based on 51 independent simulation runs for 
each problem instance and the obtained results are statistically analyzed by using the 
Wilcoxon rank sum test [2] with a 95% confidence level (α = 5%).  

For each multi-objective algorithm and for each system (cf. Table 2), we per-
formed a set of experiments using several population sizes: 50, 100, 200, 500 and 
1000. The stopping criterion was set to 250,000 fitness evaluations for all algorithms 
in order to ensure fairness of comparison. Each algorithm was executed 51 times with 
each configuration and then comparison between the configurations was performed 
based on IHV, IGD and IC using the Wilcoxon test. Table 3 reports the best configu-
ration obtained for each couple (algorithm, system).  

The MOPSO used in this paper is the Non-dominated Sorting PSO (NSPSO) pro-
posed by Li [18]. The other parameters’ values were fixed by trial and error and are as 
follows: (1) crossover probability = 0.8; mutation probability = 0.5 where the proba-
bility of gene modification is 0.3; stopping criterion = 250,000 fitness evaluations. For 
MOPSO, the cognitive and social scaling parameters c1 and c2 were both set to 2.0 
and the inertia weighting coefficient w decreased gradually from 1.0 to 0.4. Since 
refactoring sequences usually have different lengths, we authorized the length n of 
number of refactorings to belong to the interval [10, 250]. 

Table 3. Best population size configurations 

System NSGA-II MOPSO Mono-EA
Xerces-J 1000 1000 1000
JFreeChart  500 200 500
GanttProject 100 100 100
ApacheAnt  1000 1000 1000
JHotDraw  200 200 200
Rhino 100 200 200
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3.5 Results 
 
3.5.1 Results for RQ1 
Table 4 confirms that NSGA-II and MOPSO are better than random search based on 
the three quality indicators IHV, IGD and IC on all six open source systems. The 
Wilcoxon rank sum test showed that in 51 runs both NSGA-II and MOPSO results 
were significantly better than random search. We conclude that there is empirical 
evidence that our multi-objective formulation surpasses the performance of random 
search thus our formulation is adequate (this answers RQ1).  

3.5.2 Results for RQ2 
In this section, we compare our NSGA-II adaptation to the current, state-of-the-art 
refactoring approaches. To answer the second research question, RQ2.1, we compared 
NSGA-II to another widely used multi-objective algorithm, MOPSO, using the same 
adapted fitness function. Table 4 shows the overview of the results of the significance 
tests comparison between NSGA-II and MOPSO. NSGA-II outperforms MOPSO in 
most of the cases: 13 out of 18 experiments (73%). MOPSO outperforms the NSGA-
II approach only in GanttProject, which is the smallest open source system considered 
in our experiments, having the lowest number of legal refactorings available, so it 
appears that MOPSO’s search operators make a better task of working with a smaller 
search space. In particular, NSGA-II outperforms MOPSO in terms of IC values in 4 
out 6 experiments with one ‘no significant difference’ result. Regarding IHV, NSGA-
II outperformed MOPSO in 5 out of 6 experiments, where only one case was not 
statistically significant, namely GanttProject. For IGD, the results were the same as 
for IC. A more qualitative evaluation is presented in Figure 3 illustrating the box plots 
obtained for the multi-objective metrics on the different projects. We see that for 
almost all problems the distributions of the metrics values for NSGA-II have smaller 
variability than for MOPSO. This fact confirms the effectiveness of NSGA-II over 
MOPSO in finding a well-converged and well-diversified set of Pareto-optimal refac-
toring solutions.     

Next, we use all four metrics FCS, SCS, ICS and ICT to compare three robust re-
factoring algorithms: our NSGA-II adaptation, MOPSO, and a mono-objective genet-
ic algorithm (Mono-EA) that has a single fitness function aggregating the two objec-
tives. We first note that the mono-EA provides only one refactoring solution, while 
NSGA-II and MOPSO generate a set of non-dominated solutions. In order to make 
meaningful comparisons, we select the best solution for NSGA-II and MOPSO using 
a knee point strategy [53]. The knee point corresponds to the solution with the max-
imal trade-off between quality and robustness, i.e., a small improvement in either 
objective induces a large degradation in the other. Hence moving from the knee point 
in either direction is usually not interesting for the developer [50]. Thus, for NSGA-II 
and MOPSO, we select the knee point from the Pareto approximation having  
the median IHV value. We aim by this strategy to ensure fairness when making com-
parisons against the mono-objective EA. For the latter, we use the best solution cor-
responding to the median observation on 51 runs. We use the trade-off “worth” metric 
proposed by Rachmawati and Srinivasan [51] to find the knee point. This metric  



 A Robust Multi-objective Approach for Software Refactoring under Uncertainty 177 

estimates the worthiness of each non-dominated refactoring solution in terms of trade-
off between quality and robustness. After that, the knee point corresponds to the solu-
tion having the maximal trade-off “worthiness” value. The results from 51 runs are 
depicted in Table 5(a). It can be seen that both NSGA-II and MOPSO provide a better 
trade-off between quality and robustness than a mono-objective EA in all six systems. 
For FCS, the number of fixed code smells using NSGA-II is better than MOPSO in all 
systems except for GanttProject (84% of cases) and also the FCS score for NSGA-II 
is better than mono-EA in 100% of cases. We have the same observation for the SCS 
and ICS scores where NSGA-II outperforms MOPSO and Mono-EA in at least 84% 
of cases. Even for GanttProject, the number of fixed code smells using NSGA-II is 
very close to those fixed by MOPSO. The execution time of NSGA-II is invariably 
lower than that of MOPSO with the same number of iterations, however the execution 
time required by Mono-EA is lower than both NSGA-II and MOPSO. It is well-known 
that a mono-objective algorithm requires lower execution time for convergence since 
only one objective is handled. In conclusion, we answer RQ2.2 by concluding that  
the results obtained in Table 5(a) confirm that both multi-objective formulations are 
adequate and outperform the mono-objective algorithm based on an aggregation of two 
objectives (quality and robustness).  

Table 5 also shows the results of comparing our robust approach based on NSGA-II 
with two mono-objective refactoring approaches [17], [20] and a practical refactoring 
technique where developers used a refactoring plug-in in Eclipse to suggest solutions 
to fix code smells. Kessentini et al. [17] used genetic algorithms to find the best  
sequence of refactoring that minimizes the number of code smells while O’Keeffe and 
Ó Cinnéide [20] used different mono-objective algorithms to find the best sequence of 
refactorings that optimize a fitness function composed of a set of quality metrics. In 
Ouni et al. [21], the authors ask a set of developers to fix manually the code smells in 
a number of open source systems including those that we are considering in our expe-
riments. It is apparent from Table 5 that our NSGA-II adaptation outperforms mono-
objective approaches in terms of smell-fixing ability (FCS) in only 11% of cases. 
However, our NSGA-II adaptation outperforms all the mono-objective and manual 
approaches in 100% of experiments in terms of the two robustness metrics, SCS and 
ICS. This is can be explained by the fact that NSGA-II aims to find a compromise 
between both quality and robustness however the remaining approaches did not con-
sider robustness but only quality. Thus, NSGA-II sacrifices a small amount of quality 
in order to improve robustness. Furthermore, the number of code smells fixed by 
NSGA-II (277) is very close to the number fixed by the mono-objective and manual 
approaches (the best being Kessentini et al. [17] that fixed a total of 285 code smells), 
so the sacrifice in solution quality is quite small. When comparing NSGA-II with the 
remaining approaches we considered the best solution selected from the Pareto-
optimal front using the knee point-based strategy described above. To answer RQ2.3 
and RQ2.4, the results of Table 5(b) support the claim that our NSGA-II formulation 
provides a good trade-off between robustness and quality, and outperforms on aver-
age the state of the art of refactoring approaches, both search-based and manual, with 
a low robustness cost.  
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3.6.3 Results for RQ3 
Figure 4 depicts the different Pareto surfaces obtained on three open source systems 
(Apache Ant, JHotDraw and Gantt Project) using NSGA-II to optimize quality and 
robustness. Due to space limitations, we show only some examples of the Pareto-
optimal front approximations obtained which differ significantly in terms of size. 
Similar fronts were obtained on the remaining systems. The 2-D projection of the 
Pareto front helps developers to select the best trade-off solution between the two 
objectives of quality and robustness based on their own preferences. Based on the 
plots of Figure 4, the developer could degrade quality in favor of robustness while 
controlling visually the robustness cost, which corresponds to the ratio of the quality 
loss to the achieved robustness gain. In this way, the preferred robust refactoring 
solution can be realized.  

One striking feature about all the three plots is that starting from the highest quality 
solution the trade-off between quality and robustness is in favor of quality, meaning 
that the quality degrades slowly with a fast increase in robustness up to the knee 
point, marked in each figure. Thereafter, there is a sharp drop in quality with only a 
small increase in robustness. It is very interesting to note that this property of the 
Pareto-optimal front is apparent in all the problems considered in this study. It is like-
ly that a developer would be drawn to this knee point as the probable best trade-off 
between quality and robustness.  Without any robustness consideration in the search 
process, one would obtain the highest quality solution all the time (which is not robust 
at all), but Figure 4 shows how a better robust solution can be obtained by sacrificing 
just a little in quality. Figure 5 shows the impact of different levels of perturbation on 
the Pareto-optimal front. Our approach takes as input as the maximum level of pertur-
bation applied in the smell severity and class importance at each iteration during the 
optimization process. A high level of perturbation generates more robust refactoring 
solutions than those generated with lower variations, but the solution quality in this 
case will be higher. As described by Figure 4, the developer can choose the level of 
perturbation based on his/her preferences to prioritize quality or robustness.  Al-
though the Pareto-optimal front changes depending on the perturbation level, there 
still exists a knee point, which makes the decision making by a developer easier in 
such problems. 

Table 4. The significantly best algorithm among random search, NSGA-II and MOPSO (No 
sign. diff. means that NSGA-II and MOPSO are significantly better than random, but not 
statistically different). 

Project IC IHV IGD 

Xerces-J NSGA-II NSGA-II NSGA-II 

JFreeChart  NSGA-II NSGA-II NSGA-II 

GanttProject MOPSO No sign. diff. MOPSO 

ApacheAnt  NSGA-II NSGA-II NSGA-II 

JHotDraw  NSGA-II NSGA-II NSGA-II 

Rhino No sign. diff. NSGA-II No sign. diff. 
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Fig. 3. Boxplots using the quality measures (a) IC, (b) IHV, and (c) IGD applied to NSGAII 
and MOPSO 

 

Fig. 4. Pareto fronts for NSGA-II obtained on three open source systems: (a) ApacheAnt 
(large), (b) JHotDraw (medium) and (c) GanttProject (small) 

 

 

Fig. 5. Pareto fronts for NSGA-II obtained on JHotDraw with different perturbation levels 
variation (robustness): (a) low, (b) medium and (c) high 

Figure 6 describes the manual qualitative evaluation of some suggested refactoring 
solutions. It is clear that results are almost similar between our proposal and existing 
approach in terms of the semantic coherence of suggested refactorings. We consider 
that a semantic precision more than 65% acceptable since most of the solutions should 
be executed manually by developers and our tool is a recommendation system. Thus, 
developers can evaluate if it is interesting or not to apply some refactorings based on 
their preferences and the semantic coherence.  
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To answer RQ3 more adequately, we considered two real-world scenarios to justify 
the importance of taking into consideration robustness when suggestion refactoring 
solutions. In the first scenario, we modified the degree of severity of the four types of 
code smells over time and we evaluated the impact of this variation on the robustness 
of our refactoring solution in terms of smell severity (SCS). This scenario is moti-
vated by the fact that there is no general consensus about the severity score of de-
tected code smells thus developers can have divergent opinions about the severity of 
detected code smells. Figure 7 shows that our NSGA-II approach generates robust 
refactoring solutions on the Ant Apache system in comparison to existing state of the 
art refactoring approaches. In fact, the more the variation in severity increases over 
time the more the refactoring solutions provided by existing approaches become non-
robust. Thus, our multi-objective approach enables the most severe code smells to be 
corrected even with slight modifications in the severity scores. The second scenario 
involved applying randomly a set of commits, collected from the history of changes 
of the open source systems [21], and evaluating the impact of these changes on the 
robustness of suggested refactoring proposed by our NSGA-II algorithm and non-
robust approaches [17], [20], [24]. As depicted in Figure 8, the application of new 
commits modifies the importance of classes in the system containing code smells and 
the refactoring solutions proposed by mono-objective and manual approaches become 
ineffective. However, in all the scenarios it is clear that our refactoring solutions are 
still robust and fixing code smells in most of important classes in the system even 
with high number of new commits (more than 40 commits).  

Table 5. FCS, SCS and ICS median values of 51 independent runs: (a) Robust Algorithms, and 
(b) Non-Robust algorithms 

Systems  NSGA-II MOPSO Mono-EA 

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT 

Xerces-J 52/66 31.7 29.3 1h38 48/66 28.4 26.7 1h44 41/66 24.9 24.1 1h21 

JFreeChart  49/57 29.3 27.1 1h35 44/57 24.8 21.6 1h42 34/57 21.2 19.3 1h16 

GanttProject 36/41 21.6 18.4 1h28 38/41 22.9 19.3 1h26 29/41 19.2 17.5 1h03 

ApacheAnt  74/82 39.8 38.1 1h45 72/82 36.2 37.3 1h53 59/82 29.1 34.2 1h27 

JHotDraw  17/21 11.3 10.3 1h33 15/21 9.8 8.2 1h47 13/21 8.3 8.2 1h14 

Rhino 49/61 28.6 21.3 1h31 46/61 26.1 19.3 1h43 38/61 21.3 17.1 1h05 

 
Systems  Kessentini et al.’11 O’Keeffe et al.’08 Manual 

FCS SCS ICS ICT FCS SCS ICS ICT FCS SCS ICS ICT 

Xerces-J 53/66 28.6 27.8 1h24 53/66 26.3 25.3 1h16 54/66 28.4 25.3 N/A 

JFreeChart  49/57 25.8 22.3 1h13 48/57 23.6 21.9 1h04 50/57 23.9 21.2 N/A 

GanttProject 37/41 19.2 17.1 1h08 37/41 20.2 17.8 1h06 37/41 19.3 16.9 N/A 

ApacheAnt  76/82 32.4 33.4 1h25 75/82 33.5 34.1 1h23 71/82 31.2 32.4 N/A 

JHotDraw  18/21 9.3 9.1 1h10 17/21 9.1 9.6 1h17 19/21 9.8 8.9 N/A 

Rhino 52/61 24.9 16.4 1h01 51/61 23.2 17.6 1h04 51/61 24.2 16.2 N/A 
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Fig. 6. The qualitative evaluation (CR) of some refactorings  proposed by NSGA-II, [17]  and [20] 

 

Fig. 7. The impact of code smells severity variations on the robustness of refactoring solutions 
for ApacheAnt proposed by NSGA-II, [17], [20] and [24] 

 

Fig. 8. The impact of class importance variation on the robustness of refactoring solutions for 
Apache Ant proposed by NSGA-II, [17], [20] and [24] 

4 Related Work 

The majority of existing work combines several metrics in a single fitness function to 
find the best sequence of refactorings. Seng et al. [23] propose a single-objective 
optimization based-approach using genetic algorithm to suggest a list of refactorings 
to improve software quality. The search process uses a single fitness function to 
maximize a weighted sum of several quality metrics. Closely related work is that of 
O’Keeffe and Ó Cinnéide [20] where different local search-based techniques such as 
hill climbing and simulated annealing are used to implement automated refactoring 
guided by the QMOOD metrics suite [1]. In a more recent extension of their work, the 
refactoring process is guided not just by software metrics, but also by the design that 
the developer wishes the program to have [19]. In recent work, Kessentini et al. [17] 
propose single-objective combinatorial optimization using a genetic algorithm to find 
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the best sequence of refactoring operations that improve the quality of the code by 
minimizing as much as possible the number of design defects detected on the source 
code. They use genetic programming and the QMOOD software metric suite [1] to 
identify the most suitable set of refactorings to apply to a software design. Harman et 
al. [14] propose a search-based approach using Pareto optimality that combines two 
quality metrics, CBO (coupling between objects) and SDMPC (standard deviation of 
methods per class), in two separate fitness functions. The authors start from the as-
sumption that good design quality results from good distribution of features (methods) 
among classes. Ó Cinnéide et al. [19] use multi-objective search-based refactoring to 
conduct an empirical investigation to assess structural cohesion metrics and to explore 
the relationships between them.  

According to a recent SBSE survey [15], robustness has been taken into account 
only in two software engineering problems: the next release problem (NRP) and the 
software management/planning problem. Paixao and de Souza propose a robust for-
mulation of NRP where each requirement’s importance is uncertain since the custom-
ers can change it at any time [10]. In work by Antoniol et al., the authors propose a 
robust model to find the best schedule of developers’ tasks where different objectives 
should be satisfied [1], [13]. Robustness is considered as one of the objectives to 
satisfy. In this paper, for the first time, we have considered robustness as a separate 
objective in its own right.  

5 Conclusion and Future Work 

In this paper, we have introduced a novel formulation of the refactoring problem that 
takes into account the uncertainties related to code smell correction in the dynamic 
environment of software development where code smell severity and class importance 
cannot be regarded as fixed. Code smell severity will vary from developer to developer 
and the importance of the class that contains the smell will vary as the code base itself 
evolves. We have reported the results of an empirical study of our robust technique 
compared to different existing approaches [17], [20], [24]. Future work involves ex-
tending our approach to handle additional code smell types in order to test further the 
general applicability of our methodology. In this paper, we focused on the use of a 
structural metric to estimate class importance, but this can be extended to consider also 
the pattern of repository submits to achieve another perspective on class importance. 
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Abstract. User-intensive software, such as Web and mobile applications,
heavily depends on the interactions with large and unknown populations
of users. Knowing the preferences and behaviors of these populations is
crucial for the success of this class of systems. A/B testing is an increas-
ingly popular technique that supports the iterative development of user-
intensive software based on controlled experiments performed on live
users. However, as currently performed, A/B testing is a time consum-
ing, error prone and costly manual activity. In this paper, we investigate
a novel approach to automate A/B testing. More specifically, we rephrase
A/B testing as a search-based software engineering problem and we pro-
pose an initial approach that supports automated A/B testing through
aspect-oriented programming and genetic algorithms.

1 Introduction

Modern software systems increasingly deal with large and evolving populations
of users that may issue up to millions of requests per day. These systems are
commonly referred to as user-intensive software systems (e.g., Web and mobile
applications). A key distinguishing feature of these systems is the heavy depen-
dence on the interactions with many users, who approach the applications with
different needs, attitudes, navigation profiles, and preferences1.

Designing applications that meet user preferences is a crucial factor that may
directly affect the success of user-intensive systems. Underestimating its impor-
tance can lead to substantial economic losses. For example, an inadequate or
distorted knowledge of user preferences in a Web application can lead to an
unsatisfactory user experience with consequent loss of customers and revenues.

Domain experts typically provide valuable insights concerning user preferences
that engineers can exploit to obtain an effective design of user-intensive applica-
tions. Unfortunately, this information could be inaccurate, generic, and obsolete.
In practice, it is almost impossible to design applications that accurately capture
all possible and meaningful user preferences upfront.

As a consequence, engineers typically design a user-intensive application rely-
ing on the initial available knowledge while, at run-time, they continuously mon-
itor, refine, and improve the system to meet newly discovered user preferences.
In this context, engineers increasingly rely on A/B testing 2 [11] to evaluate and

1 We collectively identify these factors under the term user preferences.
2 A/B testing is also known as randomized experiments, split tests, or control/treat-

ment. In this paper we always use the term A/B testing.
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improve their applications. In A/B testing, two distinct variants (i.e., variant A
and B) of the same application are compared using live experiments. Live users
are randomly assigned to one of the two variants and some metrics of interest
(e.g., the likelihood for a user to buy in an e-commerce Web application) are
collected. The two variants are compared based on these metrics, and the best
one is selected, while the other is discarded. The iterative development of vari-
ants and their comparative evaluation through live experiments allow designers
to gradually evolve their applications maximizing a given metric of interest. For
example, an e-commerce application may be refactored adopting variants that
maximize sales, while a mobile application may be refactored adopting variants
that maximize the advertisements’ views.

A/B testing is being increasingly adopted by the industry and proved to be
effective [3]. Still, it suffers from several limitations. Indeed, conceiving, running,
and summarizing the results of A/B tests is a difficult, tedious, error prone, and
costly manual activity [5]. This paper tackles this issue laying the foundations of
an automated A/B testing framework in which the generation of application vari-
ants, their run-time evaluation, and the continuous evolution of the system are
automatically obtained by casting the process of A/B testing to a Search-Based
Software Engineering (SBSE) [7] problem. This novel viewpoint on A/B testing
brings to the table several research challenges defined and discussed in the paper.

The contribution of this paper is twofold. First, it lays the foundations and
explores the potential of automated A/B testing as an optimization problem.
Specifically, it proposes an initial approach based on aspect-oriented program-
ming [8] and genetic algorithms [13], which can be considered as a primer to
demonstrate the feasibility of the concepts introduced in the paper and a first
concrete step towards their practical application. Second, it provides the SBSE
community with a novel and crucial domain where its expertise can be applied.

The remainder of the paper is organized as follows. Section 2 provides a more
detailed introduction to A/B testing and discusses some open issues. Section 3
rephrases the process of A/B testing as an optimization problem. Next, Section 4
reifies the illustrated concepts in the context of user-intensive Web applications
with a solution based on aspect-oriented programming and genetic algorithms.
Section 5 presents some preliminary results. Finally, Section 6 surveys related
work and Section 7 draws some conclusions and discusses future work.

2 Background and Problem Statement

This section introduces A/B testing, partially recalling the definition reported
in [11]. Next, it points out some of the existing limitations of A/B testing and
discusses the need for automating it.

The diffusion and standardization of Web technologies and the increasing im-
portance of user-intensive software represent a perfect playground to evaluate
competing alternatives, ideas, and innovations by means of controlled experi-
ments, commonly referred to as A/B tests in this context. The overall process
of A/B testing is exemplified in Fig. 1. Live users are randomly assigned to one
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Fig. 1. A/B testing iterative process

of two variants of the system under analysis: variant A (i.e., the control vari-
ant), which is commonly the current version, and variant B (i.e., the treatment
variant), which is usually a newer version of the system being evaluated. The
two variants are compared on the basis of some metrics of interest related to the
user preferences. The variant that shows a statistically significant improvement
is retained, while the other is discarded. As previously mentioned, the iterative
development of variants and their comparative evaluation through live controlled
experiments allow designers to gradually evolve their applications maximizing
the metrics of interest.

Even if widely and successfully adopted in industry [3,10], A/B testing is
still considered by the majority of developers as a complex and crafted activity
rather than a well-established software engineering practice. Indeed, conceiving,
running, and summarizing the results of A/B tests is a difficult, tedious, and
costly manual activity. More precisely, an accurate and consistent A/B testing
demands for several complex engineering decisions and tasks. The most relevant
ones are illustrated hereafter.

1. Development and deployment of multiple variants. A/B testing requires a
continuous modification and deployment of the application codebase to imple-
ment and evaluate variants. These variants are deployed and monitored concur-
rently serving at the same time a certain percentage of users.

2. What is a variant. Programs may be customized along different lines. Because
of this, a critical choice for developers is the selection of how many and which
aspects of the program to change when generating a new variant.

3. How many variants. We defined A/B testing as the process of concurrently
deploy and evaluate two variants of the system. In the general case, developers
may concurrently deploy more than two variants. However, they do not typically
have evidences to select this number effectively and to tune it over time.

