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Abstract—Automatic Software Repair (APR) has significant
potential to reduce software maintenance costs by reducing the
human effort required to localize and fix bugs. State-of-the-
art generate-and-validate APR techniques select between and
instantiate various mutation operators to construct candidate
patches, informed largely by heuristic probability distributions.
This may reduce effectiveness in terms of both efficiency and
output quality. In practice, human developers have many options
in terms of how to edit code to fix bugs, some of which are
far more common than others (e.g., deleting a line of code is
more common than adding a new class). We mined the most
recent 100 bug-fixing commits from each of the 500 most popular
Java projects in GitHub (the largest dataset to date) to create a
probabilistic model describing edit distributions. We categorize,
compare and evaluate the different mutation operators used in
state-of-the-art approaches. We find that a probabilistic model-
based APR approach patches bugs more quickly in the majority
of bugs studied, and that the resulting patches are of higher
quality than those produced by previous approaches. Finally, we
mine association rules for multi-edit source code changes, an
understudied but important problem. We validate the association
rules by analyzing how much of our corpus can be built from
them. Our evaluation indicates that 84.6% of the multi-edit
patches from the corpus can be built from the association rules,
while maintaining 90% confidence.

I. INTRODUCTION

Repairing bugs is one of the most resource-intensive tasks in
software development [4], [38], [42]. Significant recent research
effort has been dedicated to building automatic program repair
(APR) tools that are able to address bugs in programs (e.g. [6],
[18], [22], [23], [31], [39]–[41]). One well-known class of
repair techniques follows a generate-and-validate approach
(e.g., GenProg [40], Par [18], TrpAutoRepair [32], Prophet [23],
HDRepair [5], Angelix [27], Nopol [43]), which takes as input
a test suite, including at least one failing test case exposing a
defect, and source code to be modified. These approaches then
generate a large patch candidate space by applying mutation
operators to the original source code and validate each by
running the potentially patched program against the test suite,
seeking a candidate that leads the program to pass all tests.

One key reason this is challenging is that the search
space of possible edits that can be applied to the original
source code is infinite. To tackle this problem, techniques
limit themselves to a set of possible change types, which
we refer to broadly as “Mutation operators”. There is a
broad diversity of such operators used in automatic program
repair, including deleting or inserting statements [40], ap-

plying templates [18], transformation schemas [22], [23], or
semantically-inferred code [27], [29], [43]. Given a potentially-
faulty location (typically identified using off-the-shelf fault
localization, e.g., Tarantula [14]), these approaches then use
heuristics or heuristically-informed probability distributions
to select between mutation operators to construct candidate
patches. Even with these efforts, the search space for possible
edits remains vast; not all bugs can be repaired; and many
produced patches are of low quality.

Our intuition is that, in bug-fixing reality, human developers
use certain mutation operators much more frequently than
others (e.g., deleting a line is much more common than creating
a new class), and we can use that knowledge to drive our search.
In this paper, we therefore study and then simulate the behavior
of human developers to create patches. Our key supposition is
that our approach can support a richer search space constructed
via more expressive mutation operators that are more likely
to produce high-quality patches. Indeed, this idea has been
leveraged manually in the past to create more human-acceptable
mutation operators [18] and to inform patch ranking (rather
than construction) [5], [23].

We mine bug fixing commits from the 500 most popular
GitHub Java projects to model the selection probability of
the possible mutation operators based on empirical data that
describes how human programmers fix their code. We thus
categorize, compare, and validate a superset of mutation
operators in use in a number of state-of-the-art approaches [18],
[23], [40], [41]. We then use this model to inform a repair
approach that chooses from the set of possible operators based
on these real-world probabilities. As a result, our work goes
beyond prior work that leverages human bug fixes in a program
repair context [5], [18], [23] by generalizing to a broader and
more expressive set of mutation operators, and using a fully-
automatically-mined model much earlier in the APR process,
when patch candidates are actually created. Furthermore, we
propose and initially validate a new approach for modeling
multi-edit repairs based on mining previous rules from historical
edit data, predicting from a given set of edits which operation
should be applied next. This serves as a first step towards
scalable traversal of the multi-edit patch space.

We evaluate the predictive power of our mined model on
its own, in terms of its accuracy in predicting the operators
used in real-world bug fixes. We demonstrate this algorithm
both in terms of speed and quality with a full set of mutation
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operators on a subset of real-world single-line defects [15], and
we validate the quality of the patches found by our approach
in comparison to several previous state-of-the-art techniques.