4. How to select variants. As previously mentioned, A/B testing works itera-
tively. At the beginning of each iteration, developers have to decide which vari-
ants to deploy and test. Prioritizing certain variants is critical for quickly finding
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better program configurations. However, selecting the most promising variants
is also difficult, especially for large and complex programs.

5. How to evaluate variants. A sound and accurate comparison of variants in
live experiments with users requires mathematical skills (e.g., statistics) that
developers do not necessarily have. For example, sizing the duration of tests and
the number of users involved is a crucial factor that affects the quality of results.

6. When to stop. Usually, A/B testing enacts a continuous adaptation process
that focuses on certain specific aspects of a program. Understanding when a
nearly optimal solution has been reached for those aspects is critical to avoid
investing time and effort on changes that provide only a minimal impact on the
quality of the program.

Not only the factors mentioned above represent concrete obstacles for develop-
ers, but they also characterize A/B testing as an error-prone process that may
yield to unexpected, counter-intuitive, and unsatisfactory results (see for exam-
ple [9,12]). To facilitate the adoption of A/B testing and to avoid potential errors,
we believe it is a crucial goal of the software engineering research to provide the
developers with a set of conceptual foundations and tools aimed at increasing
the degree of automation in A/B testing. So far, to the best of our knowledge,
this research direction has received little attention.

3 A/B Testing as an Optimization Problem

In this section we take a different and novel perspective on A/B testing, rephras-
ing it as an optimization problem. The conceptual foundations and the notations
introduced hereafter are used in the remainder of this paper.

1. Features. From an abstract viewpoint a program p can be viewed as a finite
set of features : Fp = {f1 . . . fn}. Each feature fi has an associated domain Di

that specifies which values are valid/allowed for fi. The concept of feature is
very broad and may include entities of different nature and at different level
of abstraction. For example, a feature could be a primitive integer value that
specifies how many results are displayed per page in an e-commerce Web appli-
cation. Similarly, a feature could be a string that specifies the text applied to
a certain button in a mobile application. However, a feature can also represent
more abstract software entities such as a component in charge of sorting some
items displayed to the user. The features above are associated to the domains of
integers, strings, and sorting algorithms, respectively.

2. Instantiation. An instantiation is a function Ip,fi : fi ∈ Di that associates
a feature fi in Fp with a specific value from its domain Di. Two key concepts
follow: (i) to obtain a concrete implementation for a program p it is necessary
to specify the instantiations for all the features in p; (ii) the specification of
different instantiations yields to different concrete implementations of the same
abstract program p.
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3. Variants. We call a concrete implementation of a program p a variant of p.
As a practical example, recalling the features exemplified above, three possible
instantiations may assign: (i) 10 to the feature that specifies the number of items
displayed per page, (ii) the label “Buy Now” to the button, (iii) an algorithm
that sorts items by their name to the sorting component. These instantiations
define a possible variant of the system.

4. Constraints. A constraint is a function Ci,j : Di ∈ P(Dj) that, given a value
di ∩ Di for a feature fi, returns a subset of values in Dj that are not allowed
for the feature fj . Intuitively, constraints can be used to inhibit combinations
of features that are not valid in the application domains. For example, consider
a Web application including two features: font color and background color. A
developer can use constraints to express undesired combination of colors. We say
that a variant of a program p satisfies a constraint Ci,j if Ip,fj ≥∩ Ci,j(Ip,fi ). A
variant is valid for p if it satisfies all the constraints defined for p.

5. Assessment Function. An assessment function is a function defined as o(v) :
Vp ∈ R, where Vp = {v1, . . . , vm} is the set of all possible variants for program
p. This function associates to each and every variant of a program a numeric
value, which indicates the goodness of the variant with respect to the goal of the
program. The assessment function depends on the preferences of users and can
only be evaluated by monitoring variants at run-time. As previously mentioned,
the likelihood for a user to buy is a valid assessment function for an e-commerce
Web application. Indeed, this metric is evaluated at run-time for a specific variant
of the application and concretely measures its goodness with respect to the
ultimate goal of the program (i.e., selling goods): higher values indicate better
variants.

Given these premises, we can rephrase A/B testing as a search problem as fol-
lows. Given a program p characterised by a set of features Fp, a set of constraints
Cp, and an assessment function o(v), find the variant v̂ ∩ Vp such that v̂ is valid
and maximizes o(v):

v̂ = argmax
v

o(v)

4 Towards Automated A/B Testing

Section 2 identified some difficulties and open issues in the usage of A/B testing,
mainly deriving from a limited degree of automation. We claim that, by for-
mulating A/B testing as an optimization problem as shown in Section 3, we
can effectively exploit automated search algorithms to investigate and enable
automated A/B testing. This section reifies this idea.

In our vision, automated A/B testing can be achieved by combining together
two ingredients: (i) an appropriate design-time declarative facility to specify
program features, and (ii) a run-time framework in charge of automatically
and iteratively exploring the solution space of possible concrete programs by:
generating, executing, and evaluating variants. We captured these ideas in a
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Fig. 2. A reference architecture for automated A/B testing

reference architecture (see Fig. 2) and we implemented it in a prototype tool.
The architecture consists of two main steps, summarized below and detailed in
the following paragraphs.

Specifying Features. As stated in Section 2, A/B testing requires a significant
effort in developing and deploying the conceived variants. To alleviate the devel-
oper from this burden, our architecture provides ad-hoc annotations to specify
the set of relevant features for a program and their associated domain. In other
words, this allows the developer to write a parametric program only once, that
represents all possible variants that will be automatically instantiated later on
at run-time.

Selecting and Evaluating Variants. As stated in Section 2, developers need
to take several critical decisions to guide and control the iterative search for
better solutions through A/B testing. To overcome these difficulties, our archi-
tecture provides a run-time framework that automates the search process by
exploiting genetic algorithms. In particular, it creates and iteratively evolves
a population of variants by selecting, mutating, and evaluating its individuals.
At execution time, the framework instantiates concrete variants from the pa-
rameterized program by means of a dependency injection mechanism based on
aspect-oriented programming [8]. The run-time framework assesses the good-
ness of instantiated variants by means of an appropriate application-specific
assessment function (see Section 2) that measures the preferences of users. Such
assessesment function is adopted as fitness function for the genetic algorithm
and drives the generation and evolution of new variants at each iteration.

4.1 Specifying Features

In our approach, developers can specify features by means of annotated variable
declarations3. Variables declared as features cannot be initialized or modified

3 Our prototype is designed for the Java programming language. However, the illus-
trated concepts and techniques apply seamlessly to other languages and technologies.
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1 @St r i ngFea t u r e (name=” checkOutButtonText ” ,
2 va l u e s={”CheckOut ” , ”Buy” , ”Buy Now! ”})
3 S t r i n g buttonText ; // P r im i t i v e f e a t u r e s p e c i f i c a t i o n
4
5 @ In t eg e r F ea t u r e (name=” f o n t S i z e ” , range=” 12 : 1 : 1 8 ” )
6 i n t t e x t S i z e ; // P r im i t i v e f e a t u r e s p e c i f i c a t i o n
7
8 Button checkOutButton = new Button ( ) ;
9 checkOutButton . s e tText ( buttonText ) ; // P r im i t i v e f e a t u r e use

10 checkOutButton . s e tFon tS i z e ( t e x t S i z e ) ; // P r im i t i v e f e a t u r e use

Listing 1.1. Primitive Type Feature Example

since their value is automatically assigned at execution time by the run-time
framework. As mentioned in Section 3, the concept of feature is very broad.
In particular we distinguish two categories of features: (i) Primitive Type and
(ii) Abstract Data Type features. The former refers to program features that
can be modelled with primitive type (integers, double, boolean, and strings);
the latter refers to features implemented through ad-hoc abstract data types.
Hereafter we discuss in details both options.

Primitive Type Features. Let us consider the example in Section 3 of a fea-
ture of string type that specifies the label of a button in a mobile application.
To represent this feature and its domain, developers can declare a string vari-
able annotated with the @StringFeature annotation (see Listing 1.1). In this
case, the features can assume values in the entire domain of strings. Develop-
ers can restrict such domain by specifying a set of valid values in the values
parameter. Analogous annotations are provided for other primitive types (e.g.,
@IntegerFeature, @BooleanFeature, etc.). Differently from string features,
the domain of numeric features can be specified as a range of valid values. For
example, reasonable values for an integer feature that represents a font size may
be in the range (12:18) with a step of 1.

The run-time framework instantiates and serves to users concrete variants of
the program that are automatically generated by injecting values to the features
declared by the developers. Thus, considering the code in Listing 1.1, a user
accessing the system may experience a variant of the program in which the
button is labeled with the text “Buy Now!” with font size equal to 12, while
a different user, at the same time, may experience a different variant of the
program with text “Check-out” and font size equal to 16.

Generic Data Type Feature. Real-world programs may be characterized by
complex features that require ad-hoc abstract data types. We support them by
relying on two ingredients: (i) an interface that specifies the abstract behavior
of the feature and (ii) several implementations of the interface that contain the
concrete realizations of this feature.

Let us recall the example mentioned in Section 3 of a component in charge of
sorting some items displayed to the users. Possible realizations of this feature may
sort items by name, price, or rating. Thus, the generic aspect of sorting items can
be defined as a feature as shown in Listing 1.2. To do so, developers declare an
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1 @Gen e r i c F e a t u r e I n t e r f a c e ( name=” s o r t ” ,
2 va l u e s={”com . example . So r tByPr i ce ” , ”com . example . SortByName”})
3 pub l i c i n t e r f a c e Ab s t r a c t S o r t i n g I n t e r f a c e {
4 pub l i c L i s t<Item> s o r t ( ) ;
5 }
6
7 pub l i c c l a s s So r tByPr i ce implements Ab s t r a c t S o r t i n g I n t e r f a c e {
8 pub l i c L i s t<Item> s o r t (){
9 // So r t by p r i c e imp l ementa t i on

10 }
11 }
12
13 pub l i c c l a s s SortByName implements Ab s t r a c t S o r t i n g I n t e r f a c e {
14 pub l i c L i s t<Item> s o r t (){
15 // So r t by name imp l ementa t i on
16 }
17 }
18
19 // . . .
20
21 @Gener i cFea tu r e
22 Ab s t r a c t S o r t i n g I n t e r f a c e s o r t i n g F e a t u r e ; // ADT f e a t u r e s p e c i f i c a t i o n
23
24 s o r t i n g F e a t u r e . s o r t ( . . ) ; // ADT f e a t u r e use

Listing 1.2. Generic Data Type Feature Example

interface that includes all the required methods (i.e., sort(...) in this example)
and implement as many concrete realizations of this interface as needed. The
interface must be annotated with the @GenericFeatureInterface annotation
including the full class name of all its implementations.

Developers can declare variables of the type specified by the interface and
annotated with @GenericFeature. Analogously to primitive type features, the
run-time framework serves to users concrete variants of the program that are
automatically generated by injecting an appropriate reference to one of the in-
terface implementations. For example, the invocation to the sort method in the
last row of Listing 1.2 may be dispatched to an instance that implements the
SortByName algorithm or to an instance that implements the SortByPrice al-
gorithm, depending on the type of the object injected at run-time.

4.2 Selecting and Evaluating Variants

So far, we explained how developers can declare features in a program and we
delegated to the run-time framework the task of generating, executing, and evalu-
ating variants. Now, we explore how the run-time framework actually implements
these aspects.

In our prototype, the run-time framework relies on a genetic algorithm that
runs online while the system is operating. A genetic algorithm encodes every
possible solution of an optimization problem as a chromosome, composed of
several genes. It selects and iteratively evolves a population of chromosomes by
applying three main steps (discussed below): (i) selection, (ii) crossover, and
(iii) mutation. Each chromosome is evaluated according to a fitness function.
The algorithm terminates after a fixed number of iterations or when subsequent
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iterations do not generates new chromosome with significantly improved values
of fitness. Solving the problem of searching for variants via genetic algorithms
requires to specify an encoding and a concrete strategy for each of the three
main steps mentioned above. Next, we provide these ingredients for the specific
case of A/B testing.

Encoding. Each feature declared by developers directly maps into a gene, while
each variant maps into a chromosome. Analogously, the assessment function,
which evaluates variants on live users, corresponds directly to the fitness func-
tion, which evaluates chromosomes. Two additional aspects are required to fully
specify a valid encoding: the number of chromosomes used in each iteration and
the termination condition.

Our framework enables the developers to specify application specific fitness
functions. In addition, it accepts a preferred population size, but adaptively
changes it at run-time based on the measured fitness values. Furthermore, the
framework is responsible for terminating the experiment when the newly gener-
ated variants do not provide improvements over a certain threshold.

Selection. Selection is the process of identifying, at each iteration, a finite num-
ber of chromosomes in the population that survive, i.e., that are considered in
the next iteration. Several possible strategies have been discussed in the liter-
ature. For example, the tournament strategy divides chromosomes into groups.
Only the best one in each group (i.e., the one with the highest fitness value)
wins the tournament and survives to the next iteration. Conversely, the thresh-
old selection strategy selects all and only the chromosomes whose fitness value is
higher than a given threshold. Traditional A/B testing, as described in Section 2,
corresponds to the tournament strategy when the population size is limited to
two chromosomes. Our framework supports several different strategies. This en-
ables for more complex decision schemes than in traditional A/B testing (e.g., by
comparing several variants concurrently). At the same time, selection strategies
relieve the developer from manually selecting variants during A/B testing.

Crossover & Mutation. Crossover and mutation contribute to the generation
of new variants. Crossover randomly selects two chromosomes from the popu-
lation and generates new ones by combining them. Mutation produces instead
a new chromosome (i.e., a new variant) starting from an existing one by ran-
domly mutating some of its genes. One of the key roles of mutation is to widen
the scope of exploration, thus trying to avoid converging to local minima. In
traditional A/B testing, the process of generating new variants of a program is
performed manually by the developers. Thanks to the crossover and mutation
steps of genetic algorithms, also this critical activity is completely automated.

The architecture described so far represents a first concrete implementation of
an automated solution to the A/B testing problem. This contributes to overcome
some of the burdens of manual A/B testing discussed in Section 2. However, it
is worth mentioning that some issues still remain open as exemplified hereafter.
First, the behaviour of the architecture still needs to be configured by specifying
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several parameters (e.g., the population size, selection strategy, and the termina-
tion condition). Section 5 discusses some relevant scenarios that exemplify their
role. Experimental campaigns on real users will be required to further study and
tune them appropriately. Second, further investigations are required on the map-
ping between the automated A/B testing problem and our proposed architecture.
As an example let us consider mutation. Its capability are highly dependant from
the encoding of features. Currently, we support mutations among different val-
ues of primitive types and among different implementations of an interface. In the
future we envision more complex forms of mutation that tries to automatically
modify the source code (e.g., by swapping the order of some statements). Finally,
even if we did not discuss the role of constraints (see Section 3) in our architecture,
they can be easily modelled and integrated in genetic algorithms as demonstrated
in literature (e.g., [6]).

5 Preliminary Validation

In this section, we provide an initial empirical investigation of the feasibility of
automated A/B testing. To do so, we generate a sample program, we simulate
different user preferences, and we study to which extent an automated optimiza-
tion algorithm converges towards a “good” solution, i.e., a solution that maxi-
mizes the quality of the program, as measured through its assessment function.
In our evaluation, we consider different parameters to model the preferences of
users, the complexity of the program, and to configure the computational steps
performed by the genetic algorithm.

Experiment Setup. For our experiments, we adopt the implementation de-
scribed in Section 4. Our prototype is entirely written in Java and relies on
JBoss AOP [2] to detect and instantiate features in programs and on the JGAP
library [14] to implement the genetic algorithm that selects, evolves, and vali-
dates variants of the program at run-time. In our experiments, we consider a
program with n features. We assume that each feature has a finite, countable
domain (e.g., integer numbers, concrete implementations of a function). Further-
more, for ease of modeling, we assume that each domain D is a metric space,
i.e., that we can compute a distance d1,2 for each and every couple of elements
e1, e2 ∩ D. To simulate the user preferences (and compute the value of the as-
sessment function for a variant of the program), we perform the following steps.

1. We split the users into g groups. Each user u selects a “favourite” value bestf
for each feature f in the program; users within the same group share the same
favourite values for all the features.

2. We assume that the assessment function of a program ranges from 0 (worst
case) to 1000 (best case). When a user u interacts with a variant v of a program,
it evaluates v as follows. It provides a score for each feature f in v. The score
of f is maximum (1000) if the value of f in v is bestf (the favourite value for
u) and decreases linearly with the distance from bestf . The value of a variant is
the average score of all its features.
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Table 1. Parameters used in the default scenario

Number of features in the program 10
Number of values per feature 100
Number of variants evaluated concurrently 100
Number of user groups 4
Distance threshold 80% of maximum distance
Number of evaluations for each variant 1000
Stopping condition 10 repetitions with improvement < 0.1%
Selection strategy Natural selection (90%)
Crossover rate 35%
Mutation rate 0.08%

Table 2. Results for the default scenario

Measure Average 95% Confidence Interval

Value of the assessment function (Best) 810.9 11.7
Value of the assessment function (Average) 779.2 10.7
Number of Iterations 34.2 5.9

3. We set a distance threshold t. If the distance between the value of a feature
and the user’s favourite value is higher than t, then the value of the variant is 0.

Intuitively, the presence of multiple groups models the differences in the users’
profile (e.g., differences in age, location, culture, etc.). The more the value of
features differ from a user’s favourite ones, the worse she will evaluate it. The
threshold mimics the user tolerance: after a maximum distance, the program does
not have any value for her. While this is clearly a simplified and abstract model,
it is suitable to highlight some key aspects that contribute to the complexity of
A/B testing: understanding how to select the variants of a program and how to
iteratively modify them to satisfy a heterogeneous population of users may be
extremely difficult. In addition to the issues listed in Section 2, a manual process
is time consuming and risks to fail to converge towards a good solution, or it
may require a higher number of iterations.

Default Scenario. To perform the experiments discussed in the remainder of
this section, we defined a default scenario with the parameters listed in Table 1.
Next, we investigate the impact of each parameter in the measured results. For
space reasons, we report here only the most significant findings.

Our default scenario considers a program with 10 different features, each one
selecting values from a finite domain of 100 elements. At each iteration, we con-
currently evaluate 100 program variants, submitting each variant to 1000 random
users. Users are clustered into 4 different groups. They do not tolerate features
whose distance from their favourite value is higher than 80% of the maximum
distance. At each iteration, the genetic algorithm keeps the number of chromo-
somes (i.e., program variants) fixed. We adopt a natural selection strategy that
selects the best 90% chromosomes to survive for the next generation. Selected
chromosomes are combined with a crossover rate of 35% and modified using a
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(a) Value of Assessment Function (b) Number of Iterations

Fig. 3. Impact of the complexity of the program

mutation rate of 0.08%. The process stops when the improvement in fitness value
is lower than 0.1% for 10 subsequent iterations.

In each experiment, we measure the number of iterations performed by the
genetic algorithm, the value of the assessment function for the selected variant,
and the average value of the assessment function for all the variants used in
the iterative step. The first value tells us how long the algorithm needs to run
before providing a result. The second value represents the quality of the final
solution. Finally, the third value represents the quality of the solutions proposed
to the users during the iterative process. In A/B testing, this value is extremely
important: consider for example an e-commerce Web application, in which the
developer wants to maximize the number of purchases performed by users. Not
only the final version of the application is important, but also all the intermediate
versions generated during the optimization process: indeed, they may be running
for long time to collect feedback from the users and may impact on the revenue of
the application. We repeated each experiment 10 times, with different random
seeds to generate the features of the program, the user preferences, and the
selection, crossover, and mutation steps. In the graph below, we show the average
value of each measure and the 95% confidence interval.

Table 2 shows the results we measured in our default scenario. Despite the
presence of 4 user groups with different requirements, the algorithm converges
towards a solution that provides a good average quality. We manually checked
the solutions proposed by the algorithm and verified that they always converged
to near-optimal values for the given user preferences. The average value of the
assessment function during the optimization process is particularly interesting:
it is very close to the final solution, meaning that the algorithm converges fast
towards good values. Although the average number of iterations is 34.2, the last
iterations only provide incremental advantages. As discussed above, this is a key
aspect for A/B testing, since developers want to maximize the revenue of an
application during the optimization process.

Complexity of the Program. In this section, we analyze how the results
change with the complexity of the program, i.e., with the number of specified
features. Fig. 3 shows the results we obtained. By looking at the value of the
assessment function (Fig. 3(a)), we notice that both the final and the average
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(a) Value of Assessment Function (b) Number of Iterations

Fig. 4. Impact of the profile of users

quality decrease with the number of features. This is expected, since a higher
number of features increases the probability that at least one is outside the
maximum distance from the user’s preferred value, thus producing a value of
0. Nevertheless, even in a complex program with 1000 features, both values
remain above 700. Moreover, the average value remains very close to the final
one. Fig. 3(b) shows that the number of iterations required to converge increases
with the number of features in the program. Indeed, a higher number of features
increases the size of the search space. Nevertheless, an exponential growth in
the number of features only produces a sub-linear increase in the number of
iterations. Event with 1000 features less than 100 iterations are enough for the
genetic algorithm to converge. These preliminary results are encouraging and
suggest that automated A/B testing could be adopted with complex program
with several hundreds of features.

Profiles of Users. In this section, we analyze how the profile of users impacts
the performance of the optimization algorithm. Fig. 4 shows the results we mea-
sured by observing two main parameters: the number of user groups and the
maximum distance tolerated by users. For space reason, we show only the value
of the assessment function: the number of iterations did not change significantly
during these experiments. Fig. 4(a) shows that the value of the assessment func-
tion decreases with the number of user groups. Indeed, a higher number of groups
introduces heterogeneous preferences and constraints. Finding a suitable variant
that maximizes the user satisfaction becomes challenging. With one group, the
solution proposed by the genetic algorithm is optimal, i.e., it selects all the pre-
ferred features of the users in the group. This is not possible in presence of more
than one group, due to differences in requirements. Nevertheless, the quality of
the solution remains almost stable when considering from 2 to 10 user groups.
Finally, also in this case, the average value of the assessment function remains
very close to the final one. Fig. 4(b) shows how the selectivity of users influences
the results. When reducing the maximum tolerated difference, it becomes more
and more difficult to find a solution that satisfies a high number of users. Because
of this, when considering a threshold of only 10% of the maximum distance, the
final solution can satisfy only a fraction of the users. Thus, the quality of the
solution drops below 600.
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Discussion. Although based on a synthetic and simple model of the users’ pref-
erences, the analysis above highlights some important aspects of A/B testing.
First, our experiments confirmed and emphasized some key problems in per-
forming manual A/B testing: in presence of heterogeneous user groups, with
different preferences and constraints, devising a good strategy for evolving and
improving the program is extremely challenging. Most importantly for the goal
of this paper, our analysis suggests that an automated solution is indeed pos-
sible and worth investigating. Indeed, in all the experiments we performed, the
genetic algorithm was capable to converge towards a good solution. Moreover,
it always converged within a small number of steps (less than 100, even in the
most challenging scenarios we tested). Furthermore, intermediate variants of the
programs adopted during the optimization process were capable of providing
good values for the assessment function. This is relevant when considering live
experiments, in which intermediate programs are shown to the users: providing
good satisfaction of users even in this intermediate phase may be crucial to avoid
loss of customs and revenues.

6 Related Work

The SBSE [7] community focused its research efforts on several relevant soft-
ware engineering challenges covering all the various steps in the software life-
cycle ranging from requirements engineering [17], design [16], testing [4], and
even maintenance [15]. However, despite all valuable these research efforts, the
problem of evolving and refining systems after their deployment – in particular
in the domain of user-intensive systems – received very little attention so far
and, at the best of our knowledge, this is the very first attempt to introduce this
problem in the SBSE community.