The primary contributions of this paper thus are:
• Empirical model of single-edit repairs to Java code

mined from the 100 most recent bug fixes from the
500 most popular Java projects on GitHub. This study
also provides a deeper understanding of which mutation
operators are used to fix errors in source code, and the
frequency of the mutation operators analyzed.

• New Repair Approach, which uses mutation operators
from multiple state-of-the-art approaches and the above-
mentioned models to choose between them, favoring those
more commonly used by human developers. We validate
the use of this model, as well as a good set of operators
to use for expressive, high-quality repair.

• Development and integration of this approach for the
Java programming language in a publicly-available tool
that can apply the several different mutation operators,
and the probabilistic model discussed in this study.

• Comparative evaluation of the new repair approach on
real world bugs from well-known open source projects
(independent of those used to inform model construc-
tion), as compared to several previous techniques. We
independently evaluate patch quality using a held-out
test suite. We conclude a technique based on a model
informed by human behavior, finds patches more quickly
than prior techniques that do not; that the patches are
of comparatively higher quality; and that patch creation
benefits from a diverse set of candidate mutation operators.

• Multi-edit repair approach A proposed technique, and
an initial validation thereof, to construct bug-fixing patches
requiring several mutations by mining and then applying
association rules from a large set of historical bug fixes.

• Code and data that produced and were produced by our
experiments, available at https://github.com/squaresLab/
ProbabilisticModelSaner2018, to support reproducibility
and extension.

The rest of this paper proceeds as follows: We first outline
generate-and-validate repair and, in particular, categorize
the mutation operators used in state-of-the-art approaches
(Section II). Section III describes our approach to building
probabilistic models of human edits for both single- and multi-
edit bug fixes. Section IV describes our evaluation. Section VI
describes related work; Section VII concludes.

II. GENERATE-AND-VALIDATE REPAIR AND OPERATORS

In this section, we outline generate and validate repair at a
high level (Section II-A), to provide the necessary background
to understand this study.1 We then detail and categorize the
mutation operators used in prior approaches for syntactic
program repair and that we model, mine, and leverage in
our approach (Section II-B).

1We focus on relevant background in this section, and describe other
techniques for automatic program repair in Section VI.

A. Paradigm

Figure 1 outlines the general paradigm for generate-and-
validate repair. This approach begins with two elements: buggy
source code and a test suite. The test suite is comprised of
passing test cases to describe the correct program behavior,
and failing test cases to expose the behavior to be repaired.

Fig. 1. Generate-and-validate repair approach.

A generic generate-and-validate APR approach first localizes
the error to a smaller set of candidate program statements
(typically using an off-the-shelf statistical approach [14]). It
then constructs one or more candidate patches that seek to fix
the buggy behavior without breaking any previously-correct
behavior. Techniques vary in (1) the mutation operators that they
consider, (2) how they select between those operators, and how
they identify or construct the fix code used to instantiate them,
and (3) how they traverse the search space otherwise. Most
mutation operators (with the exception of deletion) require new
code to fill in “holes.” For example, an operator that replaces
one statement with another must select replacement code; an
operator that wraps a statement in a null check must select
the object to be checked against null. Syntactic approaches
(e.g., [5], [18], [21], [23]) typically select this code from
within the same function, module, file, or program. Semantic
approaches instead use synthesis to construct fix code. In both
cases, heuristics inform code selection. For example, some
syntactic approaches choose between fix code uniformly at
random or using other set probability distributions [18], [21];
others used learned models to do so [23]. Semantic approaches
use heuristics to decide which program components should be
made available to the synthesis engine [27], [43].

Once constructed of one or more such mutations, each
candidate patch is applied to the input program, which is
then run on one or more of the input test cases for evaluation.
If a patch leads the program to pass all the test cases in the
test suite, including those originally witnessing the bug, it
is presented as a likely repair for the bug. If not, the APR
algorithm typically creates more candidate patches until it
reaches a pre-defined resource limit. Here, too, search strategies
vary: some techniques are explicitly single-edit [32], [41], [43];
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others use random search strategies, like a random walk [6] or
genetic programming [5], [18], [40].