Concerning instead the research on A/B testing we can mention many in-
teresting related efforts. For example, Crook et al. [5] discuss seven pitfalls to
avoid in A/B testing on the Web. Analogously, Kohavi et al. [9,12] discuss the
complexity of conducting sound and effective A/B testing campaigns. To support
developers in this complex activity, Kohavi et al. [11] also provided a practical tu-
torial. Worth mentioning is also [10], which discusses online experiments on large
scale scenarios. Finally, worth mentioning is the Javascript project Genetify [1].
The project represents a preliminary effort to introduce genetic algorithms in
A/B testing and demonstrates how practitioners actually demand for methods
and tools for automated A/B testing as claimed in the motivation of this paper.
However, this project is quite immature and does not exploit all the potentials
of genetic algorithms as we propose in this paper: it only supports the evolution
of HTML pages in Web applications.

7 Conclusions

In this paper we tackled the problem of automating A/B testing. We formalized
A/B testing as a SBSE problem and we proposed an initial prototype that relies
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on aspect-oriented programming and genetic algorithms.We provided two impor-
tant contributions. On the one hand, we used our prototype to demonstrate the
practical feasibility of automated A/B testing through a set of synthetic experi-
ments. On the other hand, we provided the SBSE community with a novel domain
where its expertise can be applied. As future work, we plan to test our approach
on real users and to refine the proposed approach with customized mutation op-
erators (e.g., changes to the source code) and full support for constraints.
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Abstract. Weight-based multi-objective optimization requires assigning appro-
priate weights using a weight strategy to each of the objectives such that an 
overall optimal solution can be obtained with a search algorithm. Choosing 
weights using an appropriate weight strategy has a huge impact on the obtained 
solutions and thus warrants the need to seek the best weight strategy. In this pa-
per, we propose a new weight strategy called Uniformly Distributed Weights 
(UDW), which generates weights from uniform distribution, while satisfying  
a set of user-defined constraints among various cost and effectiveness measures. 
We compare UDW with two commonly used weight strategies, i.e., Fixed 
Weights (FW) and Randomly-Assigned Weights (RAW), based on five 
cost/effectiveness measures for an industrial problem of test minimization  
defined in the context of Video Conferencing System Product Line developed 
by Cisco Systems. We empirically evaluate the performance of UDW, FW, and 
RAW in conjunction with four search algorithms ((1+1) Evolutionary Algorithm 
(EA), Genetic Algorithm, Alternating Variable Method, and Random Search) 
using the industrial case study and 500 artificial problems of varying complexi-
ty. Results show that UDW along with (1+1) EA achieves the best performance 
among the other combinations of weight strategies and algorithms. 

Keywords: Uniformly distributed weights, multi-objective optimization, search 
algorithms. 

1 Introduction 

A weight-based multi-objective optimization problem requires finding an optimal set 
of weights for all the objectives, while satisfying the required constraints (e.g., the 
priority of various objectives defined by users) on weights capturing the complex 
tradeoff relationships among the objectives with the aim of finding an overall optimal 
solution for the problem. Such weight-based multi-objective problems have been 
solved efficiently together with search algorithms (e.g., Genetic Algorithms) in the 
literature [1-6]. As compared with other types of commonly used techniques (i.e., 
Pareto-based techniques) [1, 5], weight-based techniques offer the following advan-
tages: 1) These techniques balance all the objectives to find an optimal solution rather 
than obtaining a set of non-dominated solutions thus eliminating the effort for users to 
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select among the obtained solutions; 2) These techniques are straightforward to im-
plement with computational efficiency; and 3) When objectives have different priori-
ties, weight-based techniques can tackle such situation easily by assigning customized 
weights to each particular objective. 

In the literature [1], the following two weight assignment strategies are commonly 
used: 1) Assigning fixed weights (equal or unequal) to each objective, termed as 
Fixed Weight (FW) strategy in this paper; 2) Assigning random weights to each objec-
tive based on a set of pre-defined constraints, coined as Randomly-Assigned Weights 
(RAW) strategy. Even though these two strategies have shown promising results [1-4, 
6], they still suffer from some limitations. With FW, it is rare that all objectives have 
equal weights and determining appropriate weights usually depends on domain-
expertise. A potential solution is to ask users to specify a set of constraints among 
weights rather than giving exact values. With RAW, we observe that it does not guar-
antee equally-distributed uniformity of selection of weight, i.e., all the potential 
weights do not have the same probability to be selected. Since one set of fixed 
weights can determine a specific search direction, there may be no equivalent proba-
bility to choose various search directions to find an optimal solution [1]. 

To reduce the randomness in weight selection using RAW, we propose a new 
weight assignment strategy called Uniformly Distributed Weights (UDW), which ge-
nerates weights from a uniform distribution, while meeting a set of user-defined con-
straints. The strategy gives an equal importance to the generation of weight for each 
criterion, while preserving the relative importance of criterion. Said otherwise, the 
goal is to keep the advantages of uniform random generation, while having priorities 
defined among the various criteria. We evaluate the proposed weight strategy UDW as 
compared with the FW and RAW using an industrial problem of test minimization for 
Video Conferencing Systems (VCSs) product line from Cisco Systems. Being specif-
ic, this test minimization problem is a multi-objective optimization problem having 
five distinct objectives: Test Minimization Percentage (TMP), Feature Pairwise Cov-
erage (FPC), Fault Detection Capability (FDC), Average Execution Frequency 
(AEF), and Overall Execution time (OET). A fitness function defined on all these five 
objectives is used in conjunction with the following search algorithms: Genetic Algo-
rithm (GA), (1+1) Evolutionary Algorithm (EA), and Alternating Variable Method 
(AVM) to compare the three distinct weight assignment strategies. Random Search 
(RS) is used as the comparison base line. Moreover, inspired by the industrial prob-
lem, we created 500 artificial problems of varying complexity to evaluate the three 
weight assignment strategies in conjunction with all the four algorithms. 

The obtained results show that: 1) With FW, RAW and UDW, (1+1) EA significant-
ly outperformed the other search algorithms; 2) With (1+1) EA, UDW significantly 
performed better than FW and RAW; 3) The performance of (1+1) EA and GA with 
UDW was significantly improved with the increasing complexity of problems. 

The rest of the paper is organized as follows: Section 2 provides a relevant back-
ground on FW and RAW. Section 3 presents UDW strategy followed by the descrip-
tion of our industrial and artificial case studies (Section 4). Section 5 presents the 
empirical evaluation with an overall discussion and Section 6 addresses threats to 
validity. Related work is discussed in Section 7 and Section 8 concludes the paper. 
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2 Background 

Fixed Weights (FW) assigns fixed normalized weights (between 0 and 1) to each ob-
jective [1]. These weights can be obtained from domain knowledge of experts. For 
instance, our case requires five weights (ݓଵ, ݓଶ, ݓଷ, ݓସ, ݓହ) corresponding to each 
objective (TMF, FPC, FDC, OET, AEF). 

Randomly-Assigned Weights (RAW), inspired by Random-Weighted Genetic  
Algorithm (RWGA) mainly used for weight-based optimization [1], generates a set of 
distributed normalized weights for each objective while still satisfying the user defined 
constraints. For instance, we have a constraint ݓଶ  ଵݓ  and using RAW, a random 
distributed value is first generated for ݓଶ  from 0 to 1 and then another distributed 
value is generated for ݓଵ from 0 to ݓଶ . At each generation when running search  
algorithms, each objective is assigned to a distributed normalized weight as above 
mentioned and meets all the defined constraints, i.e., the weights for each objective are 
dynamically changed during each generation until the best solution is found or the 
termination criteria for the algorithms is met. Using RAW, multiple search directions 
can be stipulated by assigning dynamic weights during each generation [1]. However, 
RAW cannot guarantee that each point within the range for weights has the same  
probability to be selected thus each search directions cannot be reached uniformly. 

3 Uniformly Distributed Weights 

Inspired by our previous work in [7], the Uniformly Distributed Weights (UDW)  
uniformly selects weights at random when these weights are subject to a set of  
defined constraints. Notice that solving this problem efficiently is challenging as 
sampling uniformly tuples of values from an unknown domain is not trivial. More 
specifically, the tuples of weights generated by UDW must satisfy: 1) all the user-
defined constraints and 2) an equi-probability selection that guarantee that each search 
direction has equivalent probability to be reached1. Formally speaking, consider  
a multi-objective optimization problem P involving m optimization objectives ܱ ൌ ሼଵ, ,ଶ … , ܹ ሽ, each  objective has a specific weight, corresponding to the set ൌ ሼݓଵ, ,ଶݓ … ,  ሽ. Relations among these objectives are captured by a set of nݓ
arithmetic constraints ܥ ൌ ሼܿଵ, ܿଶ, … , ܿሽ over the variables in W. Notice that such 
constraints can be pre-defined by the users based on their particular domain expertise.  

The core idea of UDW lies in the pre-computations of subdomains of the input  
domain (formed by the Cartesian product of each individual weight domain) and  
consideration of subdomains out of which uniform random sampling is trivial. More 
precisely, using an arbitrary division parameter k, UDW first divides the input domain 
into ݇ equivalent subdomains, where m is the number of weight variables. Second, 
a systematic refutation is used to eliminate subdomains that do not satisfy the  
constraints, and finally, uniform random generation of tuples of weights is realized by 
selecting a remaining subdomain and a tuple at random. Notice that the selected  
subdomain and tuple may still not satisfy the constraints, and thus rejection may still 
happen. But, the systematic refutation process would have eliminated most parts of 
the input domain that do not contain any solution (fully conflicts with the constraints).  
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The UDW algorithm (shown as below) takes as inputs, the set of weights W, the 
constraint set C, the division parameter k, and the length of the expected sequence of 
weight tuples (K), i.e., the number of generations during the search1. The output of 
UDW is a sequence of K weight tuples for W, called WK, such that the sequence is 
uniformly distributed over the solution set of C. Notice that UDW returns fail 
ܭܹ) ൌ  when none of the weight tuples satisfy the constraint set C, which shows (
none of the solutions will be found for the optimization problem based on the defined 
constraints. The Algorithm works as follows: a weight tuples sequence (WK) is first 
initialized as empty (Step 1) and then the input space is divided into ݇ subdomains, 
i.e., ሼܹܦଵ, … , -ሽ (Step 2). The refutation process eliminates a number of subܦܹ
domains with respect to the constraint set C (Step 3). The remaining subdomains (i.e., ሼܹܦଵᇱ , ଶᇱܦܹ , … , ᇱܦܹ ሽ ) are sampled uniformly and from them, uniform tuples of 
weights are generated at random until K sets are generated (Step 4). Notice that at this 
step, only the generated tuples that satisfy the constraint set C are kept. The generated 
set of tuples K is returned and used to assign weights to each objective, in order to 
guide the search in the search algorithms (Step 5). Notice that despite some similari-
ties with the algorithm presented in [7, 8], our UDW algorithm is original in terms of 
uniformly generating random weights for multi-objective test suite optimization. 

 
Algorithm UDW: Uniformly-Distributed Weight Strategy 
Input: ܹ ൌ ሼݓଵ, ,ଶݓ … , ܥ ,ሽݓ ൌ ሼܿଵ, ܿଶ, … , ܿሽ, division parameter k (Integer)  and  
length of the expected weight tuples K (Integer)  
Output: ଵܹ, ଶܹ,…, ܹ for Objectives ܱ or  

      Step 1: ܹܭ: ൌ  ߠ
      Step 2: ሺܹܦଵ, … , ሻܦܹ ؔ ,ଵݓሺሼ݁݀݅ݒ݅ܦ ,ଶݓ … , ,ሽݓ ݇ሻ; 
      Step 3: forall  ܹܦ ∈ ሺܹܦଵ, … ,  ሻ doܦܹ
          if ܹܦ is fully unsatisfiable w.r.t. C then remove ܹܦ from ሺܹܦଵ, … ,  ;ሻܦܹ
      Step 4: Suppose ሼܹܦଵᇱ, ଶᇱܦܹ , … , ᇱܦܹ ሽ is the remaining list of domains; 
      if   1 then 
         while ܭ  0 do 
             choose ܹܦᇱ uniformly and randomly from ሼܹܦଵᇱ, ଶᇱܦܹ , … , ᇱܦܹ ሽ; 
             choose W uniformly and randomly from ܹܦᇱ; 
            if W satisfies C then add W to WK; ܭ ؔ ܭ െ 1;       
      Step 5: return WK for Objectives ܱ. 

 

4 Case Studies 

Industrial Case Study. Our industrial partner is a product line of Video Conferenc-
ing Systems (VCSs) called Saturn developed by Cisco Norway [8]. Saturn has several 
products, e.g., C20 (low end product) and C90 (high end product). Test suite minimi-
zation for testing a product is essential since it is practically impossible to execute all 
the test cases developed for the whole product line within the allocated budget [9, 10]. 
However, such minimization may have descendent impact on the effectiveness  
of testing (e.g., fault detection capability) when reducing the number of test cases. 
Thus, this minimization problem can be formulated as a multi-objective optimization 

                                                           
1 Each generation requires assigning a new set of weights to each objective during the search. 
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problem that is well solved by various search algorithms [1, 5], i.e., we aim at reduc-
ing the cost of testing while preserving the effectiveness. We chose this problem to 
evaluate our proposed weight assignment strategy and such problem can be 
represented formally as: search for a solution ݏ (a subset of the test cases) from the 
solution space S (all combinations of the test cases for testing a given product) to 
achieve the following objectives (i.e., maximum effectiveness and minimum cost): ∀ݏ ∈  ܵ ת ݏ   ്  :ݏ

ሻݏሺݏݏ݁݊݁ݒ݅ݐ݂݂ܿ݁ܧ   ሻݏሺݐݏܥ ሻ andݏሺݏݏ݁݊݁ݒ݅ݐ݂݂ܿ݁ܧ   ሻݏሺݐݏܥ
 

Moreover, three effectiveness measures were previously defined in [6]: TMP was 
used to measure the amount of reduction for the number of test cases as compared 
with the original test suite; FPC and FDC were defined to calculate the feature pair-
wise coverage (each feature represents a testing functionality for VCS testing) and 
fault detection capability achieved by a potential solution. More detailed definitions 
and mathematical formulas for these effectiveness measures can be consulted in [6]. 
Through more investigation with Cisco, an additional effectiveness measure called 
Average Execution Frequency (AEF) was defined to count the average execution 
frequency for a solution thereby measuring its priority and a cost measure called 
Overall Execution Time (OET) was defined to measure the execution time cost for the 
potential solution obtained by search algorithms. Moreover, a fitness function based 
on the cost/effectiveness measures was defined to guide the search. This fitness func-
tion converted multi-objective minimization problem into single objective problem 
based on the weight-based theory [1], which is shown as follows: 

ܨ_ݐ݅ܨ  ൌ 1 െ ଵݓ כ ሻܲܯሺܶ ݎ݊ െ ଶݓ כ ሻܥܲܨሺ ݎ݊ െ ଷݓ כ ሻܥܦܨሺ ݎ݊ െ כ                              ସݓ ൫1 െ ሻ൯ܶܧሺܱݎ݊ െ ହݓ כ  ሻܨܧܣሺ ݎ݊
 

Notice ݊ݎ ሺݔሻ is a normalization function, which is computed as follows: ݔ/ሺݔ  1ሻ. 
A lower value of fitness function Fit_F (we called such value as Overall Fitness Value 
(OFV)) represents a better solution. Moreover, ݓଵ ଶݓ , ଷݓ , ସݓ ,  and ݓହ  are a set of 
weights assigned to TMP, FPC, FDC, OET and AEF respectively and are required to 
satisfying a basic constraint ∑ ݓ ൌ 1ହୀଵ  in addition to other constraints capturing tra-
deoff relationships among the objectives. 

We chose four products C20, C40, C60 and C90 from Saturn that includes 169 fea-
tures and each product can be represented by a subset of these features. Each feature 
can be tested by at least one test case. More specifically, C20, C40, C60 and C90 
includes 17, 25, 32 and 43 features respectively and 138, 167, 192 and 230 test cases 
relevant for testing these products, respectively. Each test case ܿݐ has a success rate 
for execution (ܴܵܿݑ௧) for calculating FDC, an average execution time (ܧܣ ௧ܶ) for 
measuring OET (ܱܶܧ ൌ ∑ ܧܣ ௧ܶ ) and an execution frequency (ܨܧ௧) for obtaining 

AEF (ܨܧܣ ൌ ∑ ாி ೞ , ݊௦ is the number of test cases included in a specific solution). 

In summary, for Saturn, each feature is associated with 5-10 test cases and each test 
case is associated with 1-5 features with ܴܵܿݑ௧  ranging from 50% to 95%, ܶܧܣ௧ 
ranging from 2 minutes to 60 minutes and ܨܧ௧  ranging from 1 time to 50 times  
per week. 
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Artificial Problems. We further defined 500 artificial problems to evaluate the per-
formance of FW, RAW and UDW. Notice that the artificial problems are inspired by 
our industrial case study but with expansion for generality. To achieve this, we first 
created a feature model containing 1200 features and a test case repository of 60,000 
test cases. For each test case ܿݐ , three key attributes are assigned randomly, i.e., ܴܵܿݑ௧  ranging from 0% to 100%, ܧܣ ௧ܶ  ranges from 1 minutes to 100 minutes 
and ܨܧ௧  ranges from 1 time to 100 times per week. Moreover, we created artificial 
problems with the increasing number of features and associated test cases for each 
feature, i.e., we used a range of 10 to 1000 with an increment of 10 for features num-
ber and each feature can be associated with test cases ranging from 5 to 45 with an 
increment of 10. Thus, 100*5 = 500 artificial problems were obtained in this way. 
Notice that such artificial problems are also designed based on the domain expertise 
of VCS testing and thorough discussions with test engineers at Cisco. 

5 Empirical Evaluation 

5.1 Experiment Design 

Recall that our main goal is to minimize the test suite for testing a product with high 
effectiveness (TMP, FPC, FDC and AEF) while meeting the time budget (OET). 

To generate suitable weights, it is of paramount importance to provide a set of  
pre-defined constraints in a given context. In our industrial case study, through the 
domain analysis and several thorough discussion with test engineers at Cisco, we 
observed that: 1) OET has the highest priority among all the objectives; 2) FPC and 
FDC are more important than TMP and AEF; and 3) AEF has the lowest priority 
among all the objectives. So we came up with five key independent constraints for the 
test minimization problem, i.e., ݓସ  ଶݓ ସݓ ,  ଷݓ ଶݓ ,  ଵݓ ଷݓ ,  ଵݓ  and ݓଵ   ହ. Based on the defined constraints, specific weights for each objective can beݓ
generated using different weight strategies for the industrial case study and artificial 
problems. 

Using the experiments, we want to address the following research questions: 
RQ1: With each weight strategy (i.e., UDW, FW and RAW), which search algo-

rithm achieves the best performance for each objective and OFV? 
RQ2: With the best search algorithm, which weight strategy can achieve the best 

performance for each objective and OFV? 
RQ3: How does the increment of the number of features and associated test cases 

influence the performance of the search algorithms along with each weight strategy? 
Being specific, our experiment first compares each pair of the four algorithms with 

each weight strategy to determine which algorithm can achieve the best performance 
(RQ1). Afterwards, we choose the best algorithm and compare its performance with 
each weight strategy to evaluate whether UDW can outperform the other two weight 
strategies (RQ2), which also shows which combination of search algorithms and 
weight strategies can achieve the best performance. Notice that for industrial case 
study, we evaluate the values for each objective (i.e., TMP, FPC, FDC, OET and 



 Random-Weighted Search-Based Multi-objective Optimization Revisited 205 

 

AEF) and as for artificial problems, we only evaluate the values of OFV to assess the 
performance and scalability for the selected algorithms with different weight strate-

gies. To address RQ3, Mean Fitness Value for each problem (ܨܯ ܸ, ൌ  ∑ ைிೝೝೝసభ ) is 

defined to measure the mean overall fitness value for a certain number of runs nr (in 
our case, nr = 100), where i is the feature number and j is the test case number 
(10  ݅  1000 with an increment of 10 and 5  ݆  45 with an increment of 10). ܱܨ ܸ  is the obtained fitness value after the rth run.  

Moreover, Mean Fitness Value for Feature (ܨ_ܸܨܯ ൌ  ∑ ெி,ೕరఱೕసఱ ହ  ) and Mean Fit-

ness Value for Test Case (ܥܶ_ܸܨܯ ൌ  ∑ ெி,ೕభబబబసభబଵ ) are further defined to measure the 

mean fitness function in a given number of features or associated test cases. In this 
way, a specific MFV_F and MFV_TC can be calculated for each number of features 
and test cases and RQ3 can be addressed using statistical analysis.   

In addition, for all the search algorithms, the maximum number of evaluation for 
the fitness function is set as 5000 and we collected the optimal solution after the 
5000th fitness function evaluation. For GA and (1+1) EA, the mutation of a variable is 
done with the standard probability 1/݊, where ݊ is the number of variables. We used 
a standard one-point crossover with a rate of 0.75 for GA and set the size of popula-
tion as 100. RS was used as the comparison baseline to assess the difficulty of the 
problems [11]. According to the guidelines in [11, 13], each algorithm is run for 100 
times to account for random variation inherited in search algorithms. 

5.2 Statistical Tests 

To analyze the obtained result, the Vargha and Delaney statistics and Mann-Whitney 
U test are used based on the guidelines for reporting statistical tests for randomized 
algorithms [11]. The Vargha and Delaney statistics is used to calculate ܣመଵଶ, which is 
a non-parametric effect size measure. In our context, ܣመଵଶ  is used to compare the 
probability of yielding higher values for each objective function and overall fitness 
value (OFV) for two algorithms A and B with different weight strategies. If ܣመଵଶ is 
0.5, the two algorithms have equal performance. If ܣመଵଶ is greater than 0.5, A has 
higher chances to obtain better solutions than B. The Mann-Whitney U test is used to 
calculate p-value for deciding whether there is a significant difference between A and 
B. We choose the significance level of 0.05, i.e., there is a significant difference if p-
value is less than 0.05. Based on the above description, we define that algorithm A has 
better performance than algorithm B, if the ܣመଵଶ value is greater than 0.5 and such 
better performance is significant if p-value is less than 0.05. 

To address RQ3, we choose the Spearman’s rank correlation coefficient (ߩ) to 
measure the relations between the MFV_F and MFV_TC obtained by the algorithms 
with different number of features and test cases [12]. More specially, there is a posi-
tive correlation if ρ is greater than 0 and a negative correlation when ρ is less than 0. 
A ߩ close to 0 shows that there is no correlation between the two sets of data. More-
over, we also report significance of correlation using ܾܲݎ   a value lower than ,|ߩ|
0.05 means that the correlation is statistically significant. 
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5.3 Results and Analysis 

Results and Analysis for Industrial Case Study. Notice that due to limited space, 
all detailed results can be consulted in the technical report [18] (i.e., Table 4 and Ta-
ble 5). We only present the key findings for each research question (RQ1-RQ2). 
 

Results and Analysis for RQ1. Based on the obtained results (Table 4 in [18]), we 
concluded that all the three search algorithms (i.e., AVM, GA and (1+1) EA) signifi-
cantly outperformed RS for each objective and OFV with each weight strategy (i.e., 
FW, RAW and UDW). Moreover, (1+1) EA achieved significantly better performance 
than GA and AVM for each objective and OFV (RQ1). In addition, AVM had signifi-
cantly worse performance than GA for each objective and OFV. In summary, for each 
objective and OFV for the four Saturn products, the performance of the four algo-
rithms can be sorted as (1+1) EA, GA, AVM and RS, from better to worst. 
 

Results and Analysis for RQ2. Based on the results of RQ1, we chose the best algo-
rithm (1+1) EA and compared its performance in conjunction with FW, RAW and 
UDW for each objective and OFV in the four Saturn products (Table 5 in [18]). Ac-
cording to the results, we concluded that (1+1) EA along with RAW and UDW signifi-
cantly outperformed (1+1) EA with FW for each objective and OFV. Moreover, the 
performance of (1+1) EA with UDW was also significantly better than (1+1) EA with 
RAW for TMP, FPC, FDC, OET, AEF and OFV. Meanwhile, we report the average 
time used by each algorithm per run, i.e., 2.17 seconds for AVM, 1.78 seconds for 
GA, 1.55 seconds for (1+1) EA and 1.20 seconds for RS, which shows running search 
algorithms require similar effort (i.e., time) as compared with RS. In summary, we 
concluded (1+1) EA along with UDW achieved the best performance. 
 

Results and Analysis for Artificial Problems. Recall that the evaluation for artificial 
problems is based on the overall fitness value (OFV) for each of the 500 problems. To 
answer RQ3, we calculated the spearman’s rank correlation using mean fitness values 
MFV_F and MFV_TC (Section 5.1) for each algorithm with different weight strate-
gies. The detailed results and analysis are discussed in detail as below. 
 

Results and Analysis for RQ1. Table 1 summarizes the results for comparing the se-
lected search algorithms with FW, RAW and UDW for the 500 artificial problems. 
Two numbers are shown in each cell of the table split by a slash. The first number in 
the column A>B shows the number of problems out of 500 for which an algorithm A 
has better performance than B (ܣመଵଶ  0.5), A<B means vice versa (ܣመଵଶ ൏ 0.5), and 
A=B means the number of problems for which A has equivalent performance as B 
መଵଶܣ) ൌ 0.5). The second number after “/” in the column A>B means the number of 
problems out of 500 for which A has significantly better performance than B (ܣመଵଶ 0.5 &&  ൏ 0.05), A<B means vice versa (ܣመଵଶ ൏  && 0.5 ൏ 0.05), and A=B means 
the number of problems for which there is no significant difference in performance 
between A and B (  0.05) .We concluded the results as below. 
 AVM vs. GA: AVM outperformed GA for on average 40.8% problems  (i.e., 
(167+231+214)/3/500*100% = 40.8%), but for 34.94% problems, AVM performed 
significantly better than GA. AVM performed worse than GA for on average 59.2% 
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problems and in 52.4% problems, AVM was significantly worse than GA. There were 
no significant differences between AVM and GA for 12.66% problems. 

AVM vs. (1+1) EA: AVM performed better than (1+1) EA for on average 22.92% 
problems and 17.86% out of these 22.92% problems, AVM significantly outper-
formed (1+1) EA. On the contrary, for on average 77.06% problems, AVM performed 
worse than (1+1) EA and for 72.6% problems, AVM performed significantly worse 
than (1+1) EA. For 9.54% problems on average, there were no significant differences 
between AVM and (1+1) EA.  

Table 1. Results for comparing the algorithms with each weight strategy for artificial problems 

Weight Strategy Pair of Algorithms A>B A<B A=B Best Algorithm 

 
FW 

AVM vs. GA 167/132 333/297 0/71 

(1+1) EA 

AVM vs. (1+1) EA 121/98 379/344 0/58 

AVM vs. RS 377/345 123/101 0/54 

GA vs. (1+1) EA 134/115 366/348 0/37 

GA vs. RS 364/331 136/112 0/57 

(1+1) EA vs. RS 436/408 64/37 0/55 

RAW 
 

AVM vs. GA 231/199 269/238 0/63 

(1+1) EA 

AVM vs. (1+1) EA 107/76 393/376 0/48 

AVM vs. RS 312/267 188/135 0/98 

GA vs. (1+1) EA 195/164 305/276 0/60 

GA vs. RS 397/340 103/63 0/97 

(1+1) EA vs. RS 449/423 51/38 0/39 

UDW 
 

AVM vs. GA 214/193 286/251 0/56 

(1+1) EA 

AVM vs. (1+1) EA 116/94 384/369 0/37 

AVM vs. RS 336/290 164/129 0/81 

GA vs. (1+1) EA 172/149 328/302 0/49 

GA vs. RS 369/323 131/105 0/72 

(1+1) EA vs. RS 427/399 73/54 0/47 

 
AVM vs. RS: AVM outperformed RS for 68.34% problems with the three weight 

strategies on average but for 60.14% problems the results were statistically signifi-
cant. There were no significant differences for 15.54% problems on average. 

GA vs. (1+1) EA: For 33.4% problems on average, GA was better than (1+1) EA, 
but for 29.2% problems, GA was significantly better than (1+1) EA. Moreover, GA 
was worse than (1+1) EA for 66.6% problems and for 61.74% out of these 66.6% 
problems, GA was significantly worse than (1+1) EA. There were no significant dif-
ferences between GA and (1+1) EA for 9.74% problems. 

GA vs. RS: There were on average 75.34% problems, for which GA achieved better 
performance than RS with the selected weight strategies and for average 66.26% 
problems, GA significantly outperformed RS. Moreover, for 15.06% problems, there 
were no significant differences between GA and RS. 

(1+1) EA vs. RS: In case of (1+1) EA, it performed better than RS for 87.46% 
problems. Out of these 87.46% problems, on average 82% problems, (1+1) EA was 
significantly better than RS. For 9.4% problems, there were no significant differences 
between (1+1) EA and RS. 

Concluding Remarks for RQ1: Based on the results, RQ1 can be answered as fol-
lows: the performance of AVM, GA and (1+1) EA are all significantly better than RS 



208 S. Wang, S. Ali, and A. Gotlieb 

 

with all the selected three weight strategies in term of finding an optimal solution for 
our minimization problem. Moreover, (1+1) EA outperformed GA and GA performed 
better than AVM together with all the weight strategies. In summary, (1+1) EA 
achieved the best performance for the three weight strategies in most of the problems. 

 

Results and Analysis for RQ2. Table 2 summarizes the results for comparing FW, 
RAW and UDW with the best algorithm (1+1) EA for the 500 artificial problems. The 
data in the columns A>B, A<B and A=B is organized in the same way as in Table 1.  

Table 2. Results for comparing the weight strategies along with (1+1) EA for artificial problems 

Pair of Weight Strategies A>B A<B A=B
FW vs. RAW 187/165 313/276 0/59 
FW vs. UDW 119/91 381/364 0/45 

RAW vs. UDW 197/175 303/276 0/49 

 
FW vs. RAW: In conjunction with (1+1) EA, for 37.4% (187/500=37.4%) prob-

lems, FW outperformed RAW, but for 33% of problems, there were significant differ-
ences. On the contrary, RAW performed better than FW for 62.6% problems and for 
55.2% problems, RAW was significantly better than FW. There were no significant 
differences between FW and RAW for 11.8% problems. 

FW vs. UDW: For (1+1) EA, FW performed better than UDW for 23.8% problems, 
but only for 18.2% problems, FW significantly outperformed UDW. Moreover, the 
performance of FW was worse than UDW for 76.2% problems and for 72.8% prob-
lems, FW was significantly worse than UDW. Meanwhile, there were no significant 
differences between FW and UDW for 9% problems. 

RAW vs. UDW: Combined with (1+1) EA, for 39.4% problems, RAW performed 
better than UDW and there were significant differences for 35.2% out of these 39.4% 
problems. UDW outperformed RAW for 60.6% problems and UDW significantly out-
performed RAW for 55.2% problems. In addition, there were no significant differenc-
es between RAW and UDW for 9.8% problems. 

Similarly, the average time taken by each algorithm is reported per run for the 500 
artificial problems, i.e., 4.58 seconds for AVM, 3.96 seconds for GA, 3.41 seconds 
for (1+1) EA and 3.04 seconds for RS, which shows adapting search algorithms takes 
similar time as compared with RS. 

Concluding Remarks for RQ3: Based on the above results, we can answer RQ3 as 
follows: along with the best algorithm (1+1) EA, UDW achieved the best performance 
among the three weight strategies and RAW outperformed FW significantly in most of 
the artificial problems, i.e., the UDW weight strategy in conjunction with (1+1) EA 
achieved the best performance in our context. 

 
Results and Analysis for RQ3. Table 3 provides the results for Spearman’s correlation 
analysis (ߩ) between mean fitness value for feature (MFV_F) with the increasing 
number of features and mean fitness value for test case (MFV_TC) with the growth of 
test cases for the 500 artificial problems. Recall that a lower value of MFV_F or 
MFV_TC represents a better performance of an algorithm with a weight strategy. 
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Increasing Number of Features: For FW, RAW and UDW, we observed that the 
MFV_F values obtained by (1+1) EA and GA decreased significantly with the growth 
of feature number since all the ߩ values were less than 0 and the values of ܾܲݎ |ߩ| were all less than 0.0001 (Table 3), i.e., the performance of (1+1) EA and GA 
significantly improved as the increasing number of features. For AVM, the MFV_F 
values also decreased when the number of features increases but such decrease was 
not statistically significant, i.e., AVM also performed better as the increasing number 
of features but not significantly. Finally, the performance of RS was worse with the 
growth of the number of features (not significantly) (Table 3). 

Table 3. Spearman’s correlation analysis for artificial problems 

Weight Strategy Algorithms 
Increasing Features Increasing Test Cases 

Spearman ࣋ Prob>|  |࣋ |<Prob ࣋ Spearman |࣋

FW 

AVM -0.07 0.4513 -0.06 0.5436 

(1+1) EA -0.68 <0.0001 -0.13 0.6143 

GA -0.65 <0.0001 -0.12 0.5841 

RS 0.12 0.4870 0.07 0.5323 

RAW 

AVM -0.14 0.3764 -0.09 0.5134 

(1+1) EA -0.71 <0.0001 -0.17 0.5670 

GA -0.64 <0.0001 -0.08 0.6537 

RS 0.16 0.5137 0.18 0.5758 

UDW 

AVM -0.09 0.6125 -0.10 0.4582 

(1+1) EA -0.70 <0.0001 -0.14 0.4319 

GA -0.69 <0.0001 -0.11 0.5762 

RS 0.09 0.4626 0.15 0.4240 

 
Increasing Number of Associated Test Cases (Increasing Test Cases column): The 

MFV_TC values by AVM, (1+1) EA and GA decreased but not significantly with the 
growth of associated test cases, i.e., the performance of AVM, (1+1) EA and GA in 
along with all the weight strategies improved (but not significantly) with the growth 
of associated test cases. On the contrary, RS performed worse (not significantly) 
when the number of associated test cases increased (Table 3). 

Concluding Remarks: Among all the weight strategies, (1+1) EA and GA per-
formed significantly better as the increasing number of features and the performance 
of AVM and RS were not significantly influenced by the number of features. Moreo-
ver, the performance of all the selected search algorithms with the weight strategies 
are not significantly influenced by the increasing the number of associated test cases. 

5.4 Overall Discussion 

First, based on the results of RQ1 and RQ2, the reason why UDW performs better 
than FW can be explained as follows: 1) FW uses fixed predefined weights, meaning 
that the search space, which is the Cartesian product of all weights, cannot be fully 
explored. Actually, the optimal solution might not be found in this restricted search 
space explored in a single direction; and 2) UDW uniformly assigns random weights  
generated during each generation of a search algorithm, which allows the search algo-
rithm to explore multiple directions.  
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Moreover, with uniformly distributed weights (UDW) 
at each generation, a search algorithm can be guided  
towards an optimal solution more efficiently than ran-
domly generated weights (RAW). This may be because 
that RAW does not permit us to search uniformly at each 
generation, as the weights cannot be selected with the 
same probability, due to the presence of constraints. 
Consider two weights ݓଵand ݓଶfrom 0 to 1; for the sake 
of simplicity, but without losing any generality, we sup-

pose that ݓଵ, ଶݓ ∈ ሼ0, ଵே , ଶே , … , ேேሽ  and the following 

constraint holds: ݓଵ  ଶݓ . Suppose that we have two 

distinct candidates for ݓଵ  namely ݓଵ ൌ  ேభே , ଵଵݓ ൌ  ேమே , 

where ଵܰ, ଶܰ ∈ ሼ0,1, … , ܰሽ and one candidate for ݓଶ called ݓଶ (the solution space 
of the constraint for ݓଵand ݓଶ is represented as Fig. 1). Using RAW, if ݓଵ is se-

lected first, the probability of selecting ݓଶ is ܾܲݎሺሼݓଶ|ݓଵሽሻ ൌ ଵே כ ଵேభ, as the con-

straint ݓଵ  ଶݓ holds. If ݓଵଵ  is selected, the probability of selecting ݓଶ  is ܾܲݎሺሼݓଶ|ݓଵଵሽሻ ൌ ଵே כ ଵேమ. As a consequence, the probability of selecting ݓଶ  is not 

the same in both cases (
൫൛௪మబห௪భబൟ൯൫൛௪మబห௪భభൟ൯ ൌ ேమேభ), meaning that the couples (ݓଵ, ݓଶ) and 

-do not have the same probability to be selected. Hence, there is no equi (ଶݓ ,ଵଵݓ)
probability when it comes to the selection of relevant search directions to find an 
optimal solution. Unlike RAW, UDW guarantees the equi-probability selection of ݓଶ 
whatever be the first weight value selected (i.e., ܾܲݎሺሼݓଶ|ݓଵሽሻ ଵଵሽሻݓ|ଶݓሺሼܾݎܲ = ൌ ଵಿכಿమ ൌ ଶேכே ). Thus, each search direction has an equal probability 

to be reached and thereby, guiding search to find an optimal solution is more equally 
supported. 

Followed by (1+1) EA, GA has significantly better performance than AVM. This 
can be explained from the fact that both of these algorithms are global search algo-
rithms and thus managed to find global optimal solutions as compared to AVM, 
which is a local search algorithm. Notice that the performance of (1+1) EA is signifi-
cantly better than GA and this may be due to the reason that (1+1) EA uses only mu-
tation for exploring the search space as compared to GA which uses both mutation 
and crossover for exploration and exploitation of search space respectively requiring 
more generations to find a global optimal solution. By increasing the number of gen-
erations (5000 in the current experiment settings), we expect that the performance of 
GA can be improved, which requires further empirical evaluations.   

For the experiments based on the 500 artificial problems, the results were consistent 
with our industrial case study (RQ1-RQ2). When we looked at the impact of varying 
number of features (10-1000) and associated test cases (5-45) on the performance of 
each algorithm along with three weight strategies (RQ3), we observed that (1+1)  
EA and GA performed significantly better as the increasing number of features, but for 
AVM and RS, the performance was not significantly influenced with the growth of 
features. Such interesting behavior can be explained based on the fact that (1+1) EA 

Fig. 1. An example for the 
probability of selecting 
weights 
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and GA are global search algorithms, which can still manage to explore the search 
space and find a global optimal solution even with the increased complexity (more 
features). On the other hand, AVM’s performance (local search) cannot scale with the 
increased complexity since AVM can be guided towards finding local solutions in  
the search space but the global optimal solutions might be missed. Moreover, we  
observed that increasing the number of test cases improved the performance of all 
search algorithms except RS though not significantly. This phenomenon may be due 
to the following two reasons: 1) Complexity of test minimization problem for a prod-
uct is directly related to the number of features and thus increasing the test cases may 
not affect the performance of the search algorithms; 2) Increased number of test cases 
means that a feature can be tested with more test cases and thus increases the solution 
space within the entire search space, i.e., search algorithms can find solutions with 
better fitness since more solutions are available (though not statistically significant).  

In summary, (1+1) EA along with UDW weight strategy achieved the best perfor-
mance in our experiments and thus is suitable for test minimization problem in our 
industrial context. Moreover, the results suggest weights selected by domain experts 
might not be accurate to obtain an optimal test minimization solution in practice and 
thus automated weight strategies such as UDW are needed for an optimal solution. 

6 Threats to Validity 

A prominent construct validity threat is related to the measure used to compare the 
various algorithms and to avoid such threat we used the measured fitness value, which 
is comparable across all selected search algorithms. Another common construct threat 
to validity is the use of termination criterion for the search. In our experiments, we 
used number of fitness evaluations comparable across all the algorithms. 

When using search algorithms, parameter settings may affect the performance of 
the algorithms (internal validity). In this direction, we used default parameter settings 
for all the algorithms and these settings have demonstrated promising results [13]. In 
addition, the complexity of UDW in the general case is exponential in the number of 
weight variables in the problem (i.e., ܱሺ݇ሻ where k is an arbitrary division parame-
ter and m is the number of weight variables). This is a limitation if one wants to con-
sider optimization problem with more than 20 independent objectives (m > 20) but 
our experience with both academic and industrial case studies show that the number 
of considered objectives never goes up to seven. Consequently, this potential expo-
nential blow-up is not considered as a threat to our approach in practice. 

A common conclusion validity threat is due to random variation inherited in search 
algorithms and thus we repeated our experiments 100 times to reduce the probability 
that the results were obtained by chance. Moreover, we used appropriate statistical 
tests for analyzing the data, i.e., Vargha and Delaney, Mann-Whitney U test and 
Spearman’s rank correlation coefficient based on the guideline proposed in [11].  

Generalization to new case studies is required to increase the confidence on the re-
sults (external validity) and we conducted an empirical evaluation using 500 artificial 
problems besides an industrial case study and obtained consistent results. 



212 S. Wang, S. Ali, and A. Gotlieb 

 

7 Related Works 

A comprehensive review for search-based software engineering (SBSE) is available 
in [5]. In particular, Harman listed a set of potential objectives used for multi-
objective test optimization in regression testing [16], which have been extensively 
studied in the existing literature [14]. In [15], a two-objective problem (i.e., code  
coverage and execution time) is converted into a single-objective problem for test 
prioritization using an arithmetical combination of weights for the fitness function. 
However, there are at least two main differences with our work: 1) The UDW  
approach is not restricted to two criteria and can actually takes any number of test 
objectives into consideration (e.g., TMP, FDC and AEF) and 2) UDW is paramete-
rized by a set of constraints for which it can provide a uniform sampling of weight 
values, which turns out to be essential when looking at the performance of various 
search algorithms (e.g., (1+1) EA). As compared with our previous work [6], the  
motivation in this paper is different. The determination of an appropriate weight  
assignment strategy using weight-based search algorithms turns out to be crucial to 
obtain an optimal solution, especially when determining the best possible weights is 
impossible [1]. 

In addition, a simple algorithm can be used alternatively to sample values uniform-
ly at random in the presence of constraints. For example, [17] reported on such an 
algorithm:  1) firstly, it generates tuples of values randomly while ignoring the con-
straints; 2) secondly, it uses a linear constraint solver (e.g., the Simplex algorithm) to 
reject the generated tuples that do not satisfy the pre-defined constraints. Even if this 
approach is appealing by its simplicity, it does not scale up to large dimensions as 
shown in [7]. In fact, as soon as the constraints become complex (relational, non-
linear, mixed integer-real), the number of rejected tuples grows up to a point where 
the number of calls to the constraint solver is intractable. Note also that using con-
straint propagation and refutation instead of the Simplex algorithm opens the door to 
the treatment of non-linear constraints  (e.g., ݓଵ כ ଶݓ ൏ 1) but it is also incomplete to 
determine the exact shape of the solution space.  

Moreover, the proposed UDW technique is inspired from the Path-Oriented Ran-
dom Testing (PRT) approach used in the context of code-based testing [7]. Even if the 
algorithm used to randomly generate uniformly distributed samples is similar to the 
one used in PRT, we see a main difference, i.e., according to our knowledge, using 
uniformly random distributed weights when constraints among weights are involved 
in search-based test minimization has never been explored before. Expressing con-
straints over weights is a key aspect of the proposed UDW technique as it releases test 
engineers from the tedious task of determining exact values to the weights, while 
preserving the benefits of RAW-approaches of search-based test minimization. 

8 Conclusion and Future Work 

In this paper, we proposed a new weight assignment strategy called Uniformly Distri-
buted Weights (UDW) to generate weights by solving constraints among them with 
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uniform distribution for solving multi-objective optimization problems. UDW can 
guarantee the uniformity for the selection of weights at the same time meeting all the 
required constraints based on the domain knowledge and expertise. We compared the 
proposed UDW with two commonly-used weight strategies (i.e., Fixed Weights (FW) 
and Randomly-Assigned Weights (RAW)) in conjunction with the following search 
algorithms: (1+1) Evolutionary Algorithm (EA), Genetic Algorithm, Alternating  
Variable Method, and Random Search based on our industrial problem of test mini-
mization in the context of product lines. For test minimization, a fitness function was 
defined based on various cost/effectiveness measures (e.g., feature pairwise coverage) 
identified through our industrial collaboration with Cisco Systems. We performed our 
empirical evaluation using a Video Conferencing Systems product line provided by 
Cisco Systems and 500 artificial problems of varying complexity. The results showed 
that (1+1) EA performs the best among all the algorithms together with UDW and 
thus we conclude that assigning weights based on uniform distribution can signifi-
cantly improve the performance of (1+1) EA for multi-objective optimization,  
particularly for multi-objective test minimization in the context of product lines.  

In the future, we plan to replicate our experiments in other industrial case studies 
for assessing the proposed weight strategy UDW. We also plan to investigate the  
effect of uniformly distributed weights on a diverse range of search algorithms. 
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Abstract. Many aspects of Software Engineering problems lend themselves to a 
coevolutionary model of optimization because software systems are complex 
and rich in potential population that could be productively coevolved. Most of 
these aspects can be coevolved to work better together in a cooperative manner. 
Compared with the simple and common used predator-prey co-evolution model, 
cooperative co-evolution model has more challenges that need to be addressed. 
One of these challenges is how to resolve the inconsistencies between two pop-
ulations in order to make them work together with no conflict. In this position 
paper, we propose a new learning mechanism based on Baldwin effect, and  
introduce the learning genetic operators to address the inconsistency issues. A 
toy example in the field of automated architectural synthesis is provided to  
describe the use of our proposed approach. 

Keywords: Cooperative co-evolution, Baldwin effect, automated architectural 
synthesis. 

1 Introduction 

In many software engineering problems, one aspect of a problem is often related to 
other aspects [1]. In order to acquire better solutions for these problems, co-evolution 
mechanism is used to model these problems, and each aspect of the problems corres-
ponds to an independent population. In co-evolutionary computation, there are mainly 
two different evolution models: one is predator-prey model, and the other is coopera-
tive model [1]. The main difference between the two models is that each evolving 
population in predator-prey model evolves to acquire better solutions only for their 
own populations (e.g., test case population evolves in order to generate better test case 
only) and the relationship between different populations is competitive. On the con-
trary, in cooperative co-evolution model, all the populations evolve to acquire better 
solutions for the whole problem (e.g., in [2], one population represents developers’ 
team staffing, and the other population is responsible for work package scheduling. 
The two populations co-evolve to achieve minimum completion time for projects). 
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There are many existing work about predator-prey evolution model, especially in the 
area of testing, such as [3][4]. However, cooperative co-evolution model is not well 
explored in Search-Based Software Engineering (SBSE) until very recently [2]. 