Patch quality is an important concern in APR research [33]:
Ideally, created patches will generalize beyond the test cases
used to inform their construction [36], and conform to other
non-functional standards of acceptability [9], [18]. Although
assessing patch quality is an unsolved research problem [28],
one mechanism for objectively evaluating functional patch
correctness is to evaluate generated patches on a held-out test
suite [21], [36], separate from the tests used to construct the
patches. If the generated patch allows the program to pass
all held-out tests, it is more likely to generalize to the desired
but unwritten specification. If the patched program fails any
held-out tests, the patch is said to overfit to the test suite that
guided the repair.

B. Generate-and-Validate Mutation Operators

We categorize mutation operators used from a cross section
of state-of-the-art approaches into two groups:

a) Statement-Edit mutations: One family of repair ap-
proaches, including GenProg [40], TrpAutoRepair [32], and
AE [41], creates candidate patches by applying coarse-grained
mutation operators (e.g. append, delete, or replace) at the
statement level. These prior techniques historically target the
C programming language, where a statement is a grammar
nonterminal corresponding intuitively to blocks, simple state-
ments that terminate with a semicolon, or compound statements
corresponding to control flow or loops. In Java, statements
conceptually map to similar program elements, e.g. blocks,
while loops, or single-line method calls. In these approaches,
the statements being appended or replaced typically come from
within the project being modified. This is grounded in the
notion that source code has a high level of redundancy [12].

b) Template-based mutations: Another family of ap-
proaches instantiates predetermined templates, more complex
than those in the first family, at applicable code locations. This
family includes PAR [18], SPR [22], and Prophet [23].

PAR is the product of a study of a large number of human
created patches, from which human annotators abstracted 10
different templates to cover the most commonly-used changes
in bug-fixing practice. The 10 considered templates are detailed
in the top section of Figure 2. In the interest of completeness,
we also include six extra templates mentioned on the PAR
website.2 These extra templates provide new mutation operators
drawn from human edits, that help us compare to and generalize
the other approaches; they are shown in the middle segment of
Figure 2. SPR and Prophet use a set of transformation schemas,
shown in the bottom section of Figure 2.

The SPR/Prophet transformation schema can be mapped to
certain PAR templates. For example, Condition Introduction
can be seen as a superset of Range Checker, Collection Size
Checker, Class Cast Checker, and Null Checker. Condition
Refinement includes Expression Adder and Remover. Insert
Initialization can be generalized from Object Initializer, Upper

2https://sites.google.com/site/autofixhkust/home/fix-templates

PAR fix templates

Null Checker Parameter Adder and Remover
Parameter Replacer Expression Adder and Remover
Method Replacer Collection Size Checker
Expression Replacer Range Checker
Object Initializer Class Cast Checker

PAR “extra” templates

Caster Mutator Lower Bound Setter
Castee Mutator Upper Bound Setter
Sequence Exchanger Off-by-one Mutator

SPR transformation schema

Condition Refinement Insert Initialization
Copy and Replace Condition Control Flow Introduction
Value Replacement Condition Introduction

Fig. 2. (Top) PAR fix templates. (Middle) PAR “extra” templates. (Bottom)
SPR transformation schemas. We use the templates in the top and middle
portions of this table as representative of the class of Template-based mutations.

Bound Setter and Lower Bound Setter; Conditional Control
Flow Introduction can be seen as a subset of Sequence
Exchanger; Value Replacement can be seen as a superset of
Method Replacer, Parameter Replacer, Castee Mutator and
Expression Changer; and Copy and Replace can be matched
to Expression Adder. These operators similarly generalize
those used in semantics-based approaches, which replace
expressions used either in conditions or on the right-hand-
side of assignments (the operators are the same; the difference
lies in how the fix code is selected/constructed).

The templates used in the program modification tool
Kali [33] also correspond to subsets of certain PAR templates
or their extensions. For example, Redirect Branch can be
seen as a subset of Expression Changer, and Insert Return
and Remove Statement are subsets of Expression Adder and
Remover accordingly. Similarly, many other operators from the
field of mutation testing [30], as used in APR [5], [6] can be
seen as subsets of the extensions of the PAR templates.

To summarize, these approaches have significant similarities
between them. We use the PAR templates to represent this
category because PAR (1) broadly includes the other techniques’
mutation operators, (2) provides a concrete description of how
the code is changed, enabling replication, and (3) explicitly
targets Java (SPR, Prophet and Kali target C), reducing the
extent to which we must apply subjective judgment to re-
implement and use in our context.