Compared with predator-prey co-evolution model, cooperative co-evolution model 
has much more challenges when using it. One of these challenges is how to avoid the 
conflicts between populations that work together to generate the final solutions for the 
software engineering problems. Here, we take an example to illustrate this challenge 
briefly. Xu and Liang proposed a cooperative coevolution approach for automated 
architectural synthesis using patterns [5]. In their approach, there are two populations: 
one is responsibility population which is used for responsibility synthesis (i.e., how to 
assign different methods and attributes from requirement specifications to different 
classes in object-oriented architectural synthesis), and the other is pattern population 
which is used for architectural pattern synthesis (i.e., how to implement a given pat-
tern in architecture level). When synthesizing the candidate architectural solutions 
with the individuals from the two cooperative populations, the conflicts may appear. 
For example, method A and method B belong to the same class in an individual of 
responsibility population, whilst these two methods belong to different layers in an 
individual of pattern population (we simply suppose that Layer pattern is used). As 
methods in the same class should not belong to different layers in Layer pattern, this 
inconsistency should be resolved before a candidate architectural solution is synthe-
sized with these two individuals. In the above example, the inconsistency occurs 
when two populations interact cooperatively, and this kind of inconsistency is specific 
to cooperative co-evolution model. As a consequence, special attention should be paid 
to resolve inconsistencies in using cooperative co-evolution model. 

Recently, the community of SBSE has realized the importance of using Artificial 
Intelligence (AI) techniques (e.g., machine learning) to solve software engineering 
problems [6]. In this paper we propose a new learning mechanism, which is based on 
the Baldwin effect [7] original from the biological evolution field, to address the in-
consistency issue in the cooperative co-evolution computation. In our approach, we 
extend the steps in each generation of evolution procedure with a new kind of genetic 
operator called learning operator, and we define four specific types of learning oper-
ators. We further use a specific type of learning operator to resolve the inconsistency 
issue in the automated pattern-based architectural synthesis as a toy example to show 
the use and effectiveness of our proposed approach. The contributions of this work 
are: (1) introduce a new genetic operator for individual learning in each generation, 
which extends the traditional genetic operators (e.g., selection operator, crossover 
operator, and mutation operator). This new operator is generic in cooperative co-
evolution computation, and AI techniques can be integrated in the search process with 
this operator; (2) propose a new learning mechanism based on Baldwin effect for 
cooperative co-evolution computation, which can be used to resolve the inconsisten-
cies between different populations. To our knowledge, it is the first attempt to investi-
gate the learning relationship between different populations in the field of SBSE. 
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2 Approach 

In evolutionary developmental biology, a character or trait change occurs in an organ-
ism as a result of its interaction with its environment. In [7], Baldwin proposed a me-
chanism for specific selection of offspring for general learning ability. Selected 
offspring would tend to have an increased capacity for learning new skills rather than 
being confined to genetically coded and relatively fixed abilities. This is a theory of 
evolutionary process known as Baldwin effect. 

In [7], Baldwin observed that there are three different sorts of modifications to or-
ganisms which should be distinguished. The first one is rooted in the physical agen-
cies and influences in the environment, which is called “physic-genetic”. In nature, 
physical agencies and influences in the environment include all chemical agents,  
temperature changes, and so on. This kind of agencies works upon the organism to 
produce modifications of its form and functions. As far as these forces change the 
organism peremptorily, they may be considered accidental. One of the examples in 
biology is genetic mutation, and in the field of evolution computation, we can map 
this kind of modifications into the mutation operators, which are defined to introduce 
relatively small changes to individual solutions. Second, some “neuro-genetic” mod-
ifications arise from the spontaneous activities of the organism itself when it is carry-
ing out of its normal congenital functions [7]. In plants, in unicellular creatures, and in 
very young children, we can see these variations and adaptations in a remarkable way. 
The commonality of these changes is that all of them have the selective property of 
the nervous system. In the field of evolution computation, we can map this kind of 
modifications into the selection operators and crossover operators. In addition, there 
are a set of “psycho-genetic” modifications which come from the conscious agency of 
the organism itself [7]. For instance, gregarious influences, maternal instruction, the 
lessons of pleasure and pain, and experience in the life may change the organism. 
This kind of modifications has the intelligent property, and has great influence on 
organisms in nature. However, in the field of evolution computation, there is no kind 
of genetic operators corresponds to this kind of modifications for individuals, which is 
widespread in nature.  

On one hand, for co-evolution computation, each population acts as an external en-
vironment for other populations and individuals in one population can learn the expe-
rience from individuals of other populations, consequently other populations play a 
“conscious agency” role [7] of individuals in each population, which further leads to 
appearance of “psycho-genetic” modifications for individuals. On the other hand, in 
cooperative co-evolution, close relationships exist between populations, which are the 
root cause of appeared inconsistencies. Hence we introduce a new genetic operator 
called learning operator for intelligent learning of individuals, and this new genetic 
operator can be used to address the inconsistency issue. Fig. 1 illustrates an improved 
cooperative coevolution procedure, which introduces the new learning mechanism 
based on Baldwin effect. 

Due to space limitation, we omit the details from Step 1 to Step 5, and Step 9, 
which are widely used in existing SBSE research. In the improved cooperative coevo-
lution procedure, we add Step 6 to Step 8 to implement the learning mechanism for 
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each population in cooperative co-evolution, and the inconsistencies between popula-
tions can be resolved in these steps. We introduce these steps (i.e., Step 6, Step 7, and 
Step 8) in detail in following sub-sections. A toy example in the field of automated 
architectural synthesis is provided in Section 3. 
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Fig. 1. The improved cooperative co-evolution procedure of our approach 

2.1 Apply Learning Operator (Step 6) 

In traditional population evolution, when Step 5 is completed, the next generation of 
each population is produced. But in our approach, the new produced generation of 
each population is regarded as a change impact for other populations, and each indi-
vidual in any population should execute certain learning operations with a type of 
learning operator in Step 6. In this paper, we define four types of learning operators, 
which are similar to the types of traditional genetic operator (e.g., roulette wheel se-
lection and tournament selection for the selection operator, and one-point and two-
point crossover for the crossover operator): (1) Lazy learning operator. Similar to 
human beings that not all the people like learning, some individuals in a population 
are “lazy” in this step, which means they don’t update their genes and remain the 
same representation. When using this learning operator, it follows the same procedure 
with traditional evolution for these individuals since no extra learning operation to  
be conducted; (2) Localized learning operator. In a society, people have different 
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interests (e.g., the readers of this paper may be interested in SBSE, but may not be 
interested in software architecture), and they only care about the knowledge of their 
interested fields. In this step, some individuals in a population may do localized learn-
ing with this operator, which means they update their genes according to the know-
ledge of only a few individuals in other populations that they are interested. We may 
use AI techniques (e.g., classification and clustering algorithms) in this learning oper-
ator to decide what the “interesting knowledge” that an individual cares about is (e.g., 
we can define a similarity function to choose the most similar individuals, which pos-
sess the “interesting knowledge”, in other populations for an individual); (3) One-to-
one learning operator. Similar to the human communication that some people prefer 
one-to-one communication, individuals in a population may update their genes ac-
cording to the knowledge of an individual in other populations, which can also be 
decided by AI techniques; (4) Global learning operator. Some individuals in a popu-
lation may update their genes according to the knowledge contained in all the individ-
uals in other populations. Statistics or probabilistic methods might be used with this 
type of learning operator to acquire the collective knowledge of the whole population. 
In summary, these learning operators are used to adjust and update the genes of indi-
viduals according to the knowledge from individuals in other populations except Lazy 
learning operator. Inconsistencies between individuals in different populations can be 
resolved during this learning step (one exception is that when some “lazy” individuals 
are composed in the next step, they will make a mistake for their “laziness” because 
inconsistencies appear. In this situation, these “lazy” individuals only need to re-apply 
another type of learning operator to resolve the inconsistencies). 

2.2 Composed New Population and Calculate the Fitness (Step 7 & 8) 

In Step 7, individuals from two population respectively should be composed to a set 
of new individuals, and these new individuals establish a new population (e.g., for 
automated pattern-based architectural synthesis problem, it is needed to compose the 
individuals from responsibility population and pattern population respectively in order 
to acquire the final solutions. The details can be found in [5]). When this step is com-
pleted, we employ the defined fitness function to evaluate the individuals in the new 
population in Step 8. In our improved cooperative co-evolution procedure, we distin-
guish the fitness functions in Step 2 and Step 8 explicitly. The former only evaluates 
an independent aspect of the software engineering problem, but the latter evaluates 
the problem itself in a cooperative way. For example, in automated pattern-based 
architectural synthesis [5], both responsibility and pattern populations have an inde-
pendent fitness function for evaluating their individuals respectively, in which  
one fitness function measures the quality of responsibility synthesis results (i.e., indi-
viduals in responsibility population) and the other measures the quality of pattern 
synthesis results (i.e., individuals in pattern population), while there is a third fitness 
function that measures the quality of pattern-based architectural solutions (i.e., indi-
viduals in composed population). 
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3 Example 

In this section, we show how to resolve inconsistencies in cooperative co-evolution 
using our approach with a toy example (a more detailed example can be found in [5] 
due to space limitation). We use automated pattern-based architectural synthesis that 
mentioned in the Introduction Section as the application domain of the problem, but 
our approach is generic for nearly all the software engineering problems using coop-
erative co-evolution, which is not limited to this specific problem. 
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Method A, B
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Method C, D, E

A possible individual Ri in 

Responsibility population

A possible individual Pi in 

(Layer) Pattern population

 

Fig. 2. An example of conflict in automated pattern-based architectural synthesis 

As shown in Fig. 2, methods A, B, and C belong to the same class (Class 1) but are 
not allocated in the same layer (A, B are in Layer 1, and C, D, E are in Layer 0), and 
consequently the two individuals in responsibility and pattern populations are con-
flicting. We use the One-to-one learning operator to update the genes of the individu-
al in responsibility population according to the knowledge of the individual in pattern 
population. For instance, in order to generate the next generation solution, Ri should 
learn the layer allocation information from Pi to update itself (or the other way round). 
After learning the genes of Pi, Ri knows that methods A and B should not be allocated 
in a class which contains any of methods C, D, and E. It is then found that the three 
methods in Class 1 (A, B, and C) of Ri have conflicts. As method C conflicts with 
both A and B, Ri decides to move C to another class (e.g., Class 2). The result of ap-
plying this learning operator to the individuals in responsibility and pattern population 
is shown in Fig. 3. The conflict is resolved between the two individuals after the 
learning operation, and we can compose them to an individual for the design problem. 
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Fig. 3. The result of resolving an inconsistency between individuals using learning operator 

4 Conclusions 

In this paper, we propose a new learning mechanism for resolving inconsistencies in 
using cooperative co-evolution model, which is based on Baldwin effect. We extend 
the traditional genetic operators with the concept of learning operator which includes 
four types of learning operators. We describe the use of our approach using a toy 
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example in automated pattern-based architecture synthesis. The approach can be ap-
plied to various software engineering problems that use cooperative co-evolution. 
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Abstract. The selection of the requirements to be included in the next
release of a software is a complex task. Each customer has their needs,
but it is usually impossible to fulfill all of them due to constraints such
as budget availability. The Next Release Problem (NRP) aims to select
the requirements that maximize customer’s benefit, while minimizing
development effort. Visualizing the problem search space from a cus-
tomer concentration perspective, we observed a recurring behavior in all
instances analyzed. This work presents these findings and shows some
initial results of a Hill Climbing algorithm modified to take advantage
of this pattern. The modified algorithm was able to generate solutions
that are statistically better than those generated by the original Hill
Climbing.

Keywords: heuristics, next release problem, landscape visualization.

1 Introduction

The Next Release Problem (NRP) [2] involves selecting the software require-
ments to be included in the next release of a software so that benefits (such as
customer satisfaction or revenue) are maximized while all constraints (such as
budget and development time restrictions) are satisfied. This problem is faced
by any company developing large and complex software used by many cus-
tomers. This is a complex task [7] since each customer has their needs, and it is
usually impossible to meet all of them simultaneously, mainly due to resource
constraints.

In this work, we explore a novel fitness landscape visualization that has re-
vealed a graphical pattern present in all NRP instances analyzed. We believe
that this pattern can contribute to a deeper understanding of the NRP and its
characteristics, enabling the creation of more efficient heuristics to find solu-
tions for this problem. We also present a modified Hill Climbing algorithm that
uses this knowledge to guide its search by narrowing the search space to a more
promising region. Initial experiments have shown that the modified algorithm
was able to generate solutions that are statistically better than those generated
by the original Hill Climbing. We are not aware of any other work that has used
a visualization of the NRP search space as a basis to guide the search process.
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Besides this introduction, this paper is organized in five sections. Next, we
present some background information about the Next Release Problem. The fit-
ness landscape visualization used in this work is explained in Section 3. Then, the
modified Hill Climbing algorithm is introduced in Section 4. Section 5 presents
the design of the proposed experiment and its results. Finally, future work and
conclusions are drawn in section 6.

2 The Next Release Problem

The NRP consists in finding the (close to) optimal subset of candidate require-
ments which maximize expected profits and whose total cost does not exceed
the available budget [3]. The number of choices increases exponentially as the
number of customers or requirements grow [2], fact that justifies the use of
heuristic methods. There are multiple definitions for the NRP and, in this work,
we adopted the mono-objective formulation proposed by Bagnall et al.[2], where
the task is to find a subset of customers whose requirements would be included
in the next release of a software.

Let S be all the customers related to the requirements R. Let W be the profit
gained from satisfying each customer and C be the associated costs. Given a
directed acyclic requirements dependency graph G = (R,E), each customer
si ∈ S directly requests a set of requirements Ri. The profit of si is wi ∈ W and
the cost of requirement rj ∈ R is cj ∈ C. A predefined budget bound is b. The
goal of the NRP is to find an optimal solution X≥, to maximize w(X), subject
to cost(X) ≤ b [8]. There are other definitions for this problem, with different
objectives to be optimized. The NRP was also addressed using multi-objective
search algorithms, as shown in Zhang et al.[9].

3 Fitness Landscape Visualization

Visualization is the process of transforming information into a visual form, en-
abling users to observe the information [4]. The resulting display enables us to
perceive visually features which are hidden in the data. In the context of SBSE,
it is common to attempt to visualize the fitness landscape of problems, as this
visualization can be used to explore the properties of search spaces [5]. The
landscape visualization was stated by Harman[5] as one of the open problems
in optimization for software engineering. Lu et al.[6] state that fitness landscape
characterization shows a lot of promise since it captures the nature of the rela-
tionship between the problem and the algorithm employed to solve it.

While investigating the NRP search space, we came across the charts depicted
in Fig. 1. These charts were created by generating 100 random solutions for each
possible number of customers, from one to the number of customers present in
the instance. Each column in the chart is a boxplot representing the fitness values
obtained by solutions with a given number of customers. The x axis represents
the number of customers satisfied by a solution (i.e. the number of customers
whose requirements are included in the solution) and the y axis represents the
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fitness value of this solution. We can observe an increase in the fitness value while
the number of satisfied customers increases, up to a point where only infeasible
solutions, represented by negative fitness values, are generated. There is also a
transition area, where a mix of feasible and infeasible solutions can be seen.

●●

●
●
●●●

● ●
●●

●
●
●
●●
●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●

●●

●

●

●

●● ●

●●●●
●●

●
●
●
●● ●

● ●
● ●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

−5
00

0
50

0

(a)

Number of satisfied customers

F
itn

es
s

● ●●●

● ●
● ●

●
●

●●●●
●●
●

●
●●

●
●
● ●

●●●●

●

●●●●●●

●

●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●
●●

●●● ● ●●●●
●

●●●●●●
●
●● ● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

−5
00

50
0

15
00

(b)

Number of satisfied customers

F
itn

es
s

Fig. 1. Random sampling for the nrp-1 instance with a budget of (a) 50% and (b) 70%
of the cost of implementing all requirements

The fitness value of each solution was used as input to the R statistical soft-
ware to generate the boxplots. It is not possible to show other charts due to space
constraints, but this interesting graphical pattern was observed in all NRP in-
stances from Bagnall et al.[2] and Xuan et al.[8].

4 Modified Hill Climbing

This section presents a modified Hill Climbing algorithm that uses the graphical
pattern shown in the previous section as a way to narrow the search space,
focusing on more promising areas. The algorithm is based on the Hill Climbing
defined as follows.

The search starts by creating a solution based on a random selection of cus-
tomers. After the initial selection of customers, the solution fitness is calculated
according to Bagnall et al[2]. The solution is stored as the best solution and
the main loop of the search follows. The loop tries to find solutions with better
fitness by adding or removing a single customer from the current solution at
a time. Whenever a solution with higher fitness is found, it becomes the new
best known solution and the trials are repeated from the first customer. If no
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movement is able to improve fitness, a random restart is triggered. The search
stops after reaching a predefined number of fitness evaluations.

The proposed modification, named Visual Hill Climbing, differs from the clas-
sic Hill Climbing in two ways. First, a phase of random sampling is executed
before the Hill Climbing starts. At this phase, several random solutions with
S satisfied customers are generated, S ranging from one to the number of cus-
tomers in the instance. The solution with the highest fitness becomes the best
known solution and S is stored as a lower bound to the Hill Climbing algorithm.

After the random sampling is ended, the Hill Climbing is executed with a
restriction: it can only visit solutions whose number of satisfied customers is
within the range [S, S+N∗α], whereN is the number of customers in the instance
and α ≤ 1 is a parameter to the algorithm. For example, if the best solution
found during the random sampling has 15 satisfied customers and the instance
has 100 customers, the modified Hill Climbing will consider only solutions whose
number of customers is within the range [15, 15 + 100 ∗ α]. This restriction is
used to make the algorithm concentrate in a region where, during the random
sampling phase, solutions with high fitness values were found.

5 Experiments

To compare the results produced by the classic Hill Climbing with its variation
proposed in this work while addressing the NRP, problem instances were opti-
mized according to the problem formulation presented in Bagnall et al[2]. This
section conveys the design of the experiment and its results.

5.1 Experimental Setup

For each problem instance under evaluation, the search was executed under four
configurations, hereafter referred to as HC, visHC-10, visHC-20 and visHC-40.
Configuration HC represents the classic Hill Climbing algorithm described in
Section 4. The other configurations are versions from the modified Hill Climbing.
They differ from each other by the α value. The α value determines the range of
solutions that can be visited, as shown by the formula [S, S +N ∗ α] (described
in Section 4). The visHC-10 uses an α of 0.1, while the variations visHC-20 and
visHC-40 use 0.2 and 0.4 as α, respectively.

Each configuration was executed 30 times for each instance. Each running
cycle resulted in a single best solution whose profit was collected. The search
stopped when a predefined budget of 10,000,000 fitness evaluations was con-
sumed. This is the same budget used by Xuan et al.[8] for configuring a genetic
algorithm. All configurations were executed in a single computer with an i7 In-
tel processor running at 3,4 GHz, 4 Gb of RAM, Windows 8.1 Professional, and
minimal platform software required to run the Java implementation.1

1 Source code available at
https://github.com/richardf/VisualNRP/releases/tag/v.1.0

https://github.com/richardf/VisualNRP/releases/tag/v.1.0
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The experiment was executed upon 15 randomly generated instances previ-
ously used by Bagnall et al[2]. Configurations were pair-wise compared in per
instance basis. Larger profits denote that the configuration produces more effec-
tive results than its competing ones. These values were subjected to the non-
parametric Wilcoxon-Mann-Whitney statistical inference test [1] to ascertain
whether there was significant difference between configurations.

5.2 Experimental Results

Table 5.2 summarizes profit values observed for the configurations under anal-
ysis. The first column indicates the instance name. For each configuration, the
fitness of the best solution found and the average fitness among 30 executions
are shown. Table 5.2 also show p-values for pair-wise comparison between con-
figurations HC and visHC-40.

Table 1. Results for the randomly generated instances

Instance
HC visHC-40 visHC-20 visHC-10

Best Avg Best Avg pV Best Avg Best Avg

nrp1-0.3 1072 1024.47 1081 1029.03 0.65 1088 1020.17 896 836.43
nrp2-0.3 3463 3237.60 3331 3164.37 0.01 3301 3106.33 3166 3057.20
nrp3-0.3 5026 4710.77 4980 4779.03 0.01 4985 4814.30 4993 4866.50
nrp4-0.3 5951 5509.20 5946 5599.63 0.07 5927 5677.27 5991 5759.93
nrp5-0.3 14116 13797.30 14355 13969.67 <0.01 13002 12785.10 10198 9903.83

nrp1-0.5 1732 1629.53 1714 1658.50 <0.01 1651 1578.47 1434 1320.37
nrp2-0.5 6239 5995.37 6322 6094.43 <0.01 6180 5852.67 5089 4830.00
nrp3-0.5 9030 8893.53 9026 8883.87 0.64 9187 8958.07 9044 8935.87
nrp4-0.5 11684 11423.43 11841 11400.53 0.72 12028 11490.27 11724 11386.63
nrp5-0.5 21905 21597.60 22479 22097.70 <0.01 20873 20424.63 17891 17603.57

nrp1-0.7 2455 2413.63 2467 2416.37 0.84 2446 2343.57 2244 2107.50
nrp2-0.7 9796 9623.57 10478 10100.33 <0.01 9477 9093.83 8240 7685.00
nrp3-0.7 13693 13515.90 13838 13661.83 <0.01 13751 13642.97 13761 13651.43
nrp4-0.7 19390 19152.13 19444 19280.67 <0.01 19443 19237.77 19501 19382.43
nrp5-0.7 28678 28556.70 28737 28638.37 <0.01 28703 28632.13 28707 28622.27

The visHC-40 configuration outperformed the other configurations. When
considering the best solution, the HC configuration got the best result three
times, the visHC-40 configuration seven times, the visHC-20 configuration three
times and the visHC-10 only two times. Regarding averages, the HC configu-
ration got the best average only once. The visHC-40 got the best average nine
times, visHC-20 twice and visHC-10 three times.

Comparing HC with visHC-40, the former got the best solution five times,
while the later got it ten times. In respect to averages, HC won three times, of
which only one case was statistically significant with a p-value ≤ 0.01. VisHC-
40 outperformed HC for 12 out of 15 instances, nine of these comparisons being
statistically significant at 99%.
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6 Conclusion

The fitness landscape visualization proposed in this work revealed an interesting
graphical pattern that was observed in the NRP instances commonly used by
the literature. We believe that this pattern can be used to guide the search to
more promising areas of the search space. In order to test this hypothesis, we
proposed a modified version of a Hill Climbing that uses a phase of random
sampling to narrow the search space. In initial experiments, this modified Hill
Climbing was able to obtain solutions that are statistically superior than the
solutions obtained by the original Hill Climbing.

Currently, we are investigating whereas this graphical pattern occurs in other
NRP instances, indicating that it could be something intrinsical to the problem.
We are also trying to determine the best value to the alpha parameter used
by the proposed Hill Climbing and investigating other uses of this pattern that
could lead us to more effective heuristics. The modification of other heuristics
to explore this pattern remains as a future work, as well as comparisons with
other algorithms applied in the literature.
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Abstract. The Next Release Problem consists in selecting which re-
quirements will be implemented in the next software release. For many
SBSE approaches to the NRP, there is still a lack of ability to efficiently
include the human opinion and its peculiarities in the search process.
Most of these difficulties are due to the problem of the human fatigue.
Thus, it is proposed the use of a machine learning technique to model
the user and replace him in an Interactive Genetic Algorithm to the
NRP. Intermediate results are able to show that an IGA can succesfully
incorporate the user preferences in the final solution.

Keywords: Interactive Genetic Algorithm, Machine Learning, Next
Release Problem, Search Based Software Engineering.

1 Introduction

During an iterative and incremental software development process, there are
some complex problems to deal with, such as selecting which requirements will
be implemented in the next release. The term release is used to describe a stable
and executable version of the system to be delivered to the client, in accordance
to his preferences. Given this context, it may be mentioned the widely known
Next Release Problem (NRP) [1], which is based on the maximization of the
client satisfaction while respecting a predefined budget.

The current mono-objective SBSE approaches to the NRP can be considered
as decision-making tools, where the requirements’ selection for the next release
is automatically made, without an effective participation of the requirements
engineer. As a consequence, the users present a certain reluctance in accepting
such results. Therefore, it seems that an inclusion of the requirements engineer in
the search process can result in a proper strategy to handle the NRP, providing
a search technique which is guided by his preferences.