III. PROGRAM REPAIR VIA A PROBABILISTIC EDIT MODEL

In this section, we describe how we mine a model of human
bug-fixing edits from a large set of popular Java projects. The
intuition is to use this model to apply human knowledge to the
automatic program repair process, creating patches inspired by
what human developers do; the model is used explicitly in the
patch creation step of a generate-and-validate repair process.
To do this, we select a corpus of popular GitHub projects and
identify their most recent bug fixing commits (Section III-A).
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We identify mutation operator and replacement incidence in
this dataset (Section III-B) to construct a two level probabilistic
model used in a novel repair technique (Section III-C). Finally,
we analyze the corpus to extract association rules of edits that
happen together often, to potentially inform multi-edit source
code repairs (Section III-D).

A. Selecting the Corpus
We cloned the 500 most-starred Java projects on GitHub as

of August 2016 and identified the most recent 100 bug fixing
commits per each project. If the project had fewer than 100
bug fixing commits, we analyzed as many as found. Identifying
such commits is a difficult problem [3]. We apply a regular
expression to each commit message that looks for words such
as “fix”, “bug”, “issue”, “problem”, etc. following guidelines
from prior work [35]. We further only include commits that
exclusively modify Java source code, since we focus on
such bugs. We restrict attention to commits that modify a
maximum of three files to exclude big merges, and because
large commits are more likely to include changes unrelated to
a bug fix [11], [16]. To our knowledge, this is the largest set
of bug-fixing commits mined to inform program repair to date.

B. Identifying Mutations in Developer Commits
For each considered commit, we refer to the code before

the fix as the “before-fix” version and the code after as the
“after-fix” version. We seek to identify the changes performed
between the before- and after-fix versions, match them to our
considered mutation operators (Section II-B), and count how
many times each operator is used in the edits in our corpus. We
used Gumtree [7], a source code tree differencing framework to
identify deletions and insertions, as augmented by a component
of QACrashFix [10], which allows it to more accurately account
for replacements. These tools create an AST representation of
each program file, both before- and after-fix, and produce a
set of changes performed between them.

The changes output by these tools do not all directly map
to the template- and statement-based operators we consider.
That is, there is no one-to-one correspondence between the list
of changes and the mutation operator identification. We thus
greedily attempt to match the identified changes to the studied
mutation operators. We seek each of the mutation operators that
can match a given set of edits. For example, to identify a Null
Checker application, for each action describing a commit, we
check if the manipulated node is an IfStatement. If so, we check
whether the action is a node insertion. If so, we check if the
condition in the inserted IfStatement is an InfixExpression that
compares an Expression to a NullLiteral. If so, we count this
sequence of actions as an instance of a Null Checker mutation
operator. We created such an automated procedure for all the
mutation operators. These strategies are necessarily heuristic,
and we do not claim perfect soundness in our matching, instead
aggregating results over a large dataset.

C. APR Using a Two-level Probabilistic Model
We propose a novel syntactic generate-and-validate repair

technique that differs from prior work first, in the range of

Fig. 3. Two level probabilistic model to inform operator selection and
instantiation.

mutation operators considered (Section II-B) and second, in
how it chooses between those operators and instantiates them.
We instantiate this technique by extending an open-source
implementation of GenProg [40] for Java.3 We add the newly-
considered mutation operators, and a mechanism that allows
the tool to select between the mutation operators according to
the probabilities described by a model.

Our approach uses a two-level model (Figure 3) in operator
selection/instantiation. The first level informs the selection
of the given mutation operator, from a set of legal operators
at a given potentially-faulty location (e.g. Parameter replacer
cannot be applied to a BreakStatement). If the operator selected
is replace, the second level informs the selection of the
replacement code. To build both models, we perform an
incidence count of each mutation operator and replacement
observed in our dataset, matched as described in Section III-B,
and then apply Laplace smoothing [34] with α = 1 to account
for 0 occurrences. These two models in detail are as follows:

1) Mutation Operator Probabilistic Model: The Mutation
operator probabilistic model describes the probabilities of
choosing between the several different mutation operators at
a particular fault location. To build this model, we count
the incidence of each mutation operator observed in our
dataset, matched as described in Section III-B. Mutation
operator probability is then weighted accordingly. Figure 4
describes the distribution of mutation operators as mined
from the corpus. Template-Based and Statement-Edit mutations
contribute 29.26% and 70.74% of the studied edits, respectively.