Considering the difficulties in including the decision maker in general opti-
mization techniques, one can highlight the Interactive Optimization. Such strat-
egy is able to employ the human as a protagonist in the solution evaluation
process, so that his knowledge and other psychological aspects are incorporated
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in the search process [2]. This level of human interaction is specially needed when
it is difficult to capture the evaluation function through mathematical models
or when personal judgements are necessary [3].

The Interactive Evolutionary Computation, which is a branch of the Inter-
active Optimization, is supported by two key components, which are the human
evaluation and computational search through Genetic Algorithms [4]. In spite
of the fact that GAs are widespread in SBSE, there is still a lack of ability in
using the human preferences in the search process. Thus, the Interactive Genetic
Algorithm (IGA) is an alternative to handle this problem. The IGA follows the
same concepts of a traditional GA, the difference is regarded to the solution
evaluation process, where the solution judgement is performed by the user rather
than a mathematical function [5].

Regarding the application of IGAs to requirements engineering problems, it
can be pointed out the paper by Tonella et al. [6], which examined the use of an
IGA in the requirements prioritization process. Its design aims to minimize the
number of requirements pairs evaluations obtained from the user, making the
approach more scalable and accurate regarding the requirements classification.
It is also interesting to point out the work by Simons et al. [7], where it proposes
the use the use of an interactive evolutionary approach alongside with intelligent
agents to mitigate the difficulties of software design.

Despite the human involvement being interesting and attractive to the search
process, it is also the cause of one of the most critical problems in interactive
optimization approaches, which is the human fatigue [5]. This exhaustion occurs
due to the repeatedly requests for user evaluations, which ends up being a major
threat to the IGA evolution.

Therefore, this paper proposes the use of a machine learning technique to
model the requirements engineer preferences during the use of the IGA for the
NRP. This way, it will be possible to handle the human fatigue and still incor-
porate the subjective criteria throughout the search process.

The remaining of this paper is organized as follows: Section 2 specifies the pro-
posed IGA and presents results of the empirical study performed to validate it.
Section 3 explains the proposed machine learning modeling for the requirements
engineer. Finally, Section 4 concludes and discusses future works.

2 An Interactive Genetic Algorithm for the Next Release
Problem

Consider R = {r1, r2, . . . , rN} the set of requirements. Each ri has an importance
value vi and an effort cost ci. The NRP model proposed in this work is presented
next:

maximize: α.score(X) + β.she(X) (1)

subject to: cost(X) ≤ budget (2)
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where, score(X) =

N∑

i=1

vixi (3)

cost(X) =

N∑

i=1

cixi (4)

where budget refers to the release available budget. The decision variable is
represented by the vector X = {x1, x2, . . . , xN}, so that xi = 1 implies that
requirement ri is included in the next release and xi = 0 otherwise. The score(X)
function (Equation 3) represents the total importance of the release. Similarly,
the cost(X) function (Equation 4) represents the total effort cost of the release.

In the IGA application to the NRP, each individual is a release. The require-
ments engineer provides a “grade” for each individual throughout the IGA evo-
lution. This “grade” is called subjective human evaluation (she) and represents
the user preferences regarding the requirements selection (Equation 1). In this
work, this value is given according to a numerical range previously established.
When the release fully satisfies the user, the evaluation is maximum.

The approach used in this paper can be considered as a generalization of the
work by Baker et. al [8]. When the weights in Equation 1 are configured to α = 1
and β = 0, the classical NRP is reached.

An empirical study was conducted in order to evaluate the proposed IGA for
the NRP. The following topics present the settings and results from this study.

2.1 Empirical Study Settings

The set of instances was randomly generated. The number of requirements varies
from 50 to 200. There are no interdependencies between requirements and the
importance of each requirement takes an integer value between 1 and 5. The
effort cost of each requirement also varies from 1 to 5. The instance name is in
the format I R, where R is the number of requirements.

The score(X) value is normalized to the same range of she(X). Such normal-
ization is needed in order to avoid a possible overwhelm regarding the functions
score(X) and she(X). Thus, the only way to prioritize one of the functions is
through the weights α and β.

In order to represent the requirements engineer, a simulator was developed.
The main purpose of this simulator is not to faithfully simulate a human be-
ing, but rather demonstrate the influence of a certain evaluation profile in the
search process. Based on the evaluation profile, the simulator defines a “target-
individual”, which represents what the requirements engineer would consider as
an optimal release. The requirements to be included in the target-individual are
chosen based on a certain percentage, which in this particular work was defined
as 50%. Three differents evaluation profiles were considered: in the Random
profile, the requirements are randomly defined. In the Lower Score, the re-
quirements with least score are included. Similarly, in the Higher Cost, the
requirements with highest cost are included.
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Throughout the IGA, the evaluations for each individual are provided accord-
ing to the similarity to the target-individual. If the individual’s requirements are
totally different from the target-individual, the evaluation is minimal. In the
other hand, when the individual is equal to the target-individual, the evaluation
is maximum. The evaluations are proportionally given for the other possibilities.
For this empirical study, the minimum she(X) is 0 and the maximum is 10.

Regarding the IGA settings, it was used a fixed amount of 500 individuals,
100 generations, 90% crossover rate, 1/N% mutation rate, an elitism rate of
20% and budget equals to 60% of the maximum release cost. All parameters
were empirically defined by preliminary tests.

Three weights configurations (α = 1, β = 0; α = 0, β = 1; α = 1, β = 1) were
considered. For each weights configuration and instance, the IGA was executed
100 times, collecting the average similarity degree of the final solution, which
represents how similar is a candidate solution to the target-individual. Consider
a set of 6 requirements with a target-individual [100011]. The possible solution
[110110], for example, presents 3 equal requirements to the target-individual (r1,
r3 and r5), so this solution would present a similarity degree of 3/6 = 0.5. The
average of the non-normalized score(X) was also collected.

Therefore, the empirical study was conducted in order to answer the following
research question:

RQ: What is the influence of the evaluation profile in the search process?

2.2 Results and Analyses

Table 1 shows the average of both similarity degree and score for each instance,
each evaluation profile and different weights settings.

Table 1. Empirical Study Results

Instance Attributes
RANDOM LOWER SCORE HIGHER COST

α, β α, β α, β
1, 0 0, 1 1, 1 1, 0 0, 1 1, 1 1, 0 0, 1 1, 1

I 50
Similarity Degree 0.48 0.96 0.90 0.30 0.96 0.86 0.30 0.86 0.86

Score 116.01 71.53 91.55 116.01 60.16 88.96 116.01 63.81 78.21

I 100
Similarity Degree 0.56 0.88 0.81 0.41 0.88 0.79 0.26 0.85 0.80

Score 230.09 144.63 192.33 230.09 131.84 191.84 230.09 133.56 167.09

I 150
Similarity Degree 0.50 0.79 0.74 0.34 0.79 0.70 0.26 0.76 0.70

Score 321.55 203.35 307.57 321.60 180.93 287.12 321.50 196.04 260.88

I 200
Similarity Degree 0.46 0.73 0.66 0.29 0.73 0.63 0.26 0.74 0.64

Score 459.06 299.61 440.65 459.00 259.63 408.31 459.14 266.79 390.04

As can be seen, when the weights are configured to α = 1 and β = 0, all
instances present a high score value, but a considerably low similarity degree.
This is due to the fact that only the score(X) is considered in the search process.

In contrast, when the weights are configured to α = 0 and β = 1, only she(X)
is considered and the similarity degree is higher for all instances. Thus, the
proposed IGA is able to incorporate the requirements engineer preferences in
the solutions. Looking at the I 50 and I 100 instances, with the Random profile,
the solutions present a similarity degree of 0.96 and 0.88, respectively. In this
configuration, it is also clear the score values tend to be lower than the previous



232 A.A. Araújo and M. Paixão

ones. This is due to the fact that in most cases the solution the requirements
engineer considers as good, does not necessarily present a high score.

However, the presented approach also allows the configuration α = 1 and β =
1 which aims at optimizing the user preferences and the score simultaneously.
Such weights configuration can provide valuable insights regarding the trade-offs
between similarity degree and score. This behavior can be seen in the instances
I 150 and I 200 for the Lower Score profile, which present a similarity degree of
0.70 and 0.63, and score of 287.12 and 487.31, respectively.

The Lower Score and Higher Cost profiles are unusual in a real software
development environment, but the proposed IGA could still incorporate these
preferences in the final solution. Given these results, it is stated the final solutions
are considerably influenced by the evaluations profiles, in a way they tend to get
closer to the target-individuals, answering the research question.

3 A Machine Learning Approach for User Modeling

As demonstrated in the previous section, the IGA is capable of incorporating the
user preferences in the search process. However, as explained earlier, the human
fatigue problem makes an interactive approach unfeasible when the number of
interactions is high. For an IGA settings with 500 individuals and 100 genera-
tions, for example, the requirements engineer would be asked 50000 times.

In order to handle this difficulty, this paper proposes a machine learning tech-
nique to model the user evaluation profile. Thus, the learning model would use
the individuals, and the respective human evaluations, as a training set, replac-
ing the requirements engineer after a while. The architecture of the proposed
machine learning model alongside the IGA can be seen in Figure 1.

Fig. 1. The Architecture of the Learning Model alongside the IGA

The process is divided into two distinct stages. In the first stage (solid lines),
all individuals will be evaluated by the requirements engineer. The IGA is guided
by the user’s preferences while the learning model learn its behavior. The learning
model will be trained until a confidence level is satisfied or a certain number of
evaluations is reached. In the second stage (dotted lines), the model would have
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already learnt the user preferences, and the remaining evaluations will be fully
transferred to it, resulting in a significant reduction in human fatigue.

Therefore, when incorporating a learning model to the IGA, it is expected the
results remain consistent to the evaluation profile, but with a significant decrease
in the number of questions to the requirements engineer.

Currently, the learning model is under development and it is expected to
be tested with different learning techniques (Least Means Square, Multilayer
Perceptron, etc) which one present a better suiting to the proposal.

4 Conclusion

The requirements selection is a complex task in an iterative and incremental
software development project. When search techniques are used to tackle such
problems, it becomes difficult to incorporate the user’s preferences to the process.

The objective of this work was to develop a feasible Interactive Genetic Al-
gorithm to the Next Release Problem, but in a way it could also deal with the
human fatigue. In order to handle this problem, it is proposed a machine learn-
ing technique to model the requirements engineer preferences and replace him
throughout the search process. Intermediate IGA results show that it is able to
incorporate the requirements engineer knowledge in the final solutions.

As future works, it is expected to finalize the implementation and tests related
to the learning model; assess different ways in which the requirements engineer
can evaluate the solutions; consider interdependencies between requirements;
apply the IGA for the multiobjective version of the NRP.
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Abstract. The software and hardware systems required to deliver mod-
ern Web based services are becoming increasingly complex. Management
and evolution of the systems requires periodic analysis of performance
and capacity to maintain quality of service and maximise efficient use of
resources. In this work we present a method that uses a repeated local
search technique to improve the accuracy of modelling such systems while
also reducing the complexity and time required to perform this task. The
accuracy of the model derived from the search-based approach is vali-
dated by extrapolating the performance to multiple load levels which
enables system capacity and performance to be planned and managed
more efficiently.

1 Introduction

The IT services offered over the internet, and within enterprise premises, in-
creased rapidly over the past few decades. The expectation of a consistent high-
quality level of service is growing and becoming more difficult to be met. In the
meanwhile, the demand for a cost effective solution to efficiently use comput-
ing resources according to workload variations is getting stronger, especially for
enterprise service providers.

Predicting enterprise applications service levels under various loads and re-
sources is widely done based on time and cost efficient performance modelling
techniques [1]. A Queueing Network Model (QNM) representing the various sys-
tem resources (such as the CPU and Disk I/O) is built and solved during this
process. One input to the QNM solver is the amount of time required to serve
each transaction on each resource in all visits to the underlying resource, while
excluding the queuing time. This input value is known as the Service Demand.

Obtaining such service demands by measuring the time spent by a single
user transaction on each resource faces a major measurement problem due to
small service demands. Additionally, some functionality, such as caching, can
be only triggered when multiple users access the system, which leads capacity
engineers to infer these service demands from multiuser measurements [2] [3]
[4]. Such approaches have problems (we will discuss some of them in Section 2)
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c© Springer International Publishing Switzerland 2014



Transaction Profile Estimation of Queueing Network Models for IT Systems 235

which lead to various approximations and lengthy procedures. This causes a less
accurate prediction results which are usually solved by deliberatly increasing
the hardware requirments to compensate for this imprecision, resulting in an
under-utilized infrastructure. Additionally, the lengthy procedure can easily put
an extra pressure on an already busy Capacity Management (CM) projects.

In this paper, we propose a search-based solution to obtain a more accu-
rate service demands from the data obtained from multiuser performance data.
This work improves the capacity planning process by enhancing its accuracy
and duration. Also, other processes relying on the service demands, such as the
performance regression testing technique [5] [6], will also benefit of this work.

2 Queueing Network Models for Capacity Planning

Transactions are created by users of enterprise applications to perform certain
functionalities (such as search and buy). These transactions are served by the
various system resources (such as the CPU and Disk I/O of each server) to
fulfil the user request [1]. The flow of the transaction through the system can be
represented by a Queueing Network Model (QNM) [1] such as the one shown in
Figure 1. Each node represents a system resource (e.g. CPU, Disk I/O) which
consists of a processing unit and a queue for the transaction to wait if the
processing unit is busy. Each transaction may visit each resource multiple times
and the total time required to serve the transaction on each resource, during all
visits and excluding the time in the queue, is called service demand.

Fig. 1. Queueing Network Model of a Three-Tiered Computer System

The Transaction Response Time (TRT) is the time spent by a certain trans-
action on all system resources [1] which is the sum of the actual processing time
(service demand) along with the time in the queue. The Transaction Profile (TP)
is defined as the total series of service demands on all system resources. Thus,
the TP is the lower bound of the TRT, or in other words it is equal to the TRT
when the transaction is the only one in the system (i.e. no queueing).

Capacity Management (CM) of the system is the process of predicting its
performance by solving the QNM (via various known techniques). This provides
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predictions of TRTs and Resources Utilizations (RUs) for various load and sys-
tem configurations as depicted in Figure 2. This typically uses the following three
inputs:

1. The QNM of the system, similar to the one shown in Figure 1.
2. The load characterization [1] which includes the number of users issuing each

transaction and user Think Time (TT).
3. Service demands (TP) for each transaction at each resource. Our focus in

this paper is on enhancing the process to obtain the service demands (TPs).

Fig. 2. Solving of Queueing Network Model to Predict System Performance

Fig. 3. Presented Approach to Infer TPs From Performance Data (TRTs, RUs)

Estimating the profile of service demands for a given transaction (i.e. the
TP) would be most easily achieved by running a single transaction through the
system, but this has the following problems:

1. High inaccuracy in measuring service demands due to their small values [3].
2. It is unreliable to measure service demands on virtualised systems [3].
3. Some system behaviours (such as caching) are only triggered under load.

To solve these problems, researchers proposed to focus on measuring the end-
to-end parameters, particularly the TRTs and RUs, and to infer the service
demands from them [2] [3] [4]. This typically involved running the tests with a
number of different load values (time consuming) and simplifying the system to
a single node approximation (rarely applicable).

3 Inferring Service Demands

We propose a new method which does not rely on the single node approximation
and can use a single multiple user test run at one load level. We propose to
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Fig. 4. Reverse-solve QNM by Applying a Search-based Technique

reverse the normal CM process as depicted in Figure 3. The inputs for the QNM
reverse-solver are user information, TRTs, RUs while the outputs are the service
demands, i.e. the TPs. The QNM reverse-solver is implemented by using the
Repeated Local Search (Continuous Space Hill Climbing) technique [7] as shown
in Figure 4.

The Local Search technique is repeated multiple times each with a different
starting condition (set of TPs). Given that any TP can have a value ranging from
zero to the value of the corresponding TRT, the starting TPs are nominated by
evenly dividing the range (0 to TRT) to a predefined number of points. The
number is chosen as a compromise between the search time and the accuracy
of the result. At the end all the solutions returned by the Local Search (local
maximum) are compared, as will be described shortly, and best one is returned.

The quality of the solution (EVal) is defined as the distance between the TRTs
(and RUs) and their corresponding target values (ultimate solution) which is
calculated as shown below (a smaller value is better):

1. Calculate percentage difference between each proposed and target TRT (RU).
2. For all the TRTs find the average percentage value (Do same for all RUs).
3. Do a weighted summation of the above averages.

The summation of all service demands corresponding to each transaction
should equal to the starting TP. Accordingly, the initial service demands are
set by dividing the starting TP value among the corresponding service demands
either equally or with a predetermined ratio of that transaction. These ratios can
be learned by the system and applied to subsequent searches on next releases or
similar applications.

The Local Search technique loops over all initial service demands. For each one,
tests the adjacent points by incrementing (decreminting) that service demand
with selected steps. The QNM is solved for all solutions and the outcome is



238 S. Ghaith et al.

Table 1. Using the Proposed Technique to Infer TPs from a Multiuser (100 users) Run
and Use Them to Predict TRTs at Other Loads and Compare with Measured Values

Transaction Name
Inferred
TP (sec)

TRT Predicted and Measured (sec)
Users 200 300 400

Home 0.43
Predicted 0.71 0.91 1.05
Measured 0.74 0.91 1.11

List Products 0.24
Predicted 0.45 0.79 0.95
Measured 0.48 0.80 1.01

Search for Products 0.26
Predicted 0.39 0.47 0.65
Measured 0.42 0.49 0.66

evaluated using EVal and if the best of these neighbour points is better than the
current point the search will move to it. The same is done for all points in the
loop. If the EVal of the proposed solution (generated by the end of the loop)
is lower than an epsilon value then the entire search process concludes with a
perfect solution. Otherwise, if the proposed solution is better than the previous
one, it is set as a new set of starting TPs point and the loop is restarted over all
service demands (Local Search still running). This continues until the proposed
solution is not better than the current one (local maximum) so the Local Search
iteration concludes and a new one is triggerd with new starting TPs.

4 Experimental Evaluation

In order to evaluate our technique, we performed tests on the reference JEE
enterprise application (JPetStore) with 4 performance runs of 100, 200, 300 and
400 users. Each run included 10 transactions applied by a load generator tool.
Each run took around one hour and the TRTs and RUs were recorded.

We used the presented technique to infer the TPs using the run with 100
users. The TPs corresponding to a subset of the transactions are shown in the
second column of Table 1. Then we used these TPs to predict the TRTs at loads
of 200, 300 and 400 users using the process in Figure 2. The last three columns
of the Table show the TRTs obtained using the prediction process and direct
measurements. We can see that the results are close and the error is within
normal limits for the QNM based techniques. The search process to obtain the
TPs converged in less than 8 minutes, which yields a significant saving of several
hours over the existing inference techniques. Finally, we set the number of Local
Search repeats to 10 but all cases converged in maximum of three repeats.

5 Related Work

Inferring the service demands (TPs) from TRTs and RUs has been explored
because measuring such counters is much easier than measuring the service de-
mands. Casale et al [2] proposed to do a linear regression between the RUs and
the service demands. While Kraft et al [3] proposed a similar approach but to
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use TRTs instead of RUs. These two approaches assume the system can be sim-
plified to one node which does not hold true for most IT systems. In addition,
multiple runs with different loads are required which is both time and resource
consuming. Liu et al [4] proposed a formulation to estimate the parameters of the
QNM using a quadratic programming framework. This requires the end-to-end
parameters TRTs, RUs and Throughput from a set of runs which is costly.

6 Conclusions and Future Work

Current techniques to obtain service demands used to solve QNMs in CM projects
are inaccurate and time consuming. In this paper, we addressed these concerns by
proposing a search-based approach to infer the service demands from end-to-end
data (TRTs and RUs) collected from only one performance run. We explained
the technique using Local Search accompanied with Restarting techniques. In
future, we plan to explore other search alternatives in order to improve the
performance of the reverse-solver, mainly when the number of transactions be-
comes large. Also, we believe that many parameters of the search process can
be learned and generalized for various enterprise application (and transaction)
categories. In addition, we will show the improvement on CM projects and other
fields utilizing service demands, such as the regression testing data analysis.
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Abstract. We investigate search based fault prediction over time based
on 8 consecutive Hadoop versions, aiming to analyse the impact of chronol-
ogy on fault prediction performance. Our results confound the assumption,
implicit in previous work, that additional information from historical ver-
sions improves prediction; though G-mean tends to improve, Recall can be
reduced.

1 Introduction

Software Fault Prediction is challenging, because of the diverse factors that influ-
ence the location and numbers of faults. Such factors vary in strength-of-influence
and availability between systems and organisations. Nevertheless, this challenge
is important because fault prediction may improve effort targeting and reduce
the number of faults that survive into production software [9]. Predictive mod-
elling has thus become an attractive subset of activity for Search Based Software
Engineering (SBSE) [1,10]. Search-based approaches have been used to predict
effort [7], quality [3], faults [18,19] and performance [14].

Like any prediction system, a fault prediction system is entirely dependent
upon the information available to it [9]. One might expect that additional in-
formation can only serve to improve predictive performance. Unfortunately, this
näıve assumption does not always hold in practice; extra information may be
contradictory or misleading and can thereby harm predictive performance.

In this paper, we address the challenge of understanding the way in which
information about different versions of the software system impacts upon our
ability to define search based fault prediction systems over time. Our previous
work has demonstrated that such project chronology can be valuable for pre-
dictive performance in software effort estimation [15,16]. However, no work has
investigated whether chronology is also important in software fault prediction.
We extracted and curated1 data from 8 versions of the Hadoop system, using it
to train a search based fault prediction system. Our prediction system [19] uses a
Genetic Algorithm to train a Support Vector Machine, which predicts whether a

∗ Author order is alphabetical.
1 All data on which we report here is available at
http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/hadoop/
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class is faulty. This is the first time that results have been reported on temporal
fault predictive performance, over multiple releases.

Our results reveal that, as expected, overall predictive performance (measured
using G-mean) is statistically significantly better when augmented with the data
from the entire version history. However, perhaps more surprisingly, we also found
that, for half the versions considered, Recall is statistically significantly better
using solely the previous version. Therefore, this study calls for a fundamental
change in the way we view software fault prediction, in order to take chronology
into account.

2 Search-Based Temporal Fault Prediction

Problem Formulation: We formulate software fault prediction as a temporal
learning problem in which data on a different version of a software system are
made available at each time step. These data comprise metrics describing all
existing classes within the source code of the given version and whether or not
faults to be fixed have been found in those classes. Data on all versions up to the
current time step are available for building models, even though one may chose
not to use all data available. At each time step, faults are predicted in the next
version of the system. We refer to the version received at time step t as vt.

Experimental Objective and Setup: The main objective of our experiments
is to analyse how data from different versions of the software system Hadoop
impact upon our ability to define search based fault prediction over time. We
analysed the following models’ performance at predicting faults in version vt+1:

– Models Mt: each model Mt is trained using all versions v0 to vt;
– Models MPt: each model MPt is trained using only the previous version vt.

This allows us to check whether models trained on the most recent version may
outperform models trained on all versions so far. In addition, we also investigate
the performance of a modelMPt, built from version t, at predicting faults in each
and all of the subsequent versions. This will reveal whether the performance of
old models always decreases with time, or whether old models can remain useful
for prolonged periods of time.

The performance measures analysed are G-mean and Recall. Hadoop denotes
a so-called ‘imbalanced’ learning problem; there are much more non-faulty than
faulty examples. We use G-mean because it is usually considered to be more ro-
bust than other measures (e.g., the so-called ‘Accuracy’ and ‘F-measure’) to the
influence of the faulty and non-faulty classes on performance [13]. It is defined as
the geometric mean of the Recall and Specificity. Recall is the rate of faulty exam-
ples correctly classified as being faulty (i.e., the True Positive Rate), while Speci-
ficity is the rate of non-faulty examples correctly classified as being non-faulty (i.e.,
the False Negative Rate). Recall is particularly important to the software engineer
because a good Recall means that few faulty components will be missed. The con-
sequences of low Recall have been argued to be far more important than those of
low Precision [17]. This motivates the study of Recall in our analysis.
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Technique: Several studies [6,8] have claimed that Support Vector Machines
(SVMs) are successful at predicting fault-proneness in software components.
However, in order to obtain a more accurate classification, SVMs required a
suitable configuration. Previous work has shown that using a Genetic Algorithm
(GA) for configuring SVMs enables them to outperform several other techniques,
being effective for inter-release fault prediction [5,19]. This motivates the choice
of this technique in our experiments. The technique works as follows: a solu-
tion to the problem is an SVM configuration consisting of n parameters (with n
determined by the SVN kernel function).

As kernel function, we employed the widely used Radial Basis Functions
(RBF), which has two parameters C (the soft margin parameter) and γ (the
radius of the RBF kernel). The GA chromosome is thus composed by two genes,
for C and γ, the values of which vary in the ranges [0.000001, 0.01] and [8,32000]
respectively. An initial population of 100 random chromosomes was created. To
compute the fitness of a chromosome, representing an SVM configuration, we
execute the SVM with the chosen configuration on the training set, thereby ob-
taining fault predictions. These predictions are evaluated using G-mean as per-
formance criterion (fitness function). Random undersampling [13] of the SVM’s
training set was used to deal with class imbalance.

To create the new offspring, we use tournament selection with single point
crossover and mutation, each with probability of 0.5 and 0.1 respectively. We ter-
minate the search after 300 generations or when best fitness remains unchanged
for 30 generations. The GA setting was chosen to be the same to previous work
[5,19]. To cope with the stochastic nature of GA, we execute 30 runs and re-
port the boxplots of the performance obtained on the test set, backed up by
the results of non-parametric inferential statistical tests, as recommended in the
literature [2,12]. As sanity check, we compared our results to those obtained by
using a uniformly random classifier that predicts each component in a given test
set to be faulty or not-faulty with the same probability (i.e., Random Guessing).

Data Extracted and Preprocessing: We mined the Hadoop JIRA issue
repository2 to extract bug information for each Hadoop Common revision. We fil-
tered out unresolved bugs and only considered fixed bugs with available patches.
An issue is deemed to be a ‘fixed bug issue’ if its type attribute is Bug, its reso-
lution status is Fixed, its status is either Closed or Resolved and the number
of attachments is greater than one. We coded this rule as a ‘JQL’ query, using
the JIRA command line tool to extract bug information automatically from the
Hadoop JIRA repository. We examined the patches for each bug and located
the source files that changed to fix it, considering only the latest patch version
for multiply-patched bugs. For each Java class contained in a given revision,
we computed the number of bugs found together with the Chidamber-Kemerer
metrics [4] and the Lines of Code (LoC) metric using the tool ckjm3. The overall
data collection and post-processing procedures are described in Algorithm 1.

2 https://issues.apache.org/jira/browse/hadoop
3 omit.iiar.pwr.wroc.pl/p_inf/ckjm/

https://issues.apache.org/jira/browse/hadoop
omit.iiar.pwr.wroc.pl/p_inf/ckjm/
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We analysed the first 8 versions of Hadoop Common (from 0.0.1 to 0.8.0) con-
taining in total 16 minor releases. From these releases we extracted 626 bug fixes.
We filtered out those affecting non java-components and the components con-
tained in the package’s tests and examples. This left 509 bug fixes with which we
experimented. For each version, we aggregated the data for all the corresponding
revisions and considered a class to be faulty if its number of bugs is greater than
1. Considering all revisions together, 81% of the components are non-faulty and
19% are faulty. To save space and support replication, all our data, statistics
and results are available on-line 4.

Algorithm 1. The overall data collection and post processing procedures

1. for each released version do
2. get issue-keys with the JQL query:

project = ”HADOOP” and issuetype = Bug and
resolution = Fixed and statusin(Resolved, Closed) and
“Attachmentcount” ≥ “1”

3. for each issue-key do
4. save all information of this issue
5. get attachment list and find name for the latest patch
6. download the latest patch
7. link current issue to files changed in the patch
8. end for
9. get current version of the source from GIT/SVN

10. compute the metrics for the source files
11. end for
12. merge metrics and bugs for each component together

3 Results

Figure 1 presents boxplots for G-mean and Recall values obtained over 30 runs
for all models described in Section 2 and for Random Guessing (RG).

We observe that the best among the two models (Mt orMPt) performs in gen-
eral better than RG. One-tailed Wilcoxon Sign Rank tests with Holm-Bonferroni
corrections (overall α = 0.05) revealed that GA+SVM was significantly better
than RG (with high effect size: Â12 > 0.81) in terms of G-mean on all the con-
sidered versions, except for t = 5 where there was no statistical difference. The
best among the two models is significantly better than RG in terms of Recall on
all the considered versions (with high effect size: Â12 > 0.80).

We now compare the performance of model Mt, against the corresponding
model MPt, to assess whether models trained on all data outperform those
trained solely on the previous version.

Figure 1 reveals that the prediction ability of the models Mt and MPt varies
depending on the version. In particular, Mt provided better G-mean than MPt

on all the versions vt+1 except for t = 1, while MP1 provided the best G-mean.
This is expected; early versions offer less information. However, Mt provided
better Recall values than MPt only in two cases (t = 2 and t = 6), similar in
one case (t = 3), and worse in the remaining ones (t = 1, t = 4, t = 5).

4 http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/hadoop/

http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/hadoop/
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To assess whether these differences are significant we used the Wilcoxon
Signed Rank Test with Holm-Bonferroni corrections (overall α = 0.05). In partic-
ular, we check two null hypotheses: HG−mean

0 : “There is no difference between the
G-mean provided by Mt and its corresponding MPt”; and HRecall

0 :“There is no
difference between the Recall provided by Mt and its corresponding MPt”. The
results revealed that we can reject HG−mean

0 for all the versions (p-value<0.001),
while we can reject HRecall

0 for all the models (p-value<0.005), except for t = 3
(p-value=0.145). We conclude that (a) there is always statistically significant
difference between the G-mean values provided by Mt and MPt (and with high
effect size: Â12 > 0.80) and this difference favours Mt, except for t = 1 where it
favours MPt; (b) there is statistically significant difference between the Recall
values provided by Mt and MPt (and with high effect size: Â12 > 0.70): in three
cases (t = 1, t = 4, t = 5) this difference favours MPt, in two cases (t = 2 and
t = 6) it favours Mt.

These findings from Hadoop indicate that engineers who want to find all faulty
components may get better results using models trained solely on the previous
version, discarding the extra ‘information’ present in the version history. Since
these results indicate that models MPt are potentially useful, we now move on
to investigate them in more detail.

We investigate the performance of a model, MPt, built from version t, at pre-
dicting faults in each and all of the subsequent versions. Figure 2 shows the me-
dian performances. We observe that the G-mean does not always decrease with
time (e.g., MP3 and MP4), even though earlier models (e.g., MP0 and MP1) do
tend to become less competitive with time. Once again, Recall is different. We see
a lower variation in performance and also, perhaps more importantly, we observe
models that remain competitive overmany subsequent releases. For instance,MP0

remains competitive throughoutmost of the first 8 versions of Hadoop.We also ob-
serve that models trained on the most recent version are not always the best fault
predictors (e.g., MP3 outperforms MP5 for fault prediction in version v6). This
suggests that dynamic adaptive prediction systems [11,10] are required, so that we
can automatically recognise the best-suited model for each version.
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Fig. 1. G-mean (a) and Recall (b) obtained by Mt, MPt and RG for predicting faults
in version vt+1, over 30 runs
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Fig. 2. Median model performance considering 30 runs over time

4 Conclusions

Our analysis of Hadoop showed that using data from all versions is not always
needed for prediction. We also found that prediction models trained on early
software versions may preferable to those trained on the latest versions. This
motivates the further study of dynamic adaptive fault prediction systems.
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Abstract. Adding new functionality to an existing, large, and perhaps
poorly-understood system is a challenge, even for the most competent hu-
man programmer. We introduce a ‘grow and graft’ approach to Genetic
Improvement (GI) that transplants new functionality into an existing
system. We report on the trade offs between varying degrees of human
guidance to the GI transplantation process. Using our approach, we suc-
cessfully grew and transplanted a new ‘Babel Fish’ linguistic translation
feature into the Pidgin instant messaging system, creating a genetically
improved system we call ‘Babel Pidgin’. This is the first time that SBSE
has been used to evolve and transplant entirely novel functionality into
an existing system. Our results indicate that our grow and graft approach
requires surprisingly little human guidance.

1 Introduction and Backgroud

Despite much progress in software development environments, programming still
includes many human activities that are dull, unproductive and tedious. In this
paper we propose a new SBSE approach to software development: Grow and
Graft, in which a new feature is grown (using genetic programming) and sub-
sequently grafted into an existing system. This grow and graft development
approach aims to reduce the amount of tedious effort required by human pro-
grammer in order to develop and add new functionality into an existing system.

Our approach is inspired by the recent trend in Search Based Software Engi-
neering (SBSE) called ‘genetic improvement’ [2,8,10,11,14,15]. Genetic
Improvement (GI) uses existing code as ‘genetic material’ that helps to au-
tomatically improve existing software systems. It has been used to repair broken
functionality [10,14], and to achieve dramatic scale-ups for sets of small bench-
marks [11,15], and also for a 50k LoC genome matching system [8], for graphic
shaders [14] and for a CUDA stereo image processing system [7]. Related work
on loop perforation has also reported dramatic speed-ups [13]. GI has also been
used to port one system to a new version on a different platform [6].

Recently, it has been demonstrated [12] that GI can be used to transplant code
[3] from one version of a system to another. In this previous transplantation work
[12], code from several versions of MiniSAT (the ‘donor’) were transplanted into
a specific version of MiniSAT using GI. The aim of this transplantation was to
improve execution time for a specific task (Combinatorial Interaction Testing).

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 247–252, 2014.
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Our approach to software transplantation is to grow code for new functional-
ity, rather than to improve existing non-functional properties of the system (such
as execution time). We provide empirical evidence that grow and graft is, indeed,
achievable on a large real-world system. Specially, we report on two grafting op-
erations, carried out to insert new functionality into Pidgin, a 200kLoC C/C++
instant messaging system which has several million users worldwide.

In our first illustrative operation, we grafted a simple human-written ‘count-
down’ code fragment. This graft augments Pidgin with the new feature that all
the user’s messages include the time remaining to the SSBSE 2014 challenge
deadline. This example simply serves to illustrate the application of our grafting
approach. We then report on a more challenging transplantation, in which we
grew and grafted a new feature that augments Pidgin with a ‘Babel Fish’ that
simultaneously translates the user’s English language instant messages into Por-
tuguese and Korean. This new functionality is sufficiently anachronistic that we
can be relatively sure that no human has hitherto developed it. Nevertheless, it
might be useful for improving communications between users who happen to be
American, Brazilian and Korean; the general and co-program chairs of SSBSE
2014 and the chair of the SSBSE 2014 challenge track, for example.

1. Grow: First, we use Genetic Programming (GP) to grow, in isolation, frag-
ments of code partly guided by ‘suggestions’ provided by the developer. The
suggestions consist of the names of library functions the developer believes may
be important and partial ordering constraints on when they should be called.
The human may also provide a few necessary conditions for correctness that
the programmer knows, from his or her intuition, ought to hold in any correct
solution. Our approach thus does require a small contribution from the human
to capture functionality (with tests) and to constrain the search space with high
level humanly-intuitive suggestions; the rest is entirely automated. However the
programmer is not required to choose any specific variable names, nor assignment
statements nor expressions, nor to construct any specific calls, nor to determine
where any of the statements should reside within the system to be improved.

2. Graft: The working prototype grown by GP is a fragment of code that
implements the desired functionality, but which does so entirely in isolation. The
remaining challenge is to find a way to incorporate our GP-grown fragment into
the larger real-world system. This is the task of the second, ‘grafting’, phase
of our Grow and Graft approach. Grafting the donor fragment involves two
activities: finding a viable host insertion location (or locations), and identifying
the expressions that serve as parameters between the donor and the host.

This is the first time that either the SBSE or GP community has reported the
successful evolution of entirely new functionality in a real world software system.
Previous work has either concentrated on improving non-functional properties
or repairing existing broken functionality rather than growing genuinely new
functional behaviour. We believe that the ability to extend existing real world
systems in this way may open many exciting possibilities: Future work can use
Grow and Graft to invent software development approaches that blend a small
amount of human intuition with a large amount of automated search.
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2 Grafting an SSBSE Challenge Deadline Countdown

A small fragment of C code count down() was written by hand, in complete
isolation from Pidgin, and by a programmer unfamiliar with Pidgin. The code
fragment takes the current time and returns a string containing the number of
days to the SSBSE Challenge Deadline. In this case, the grow phase is trivial,
since we need only a single line of code and this is supplied by the programmer.
We can thus focus on and explain our fully automated grafting process that
transplants [3] the new functionality into Pidgin.

We grafted the countdown into the Pidgin Timestamp 2.10.9 plugin. We used
this plugin as a template into which the code is grafted. In the pidgin plugin there
is only one variable of type time t, but there are five variables of type char*. We
implemented a simple grafting tool that instantiates each possible value of the
template, inserting it before each line of the existing Timestamp 2.10.9 code.
There are 14 possible insertion points and 7 possible value substations, so the
search space is 7 × 14 = 98, of which 69 compiled and ran without error and 2
also passed all test cases. The grafting process took 13 seconds on a 2.66 GHz
2-core machine with 1Gb RAM.

In this case, grafting is an enumerable search problem. However, for larger
systems, grafting may, itself, be an SBSE challenge. Grafting was made easier
by the Pidgin plugin mechanism, which reduced the graftable search space. We
needed only to graft code into the plugin, rather than the whole system. In
general, any form of modularity could also be used to reduce the graft space.

3 Growing and Grafting Babel Fish into Pidgin to Create
Babel Pidgin

We seek to grow a new functionality (which we christen ‘Babel Fish’) and then to
transplant this into the Pidgin plugin Text Replacement 2.10.9 using grafting,
as we did in Section 2.

Growing the Babel Fish requires Genetic Programming (GP). Our GP system
is strongly typed and evolves imperative language code statement sequences, the
statements of which are either function calls or assignments. The GP system
takes a grammar and a source template as input. The grammar specifies a list of
data types and functions suggested by the developer as likely to be useful. For
growing a Babel Fish we (the programmer in this example) provided the GP with
the names of the GoogleTranslateAPI call for Portuguese and Korean together
with the names of string processing library functions (concat and strlen). Of
course, this is a significant help to the GP, which could hardly be expected to
‘discover’ that it should call GoogleTranslate, for example. Nevertheless, such
suggestions clearly also denote the most trivial application of human intuition.

The GP system applies a single-point crossover operator with a probability
of 0.8. After crossover, one of three mutation operators is applied (selected with
uniform probability). The three mutation operators are variable replacement,
statement replacement and statement swapping.
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We use an aggressive elitism selection process that replicates the best indi-
vidual and inserts it into the new population between 1 and 250 times with a
Coupon Collector Distribution (with expected mean of 197 so, typically, 197 in-
sertions). Our approach to elitism aims to ensure sufficient retention of promising
code schema in the gene pool. The population size is 500 and the GP terminates
when best fitness remains unchanged for 20 generations. All experiments were
repeated 30 times to allow for inferential statistical comparison of results.

We experimented with 8 different
# Category Description of fitness component

1 Essential Compiles using gcc
2 Essential Must not crash
3 Essential No system warnings appear
4 Essential Correct output

5 Necessary Portuguese-trans gets correct string
6 Necessary Korean-trans gets correct string
7 Necessary concat gets correct string
8 Necessary Output contains Portuguese-trans
9 Necessary Output contains Korean-trans
10 Necessary Output is different from input

11 Inclusion Call to Portuguese-trans
12 Inclusion Call to Korean-trans
13 Inclusion Call to get text buffer
14 Inclusion Call to set text buffer
15 Inclusion Call to buffer start
16 Inclusion Call to buffer end
17 Inclusion Call to strlen
18 Inclusion Call to concat

19 Ordering buffer start before get text
20 Ordering buffer end before get text
21 Ordering Portuguese-trans after get text
22 Ordering Korean-trans after get text
23 Ordering Portuguese-trans before set text
24 Ordering Korean-trans before set text

Fig. 1. The 24 Fitness Components Used

fitness functions, composed of subsets
of 24 equally-weighted fitness compo-
nents drawn from those defined in
Figure 1 on the lefthand side of this
page. We do this in order to under-
stand the trade off between human
(programmer) effort and automated
(GP) effort. In an ideal world, the
GP would do all the work. However,
since traditional GP has tended to
grow only simple and small functions
rather than whole programs [5,9] this
may be unrealistic. It may also be un-
necessary; the programmer need only
offer a few simple and (to a human)
naturally intuitive suggestions of
criteria she or he expects to be im-
portant in any correct solution. Natu-
rally, we would prefer that the human
would be required to provide the least

information possible to guide the GP, since we wish to place the least possible
software development burden on human shoulders.

In order to experiment with this human-machine tradeoff, we categorised our
fitness functions into four distinct categories: (E)ssential, (N)ecessary, (I)nclusion
and (O)rdering. Essential fitness captures the implicit test oracle [4] required by
any implementation of any program and therefore requires no human guidance.
Necessary fitness consists of properties that the programmer knows will be neces-
sary in any correct solution for the problem in hand. The Inclusion category lists
the names of library functions that the programmer believes may prove useful.
Finally, the Ordering category is a mechanism through which the programmer
specifies partial ordering constraints on the calls made during execution.

Even if the programer were to be asked to provide all of this information,
then the (human) effort required would be relatively low. Certainly, human effort
would be lower than that required were the human asked to write the program
extension from scratch, and to work out how it should interface to the existing
system, and to determine where it should be located.
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3.1 Results from Growing and Grafting Babel Fishes

Figure 2 (on the left) presentsFitness Components successful mean fitness
name used growths (p val. evaluations

(see Fig. 1) compares to E) (N = 30)
E 1..4 0 (p=N/A) 10,500
EI 1..4,11..18 0 (p=N/A) 10,833
EO 1..4,19..24 0 (p=N/A) 11,333
EN 1..4,5..10 2 (p=0.306) 15,483
EIO 1..4,11..24 1 (p=0.500) 13,366
ENI 1..4,5..10,11..18 8 (p=0.030) 16,266
ENO 1..4,5..10,19..24 7 (p=0.044) 14,516
ENIO 1..24 9 (p=0.020) 15,800

Fig. 2. Results for Babel Fish Growth

the results of our experiments on 8
different fitness functions. In order
to more rubustly analyse the results
we use a nonparametric two-tailed
binomial test to compare the num-
ber of successful transplants that
we achieved using the essential fit-
ness, E, with each and all of those
we achieved using fitnesses EI to

ENIO in Figure 2. We use the Hochberg correction in order to account for the
fact that we are performing five different inferential statistical tests. With an α
level of 0.05, this corrected statistical test indicates that the result for ENIO is
significantly different to that for E (with a Vargha-Delaney Â12 effect size 0.64).
The p values for ENO and ENI are also smaller than 0.05, but are not considered
significant after the Hochberg correction has been applied.

As we expected ENIO, which provides the most guidance to the GP, performs
the best: almost a third of its runs result in a successful Babel Fish transplant into
Pidgin. This result is statistically significantly better than the results obtained us-
ing the essential fitness E alone, which provides insufficient guidance. The results
for other fitness choices are also encouraging.They indicate that the growand graft
approach can augment existing real world systems with new functionality, guided
by only very modest (and easily obtained) human intuition. Our results provide
evidence that the most powerful form of guidance comes from assertions that cap-
ture necessary conditions for correctness. Simply adding these simple and intuitive
necessity constraints (N) to the essential fitness components (to give EN) leads to
successful transplants. However, of all the fitness components with which we ex-
perimented, we speculate that defining such necessary constraints would tend to
require themost programmer knowledge and effort. It is therefore encouraging that
simply using Inclusion and Ordering constraints (EIO fitness in Figure 2) is suffi-
cient to guide the search to a successful transplant. We believe that this result is
exciting because it provides an existential proof that a real world systems can be
augmented with new functionality with the most meagre of human guidance.

Figure 2 reports results for growth. The graft phase is entirely automated.
There are 23 possible insertion points and 2 possible value substitutions, giving
a graft space of 46. We use the Babel Fish whose growth was guided by EIO
fitness to illustrate graft performance over all our evolved Babel Fishes. Since
it was grown with least human effort, it is encouraging that, like all our Babel
Fishes, it has at least one successful graft point. Of the 46 graft attempts, 2 failed
to compile, 3 crashed, 24 executed without crashing, but failed the functionality
test, while 17 were grafted entirely successfully (and thus equally good). The
grafting tool enumerated all 46 solutions in 24s. Computationally and concep-
tually, grafting is surprisingly easy and effective.
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4 Conclusions

We have demonstrated that Genetic Improvement can be used to grow code
features in isolation, largely oblivious of the system into which they are subse-
quently to be grafted. Surprisingly little human guidance and domain knowledge
is required. Future work will investigate further the minimal human guidance re-
quirement for Grow and Graft Genetic Improvement (GGGI).

Acknowledgement. This work is part supported by the DAASE [1] andGISMO
projects [2].
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Abstract. We present a search based testing system that automatically
explores the space of all possible GUI event interleavings. Search guides
our system to novel crashing sequences using Levenshtein distance and
minimises the resulting fault-revealing UI sequences in a post-processing
hill climb. We report on the application of our system to the SSBSE
2014 challenge program, Pidgin. Overall, our Pidgin Crasher found 20
different events that caused 2 distinct kinds of bugs, while the event
sequences that caused them were reduced by 84% on average using our
minimisation post processor.

1 Introduction

Graphical User Interface (GUI) programs react to non-deterministic event se-
quences, with the engineering consequence that the functionalities provided by
the software may be invoked in unexpected ways, possibly leading to faults. In
addition, software engineers need to protect the functionalities from complex
user inputs including malicious attacks. This challenges testers to find unusual
test sequences that may expose critical defects before they are experienced by
users or exploited.

Current GUI testing primarily relies on manual and record-playback tech-
niques [9, 12]. Even with a record-playback tool, GUI testing remains a time
consuming procedure, as it is human-centric: testers need to manually search for
interesting test sequences. Another problem is that the quality of the tests de-
pends on the testers’ experience and understanding of the program. The nature of
GUI programs requires testers to explore an exponential number of interleavings
of test sequences. This is usually impossible, so testers rely upon assumptions
about the way the software will be used to constrain the test sequences that
need to be explored.

In this paper we focus on automated search-based GUI testing for the SSBSE
Challenge program Pidgin. Pidgin is a popular instant messaging program [11].
It is developed as an open framework, for which others can develop plugins to
enrich its functionalities. Of course, such an open and pluggable architecture
may also introduce security vulnerabilities, because plugins could be embedded
with malware and exploited by attackers.