2) Replacements Probabilistic Model: If the “Replacement”
mutation operator is selected, the Replacements probabilistic
model describes the probability of replacing one statement
(“replacee”) with another (“replacer”), thus informing the
selection of replacement fix code. We consider the 22 different
types detailed by Eclipse JDT as direct subclasses of the class
Statement, and the incidence with which each replaces
another. For example: “What is the observed incidence of a
For loop replacing a While loop?” Given 22 statement types,
there are 484 possible combinations. Note that the observed
probabilities are not reciprocal, e.g. that the probability of
a For loop replacing a While loop is different from the
probability of a While loop replacing a For loop. This model

3https://github.com/squaresLab/genprog4java
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Mutation operator Edits found (%)

Append 61.03
Sequence Exchance 15.76
Delete 9.10
Param Replacer 5.93
Param Add/Rem 3.15
Expression Repl 1.28
Method Replacer 1.12
Null Check 0.76
Castee Mutator 0.61
Replacement 0.60
Expression Add/Rem 0.37
Cast Check 0.11
Size Check 0.07
Range Check 0.04
Object Initializer 0.03
Caster Mutator 0.03
Lower Bound Set 0.01
Upper Bound Set 0.00
Off by One 0.00

Fig. 4. Mined distribution of mutation operators.

is built analogously to the mutation operator model, based on
replacer/replacee statement incidence.

D. Multiple Edit Association Rule Mining

Although single-edit patches can repair many non-trivial
bugs in real software, the majority of bug fixes in real software
require multiple edits [37], [44]. The number of combinations
of possible mutation operators to apply in a sequence increases
exponentially with number of combined source code changes.
As a first step towards mitigating this limitation, we propose
an initial analysis of multi-edit source code changes by mining
a more expressive model of common changes. In particular,
we extract association rules to model chains of several edits,
capturing the way humans create these kinds of fixes.

Association rules are if/then statements that show relation-
ships between elements in a dataset which happen frequently
together. We use the well-known association rule mining
algorithm Apriori [1]. We mine association rules for the
Mutation operators model (Section III-C) by analyzing mutation
operator count in the studied commits. We develop rule sets at
different Confidence levels, defined as:

conf(X =⇒ Y ) =
supp(X ∪ Y )

supp(X)

Where X and Y are items in a transaction (mutation operators,
in our context). Confidence is calculated according to its
Support (supp), an indication of how frequently the set of
mutation operators (item set) occurs in the corpus. Formally:

supp(X) =
|{t ∈ T ;X ⊆ t}|

|T |
Where X is the item set and t is each individual transaction

in the database of transactions T. Apriori identifies the mutation

operators that frequently happen together in a set of commits,
iteratively extending them to larger item sets that appear often
in the transactions as identified by these metrics.

IV. EVALUATION

We evaluate our model both independently and as part of an
automatic repair technique. We have four research questions:

• RQ1: How accurate are our mined models in predicting
mutation operators and replacement code across a large
dataset? (Section IV-A)

• RQ2: Which syntactic operators and selection models are
most useful for repair? (Section IV-C)

• RQ3: How does our model-informed APR tool compare
to the state-of-the-art in APR? (Section IV-D)

• RQ4: What are the most common multi-edit modification
rules in practice? (Section IV-E)

All experiments are performed on a server consisting of
16 processors Intel(R) Xeon(R) CPU E5-2699 v3, with 2.30
GHz each processor, 46080 KB cache each, and 32 GB RAM
memory, operating system Ubuntu 14.04.5 LTS. In addition to
addressing our research questions as described in the above
roadmap, we provide additional detail on the experimental
setup for all repair experiments in Section IV-B.

A. Model Generalization

Replacements Mutation operators

Fold # Prob (%) Eq (%) # Prob(%) Eq (%)

1 155 70 25 17313 95 64
2 86 100 25 17232 93 63
3 81 82 23 16754 95 81
4 101 81 40 14159 94 9
5 99 90 27 17022 95 2
6 75 84 21 14945 95 58
7 79 86 24 12901 93 7
8 55 96 23 10552 95 27
9 82 88 8 14568 93 62
10 116 100 31 19140 95 6

Mean 92.9 87.7 24.7 15458.6 94.3 37.9

σ 27.4 9.3 8.0 2530.3 0.9 30.5

Fig. 5. Correctly predicted edits, across 10 folds of data. The replacement
probabilistic model (center columns, left) predicts the correct replacement
statement 87% of the time, an improvement of almost a factor of 4 over
the equally-distributed equivalent. The mutations model (right columns, left)
outperforms the equally-distributed equivalent by almost a factor of 3.