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 253–258, 2014.
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We introduce and present a system testing tool, Pidgin crasher, that is em-
bedded in Pidgin and complements existing human-centric GUI testing. Pidgin
crasher is a GUI testing tool in which search-based algorithms are applied in
both on-the-fly test generation and in a post-processing test reduction phase.
In order to generate effective crash sequences to reveal potential bugs, Pidgin
crasher selects the next valid event to send by maximizing the Levenshtein dis-
tances to all previously discovered crashing sequences. This selection technique
generates shorter sequences that reveal more bugs in Pidgin compared to a ran-
dom sequence generation process.

In order to generate test sequences for Pidgin, we use a combination of a
Greedy search and a simple hill climbing post processing phase. The Greedy
phase generates incrementally longer test sequences, guided by the measurement
of Levenshtein distance to previously encountered sequences. The hill climbing
phase is a cleanup operation, similar to those used in Genetic Improvement to
reduce the edit sequence [8]. It seeks to minimise the length of the crashing test
sequences found in the Greedy phase. The overall approach promotes diversity
among the set of crashing sequences found by our approach.

We compare our Greedy search with a random approach and a ‘tabu random’
(that is forbidden to revisit previously encountered sequences, but is not guided
by Levenshtein distance). We call this tabu random approach Blocked since it is
blocked from considering previously encountered sequences.

In our experiments, we run Pidgin crasher 1005 times on each of the three
different configurations: Random, Blocked and Greedy. In every execution we
found at least one crashing UI sequence. On average, crash sequences generated
by our greedy approach are shorter than those generated by the blocked approach
(17.5 vs 58.4 UI events).

Overall, we identified 20 different crashing points triggered by 12 different UI
events. Further analysis shows that these crashes are caused by two different
types of bugs which we term Type-1 and Type-2. Type-1 faults are those caused
by failure to check for NULL pointers passed as actual parameters, while Type-2
are those faults caused by Pidgin requiring the existence of some non-existent
resource (e.g. a window or widget). Finally, in our crash sequence reduction
experiments, we found that the hill climber reduces crashing sequences with an
average reduction factor of 4.88-7.50 (84% on average).

Related Work: To apply the search-based testing, a UI model representing the
behaviour of the applicationunder test is usually used to initialise the original tests.
Much of the previous work focusses on automating GUI testing [1–4, 7, 10] with a
model (manually generated or automatically synthesised), which is used to guide
the test generation to follow common user patterns. The closest related work is
the EXSYST approach [5]. Like EXSYST we use search-based techniques to find
input sequences. However, we target crashing behaviour, whereasEXSYST targets
coverage.Furthermore,EXSYST is guided by a state-basedmodel, whereasPidgin
crasher does not require a model. In the way that new test sequences are derived
from previous crash sequences, our approach is also similar to the concept of test
regeneration proposed by Yoo and Harman [13].
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2 Test Generation, Execution and Reduction

Pidgin crasher simply targets crashing behaviour, so it does not require a test
oracle [6]. It is designed as an automatic testing plugin for Pidgin based on
GTK+, which is a multi-platform toolkit for creating GUIs used by Pidgin. We
are using low-level APIs so that the framework not only works on Pidgin, but
can also be easily adapted to other GTK+ based programs.

On-the-Fly GUI Testing: Pidgin crasher conducts testing of GUI programs
at the system level. We implement three different on-the-fly UI sequence gener-
ation approaches: Blocked and Greedy search to compare with Random search.

In the Blocked approach (Algorithm 1), Pidgin crasher repeats a procedure
of randomly selecting a GTK+ widget (a UI element such as a menu or button
from the GTK+ framework) and sending a random but valid signal1 to Pidgin
until a crash is observed. The whole process is dynamic, meaning the number of
windows varies over time and the window-selecting step adapts to the changing
number of windows. In order to avoid previously discovered crashing points, a
block list is loaded at the beginning of the random search process. The algorithm
records the crashing sequence by writing every emitted signal into a log file.

LoadBlockList();
victim = SelectTopWindow() ;
repeat

Randomly keep victim or execute victim = SelectTopWindow() ;
target = SelectWidget(victim) ;
sig = SelectSignal(target) ;
if not IsBlocked( sig) then

WriteCrashSequence(sig);
SendSignalByName(target, sig, ...);

end

until a crash;

Algorithm 1. Random search with block list

The Greedy search approach, on the other hand, uses the previously generated
sequences to guide the selection of new signals. More specifically, suppose we
have a set of signals, S, and a set of crashing sequences previously generated
P = {S1, ...Sn} and each sequence Si is an ordered string of signals Si = si1si2 ...,
sij ∈ S. When Sc = s1...sk is the current sequence of signals we have sent so far
(but for which we have yet to encounter a crash), we select the next signal sk+1

by computing the furthest Levenshtein distance between the current sequence
after the signal is appended and all previous sequence in P . More formally,

∀si≥S : M(P , s1...sksi) ≤ M(P , s1...sksk+1)

where M(P , S) = minSi≥P{D(Si, S)} and where D(x, y) is the Levenshtein dis-
tance between x and y.

1 Events from the X server are turned into GTK-specific signals by GTK.
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3 Experiments and Results

In this paper, we answer the following Research Questions (RQs):

RQ1 How effectively can Pidgin crasher find potential bugs?
RQ2 What are the coverage of crash points, convergence and redundancy of

the sequences found by each of the three versions of Pidgin crasher?
RQ3 What are the kinds of faults found by Pidgin crasher?

We use Pidgin crasher to generate crashing sequences in each of its three
different modes: Random, Blocked, Greedy search. In the Random mode, the
next signal to send is randomly selected from all available signals, while the
other two are those approaches described in Section 2.

Pidgin crasher is continuously invoked to produce 201 crashing sequences in
each mode. We repeat the procedure 5 times, so Pidgin crasher is run for a
total of 3015 (201 × 5 × 3) times. The sequences so-produced are minimised
by our Hill Climbing process to remove redundancy. In the experiments, we
repetitively send signals to trigger different functionalities via the special API call
g signal emit by name(GtkObject *object, const gchar *name, ...) to
which we pass the selected widget in object, the selected signal in name, and all
arguments in the variable argument list are passed NULL. All experiments were
run on Ubuntu 13.04 with debug versions of GTK+ 2.24.17 and Glib 2.38.0.

Answer to RQ1: According to the top-right table in Figure 1, the average
lengths of the crashing sequences generated by the Random, Blocked and Greedy
modes are 14.5, 58.4 and 17.5, respectively. In the same order, the maximum
lengths are 131, 673 and 135. All three modes can find the shortest possible
sequence with length 1 (Column Min). In the last column, it is shown that,
on average, Greedy mode spends more time to generate 201 crashing sequences
due to the calculations of Levenshtein distance. In summary, Pidgin crasher can
effectively crash Pidgin in all three modes.
Answer to RQ2 (Coverage): The bottom table in Figure 1 lists the crashing
points found by all runs of Pidgin crasher. Of the 9 columns in this table, columns
6, 7 and 8 report the number of times each crash point is discovered. In the
Random approach, 11 out of 20 crashing points are covered, whereas blocked
covers 13 and greedy covers 19. So both the Blocked and the Greedy search have
a better coverage than the Random approach, while the Greedy search achieves
the highest overall coverage, finding all but one of the crashing points found by
all approaches.
Answer to RQ2 (Convergence): Figure 1 top-left shows the growth of the
number of different crashing points found (average of 5 runs). Even though both
Blocked andGreedy search find more crashing points than the Random approach,
the Greedy search clearly converges more quickly than the Blocked approach.
Answer to RQ2 (Redundancy): In order to compare the redundancy of
the crashing sequences generated by these approaches, we use the simple Hill
Climbing to remove any irrelevant signals from the sequences. The results show
that the crashing sequences from Random, Blocked and Greedy search can be
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Rnd Blk Grd
add_room_to_blist_cb GtkLabel move-cursor gtkroomlist.c:250 1 1 3 2
gtk_editable_insert_text GtkEntry insert-at-cursor gtkeditable.c:170 0 2 13 1
gtk_label_activate_link GtkLabel activate-link gtklabel.c:5838 45 116 206 1
gtk_menu_set_child_property GtkMenu move-scroll gtkmenu.c:926 0 1 0 1
gtk_notebook_real_switch_page GtkNotebook switch-page gtknotebook.c:6142 20 39 52 1
gtk_path_bar_scroll_down GtkMenu move-scroll gtkpathbar.c:803 0 0 1 2
gtk_path_bar_scroll_down GtkButton clicked gtkpathbar.c:803 0 0 1 2
gtk_real_menu_item_toggle_size_request GtkMenuItem toggle-size-request gtkmenuitem.c:1452 811 681 435 1
gtk_tree_model_get_valist GtkTreeView row-activated gtktreemodel.c:1470 5 12 11 2
join_button_cb GtkMenuItem activate gtkroomlist.c:265 0 0 1 2
join_button_cb GtkButton clicked gtkroomlist.c:265 0 0 1 2
location_button_toggled_cb GtkToggleButtontoggled gtkfilechooserdefault.c:4662 0 0 1 1
menu_add_pounce_cb GtkMenuItem activate gtkconv.c:1169 4 14 41 2
menu_add_pounce_cb GtkMenuItem activate-item gtkconv.c:1169 6 18 51 2
menu_invite_cb GtkMenuItem activate gtkconv.c:1250 12 7 46 2
menu_invite_cb GtkMenuItem activate-item gtkconv.c:1250 12 5 49 2
purple_blist_node_get_type GtkTreeView row-collapsed blist.c 0 0 1 1
purple_blist_node_set_bool GtkTreeView row-collapsed blist.c 0 0 3 2
regenerate_options_items GtkMenuItem activate-item gtkconv.c:3343 49 52 43 2
regenerate_options_items GtkMenuItem activate gtkconv.c:3343 40 57 46 2

TypeCrashed Function Widget Signal Crash Location #Crash

0
2
4
6
8

10
12
14

0 20 40 60 80 100 120 140 160 180 200

Random Blocked Greedy

Avg Min Max Factor Time (Sec.)
Random 14.5 1 131 4.88 1356
Blocked 58.4 1 673 7.50 2120
Greedy 17.5 1 135 5.91 4650

Fig. 1. Experimental Results – The upper lefthand subfigure shows convergence
of the three approaches. The upper righthand figure reports summary statistics for
the average, minimum and maximum sequence length and the average execution time
produced by each of the three approaches and, in the fourth column, it reports the
reduction in sequence length produced by the post-processing hill climb. The lower,
larger, table reports the numbers, types and locations of faults found by each approach.

reduced by a factor of 4.88, 7.50 and 5.91 respectively. The Blocked approach
generated the longest sequences with the highest redundancy (i.e. the greatest
potential for minimisation).
Answer to RQ3: We inspected Pidgin to understand the reason for each crash.
As a result, we manually categorised all crashing points into two types that reflect
two difference classes of reason why Pidgin crashes at these points. These two
‘types’ of fault are reported in the the last column of the lower (larger) table in
Figure 1.

A Type-1 crash happens in the call-back function directly uses a NULL-pointer
from the passed arguments to access memory without checking to ensure it is
non-NULL. Type-2 crashes also happen in call-back functions that makes an
invalid assumption about the resources available in the current state. For exam-
ple, function menu add pounce cb opens a conversation window using a pointer
fetched from function X which may return NULL. As there is no NULL check
in the call-back function, X is assumed to always return a valid pointer, which,
however, is violated in some scenarios, where the resource is simply unavailable.
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4 Conclusions and Actionable Findings

Using Pidgin crasher, we identified two types of bug found caused by 20 dif-
ferent UI signals. According to our findings, we suggest that Pidgin return
values from any function that may return NULL-pointers should be checked,
and that GTK+ signal-emitting APIs that take variable argument lists such as
g signal emit by name should be deprecated.
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Abstract. We describe how contract violations in JavaTM hashCode

methods can be repaired using novel combination of semantics-preserving
and generative methods, the latter being achieved via Automatic Im-
provement Programming. The method described is universally applica-
ble. When applied to the Hadoop platform, it was established that it
produces hashCode functions that are at least as good as the original,
broken method as well as those produced by a widely-used alternative
method from the ‘Apache Commons’ library.

1 Introduction

Every class in the JavaTM language inherits from Object, which provides de-
fault implementations for hashCode and equals. These methods have contractual
specifications [8] and in most situations the default implementations need to
be overridden. Contractually, equals must conform to the contracts of Reflex-
ivity, Symmetry, Transitivity, Consistency, Nullity and Compatibility. Reflexiv-
ity states that x.equals(x) must always return true. Symmetry requires that
x.equals(y)== y.equals(x). Transitivity states that x.equals(y)&& y.equals(z)

implies x.equals(z). Nullity states that x.equals(null) must return false. Com-
patibility states that x.equals(y) implies hashCode(x)== hashCode(y). Consis-
tency states that (for the same arguments) the results of hashCode and equals

must not change on subsequent invocations [9].
Unfortunately, it appears that these contractual obligations are rarely met

by the implementers of overridden methods: Vaziri et al. observed [12] that
a large number of implementations in widely-used projects (viz. ant, bcel,
hsqldb, javacup, jfreechart, lucene, pmd and shrike) are incorrect. It is
reasonable to conclude that this is indicative of a systemic problem.

The hashCode method is an integer function of a subset of an object’s fields.
This paper focuses on two specific requirements: Compatibility and Consistency.
To maintain Compatibility, the generated hashCode can depend only on fields
used in equals. Breaking the Consistency requirement results in hard-to-diagnose
errors: if an object’s hashCode changes after it has been placed into a hash con-
tainer (e.g. HashSet or HashMap) it may become irretrievable. For this reason all
fields used in the hashCode method should be immutable.

In addition, an important efficiency objective is minimizing the probability that
two different objects return the same hashcode. If every object has an identical

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 259–264, 2014.
c© Springer International Publishing Switzerland 2014
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hashCode, (e.g. Object’s default implementation simply returns 0) then retrieval
fromhash containers has a complexity ofO(n). By contrast, a perfect hash function
(in which every different object has a different hash value) will have a complexity of
justO(1). To meet these objectives, we propose a system for producing contractu-
ally correct hashCode methods which use all semantically valid final fields within
a class to produce hashcodes with as uniform a distribution as possible. It is well
known that software engineers are poor at optimizing hashCode for this purpose.
As an alternative we use Automatic Improvement Programming (AIP) to achieve
uniformity. AIP is the application of search-based techniques to pre-existing soft-
ware systems. It has been successfully used to improve 50,000 lines of C++ [7] and
also for dynamic (i.e. online) adaptation of Scala source via reflection [11]. To the
best of our knowledge, there is no previous work on the integrated correction of
hashCodes and their subsequent improvement via AIP.

With further regard to related work, hash functions are ubiquitous in com-
puter science and software engineering. Previous work on generating them has
included machine learning [5] and dynamical systems methods [2]. Objectives
for constructing hash functions vary, e.g. improving execution speed [3], gener-
alization of the hash function [5] and enforcing the consistency constraint [10].
Techniques and tools for generating hashCode are supported by various indepen-
dent tools (e.g. JEqualityGen [3] and HashCodeBuilder in the ‘Apache Commons’
library1). A semi-automated technique due to Rayside et al. [10] requires only
that the programmer give an abstract view of object representation.

2 Methodology

Our analysis centres on Hadoop 2.3.02, an open-source Java-based platform for
distributed computing. The platform consists of four major components: Hadoop
Common, Hadoop Distributed File System, YARN (job scheduling and cluster
resource management), and Hadoop MapReduce. Our work focuses on these core
parts of the platform, containing 2.4 MLOC.

Initial analysis of Hadoop reveals too many contractually-incorrect implemen-
tations of hashCode to list here. Asmentioned above, the specific focus of this article
is on violations of Compatibility and Consistency. In respect of the latter, we are
therefore concernedwithmutable fields used in hashCode, viz. those not declared to
be final. Denoting a field of a value type (i.e. byte, char, int, long, float or double)
to be final ensures immutability. Denoting a reference field (i.e. Object or any of its
subclasses) to be final is necessary but not sufficient for immutability: finality en-
sures that the field cannot be reassigned, but not that the field cannot be mutated
if it in turn exposes mutable fields or mutator methods. Discussion of methods to
recognize and repair such indirect mutation is beyond the scope of this article.

The methodology we adopt is as follows:

– Search the Hadoop distribution for classes having non-final fields in their
hashCode method.

1 http://commons.apache.org/proper/commons-lang/
2 http://hadoop.apache.org

http://commons.apache.org/proper/commons-lang/
http://hadoop.apache.org
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– Programmatically finalize all non-final fields for which this is a semantics-
preserving transformation.

– Generate a new implementation of hashCode using only final fields present in
equals, thus ensuring Compatibility and Consistency.

– Restore (and possibly improve) the quality of hashCode distributions via Au-
tomatic Improvement Programming.

As a proof-of-concept, the Netbeans IDE was used to determine, via static
analysis of Hadoop, all fields which are never actually reassigned. The tool then
sets these variables to final. The fields used in each hashCode implementation were
determined via programmatic examination of the source using the JavaTM reflec-
tion API. We then proceed to enforce the Consistency contract by generating a
new hashCode that includes only final fields of equals. Since the non-final attributes
no longer contribute to hashCode, it is anticipated that this will degrade the dis-
tribution of hash values. In order to compensate, we use Automatic Improvement
Programming to evolve a hash function with a highly uniform distribution. The so-
lution representation is in the form of a Koza-tree [6], with field values and random
integers uniformly between 0 and 100 (inclusive) as terminals and the functions
{+, ∗, XOR,AND} as nonterminals. The search metaheuristic used is iterative
improvement [4] with subtree point mutation [6] and random uniform selection
of the node to be mutated. The fitness measure seeks to maximize the uniformity
(as measured by the χ2 statistic) over 10,000 randomly-generated instances of the
class.We detail the results obtained in three specific cases in the following section.

3 Case Studies

By the method of static analysis described above, an additional 451 fields were
safely finalized. While our method is intended to be applicable for all classes
containing newly-finalized fields, for the sake of clarity we focus on three classes
in the org.apache.hadoop package:

1. hdfs.server.namenode.CheckpointSignature: the existing implementation vio-
lates the Consistency contract for hashCode. Our experiment shows that the cor-
rected method generated by our approach has an improved distribution over that
generated by HashCodeBuilder.

2. security.token.delegation.AbstractDelegationTokenIdentifier: the existing
hashCode implementation violates Consistency and is also likely to return zero. Our
approach generates a method that matches the distribution of that generated by
HashCodeBuilder.

3. hdfs.server.namenode.startupprogress.Step: the existing implementation is cor-
rect (and is in fact generated by HashCodeBuilder), but the hashcodes generated by
our method are more uniformly distributed.

Our experimentmeasures the improvement in thedistributionof generatedhash-
codes gained by using AIP, compared with hashcodes generated by
HashCodeBuilder, which generates hashCodes either from all final fieldswithin the
class (or optionally from a user-specified set of fields). In this study, HashCode-
Builder used the same set of fields that we identified for use in our own hashCode.
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Table 1. Experimental results on the uniformity of the hash code distributions gener-
ated by the automatic approach, the Apache commons and the original implementation,
in terms of the χ2 statistic

Case study 1 Case study 2 Case study 3

Method m μ σ m μ σ m μ σ

automatic 13.571 14.543 5.307 14.557 14.923 5.243 30.115 30.852 10.250
commons 16.698 17.885 7.719 19.512 19.755 6.366 35.709 36.562 12.687
original 15.862 15.789 7.100 N/A 35.709 36.562 12.687

aut. vs com. p=0.105, Â12 = 0.636 p=0.018, Â12 = 0.721 p=0.052, Â12 = 0.646

aut. vs orig. p=0.792, Â12 = 0.567 N/A p=0.052, Â12 = 0.646

The hashCode implementations of each of the above classes were tested on 10,000
randomly-generated instances. The χ2 distribution was used to measure the dis-
tance of the computedhashcodes fromauniformdistribution (the ideal).Thismea-
sure was also used to guide the search. Each experiment was repeated 30 times.

4 Results

Table 1 shows the χ2 statistic for the automatically improved (automatic),
HashCodeBuilder (commons) and the original implementation (original) if it ex-
ists. Specifically, for each case study, we report median (m), mean (μ) and stan-
dard deviation (σ) values of the χ2 statistic. In addition, to assess statistical
significance, we utilise the non-parametric Wilcoxon-signed rank test [1] at the
5% level of significance and report the p-value under each test case.

Moreover, to assess the magnitude of an algorithm’s performance improve-
ment, we report a non-parametric effect size measure, the Â12 statistic [1].
Intuitively, given a performance measureM, the Â12 statistic measures the prob-
ability that algorithm A1 yields better M values than another algorithm B.

It can be easily observed that the automatic approach is able to enhance the uni-
formity (as given by the χ2 statistic) of the hashcode distribution in all cases. In
the first case, the automatically produced hashCode performs equally well (in sig-
nificance terms) with the HashCodeBuilder and the original implementation. The
automatic approach exhibits better averageperformance in termsof theχ2 statistic
values, but the difference between the three methods is not significant. The effect
size is medium in both cases. In the other two cases, our hashcode exhibits signifi-
cantly better performance, having a large andmedium effect size for the second and
third cases respectively. The proposed methodology offers a significant improve-
ment over the original method as well, as the second class did not have an effective
hash code method to begin with (the original method is likely to return zero).

Generally, we have observed that the automatically evolved hashcodes pro-
duce either better or equally good hashcode functions (in terms of their uni-
form distribution of the produced hash code values) when compared with both
HashCodeBuilder and the original implementation. The effectiveness and impact
of such hash functions is evident in systems where the efficiency of a hash con-
tainer is a crucial aspect of the system under consideration. Clearly, Hadoop is
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Fig. 1. The distribution of the hashcode values (top) and the distribution of the created
objects in hash buckets (bottom), generated by the Apache commons (left) and the
evolved function (right)

such a system, which by construction manipulates a huge amount of data that
might be stored in hash containers.

In respect of the second case study, Figure 1 shows both the distribution of
hash values and how evenly these values are distributed across the buckets of
a hash container. This figure compares the automatically generated hashcodes
with those from HashCodeBuilder. Both techniques appear to be able to evenly
fill hash containers, although this is observably less so towards the centre of the
range for HashCodeBuilder. When the distributions of hash values (in the upper
part of the figure) are compared, the superiority of the automatically evolved
hash code function can be clearly observed in terms of their uniform distribution.

5 Conclusion and Future Work

We have developed a novel systemwith which broken implementations of hashCode
maybe repaired so as to enforce contracts andwhich uses Automatic Improvement
Programming to optimise the resultingdistributionofhashcodes (whichmightoth-
erwise be degraded by the repair process).We give case studies in which we fix two
classes in the Hadoop library which featured contractually invalid hashCode im-
plementations. In both cases, the new methods outperformed those generated by
Apache Commons HashCodeBuilder.

In the absence of human intervention, code generated by HashCodeBuilder does
not satisfy Compatibility. Following on from our proof-of-concept, it is possible
to create a more fully-automated system able to identify, fix and optimise con-
tractually invalid hashCode implementations in a semantics-preserving fashion.
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Our findings suggest than an automated approach such as this can improve the
efficiency of Hadoop installations that depend on the storage of large amounts
of data. This should of course also be applicable to any other Java code. The
wider applicability of this project is illustrated by the fact that, in a specific
client-code context, we identified over 450 places in which fields could be made
final. By augmenting contractual repair with search-based optimization, we an-
ticipate frequent improvement on existing implementations.

This automation of the complete process is the focus of future work, which
will also include comparisons with other hashcode generation methods, such as
those given in the bibliography. For example, the ASM library3 may be used to
programmatically find and set final the non-final fields by directly manipulating
Java bytecode. We could also incorporate functionality to repair violations of
the other contracts relating to hashCode and equals, such as symmetry or tran-
sitivity. This automated framework could then be incorporated into a broader
automatic improvement system such as the Gen-O-Fix system [11].
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