We begin by independently evaluating our models’ (Sec-
tion III-C) predictive accuracy, to validate the underlying
intuition. We include all Statement-edit and Template-based
mutations, as described in Section II-B.

1) Setup: Our high-level research question concerns whether
our mined models are likely to identify the correct fix code
across a large dataset, suggesting their potential utility in a
repair context. We therefore compare the accuracy of the models
to an equally distributed baseline, which selects a mutation
(or replacement) uniformly at random. This is to contrast the
accuracy of the priorities assigned by our model to the way
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TABLE I
STUDIED SUBJECTS FROM DEFECTS4J.

Defects
Project ID Test cases considered

JFreechart Chart 2205 4
Closure compiler Closure 7927 25
Apache commons-lang Lang 2245 13
Apache commons-math Math 3602 18
Joda-Time Time 4130 3

it is performed by current approaches, which pick mutation
operators either uniformly at random, or using coarse grained
heuristics [18], [21], [32], [41]. We measure how often each
model correctly predicts the mutation operator (or replacer
statement, for a given replacee statement), within the top 5
produced choices. Perfect accuracy (correctness in the Top-1
most likely choice) is unnecessary, since an APR approach
can iterate through several different candidates before a fix;
however, the noisy search problem suggests that a relatively
tight bound (top-5) is likely appropriate.

To illustrate, consider a simple example. Assume the
following simple bug-fixing patch from our corpus:
1 + if(i > l.size()) {
2 return l.get(i); //original faulty location
3 + }

The developer has replaced the original return with an
if-then statement that wraps it. In assessing the replacement
model, we ask, assuming the selected mutation operator is
replace, how often will an IfStatement be predicted as the
replacer for a ReturnStatement? If it is returned in the first
five instances in a model, the model correctly predicts this
instance. For the equally distributed model, we select five
operators/replacees uniformly at random.

We use 10-fold cross validation [19] to mitigate the risk of
overfitting and avoid testing and training on the same data.
We aggregate results over folds by summing the number of
correctly predicted instances.

2) Results: Figure 5 shows results. The # columns show the
number of attempted instances per fold. The “Prob.” columns
show the accuracy (correct prediction rate) of the mined model
on that fold, for each model; “EqDist”, the accuracy of the
equally distributed model. For the Replacements model, the
average accuracy of the Probabilistic model is 63% higher than
the EqDist model; the difference is 56.4% for the Mutations
model. Two sample t-tests indicate that both differences in
means are statistically significant (α < 0.05).

These results suggest that the probabilistic approach is
significantly more accurate than an equally-distributed baseline
(used in several syntactic APR approaches) in predicting bug-
fixing edits. This suggests that the model, incorporated into an
APR approach, may be more likely to produce correct patches.
We directly address this question next.

B. Repair Experiment Setup

We have two high-level research concerns related to the
utility of our learned models for repair: (1) Which syntactic

operators and selection models are most useful for repair?
(Section IV-C) and (2) How does our model-informed APR
tool compare to the state-of-the-art in APR? (Section IV-D)

a) Validation of models in context: We first compare
the utility of the various sets of syntactic mutation operators
to identify which sets appears most useful in practice. We
instantiate our tool with each of two models (the Equally
Distributed baseline from Section IV-A and the learned
Probabilistic models), and three different operator sets: (1)
Statement-Edit mutations (2) Template-based mutations, and
(3) All mutations. We evaluate each version for expressive
power (in terms of bugs fixed), variants to repair (a machine-
and test suite-independent proxy for time), and quality of the
produced patches (evaluated as described below).

To diminish the degree of randomness in this experiment and
control for the effect of the mutation probabilities specifically
rather than inefficiency and noise in fault localization, we
manually set the fault localization for each bug. Anecdotally,
we observe that less-accurate fault localization increases the
amount of time our tool needs to repair these defects, but does
not decrease expressive power.

b) Comparison to previous techniques: Second, we
compare our tool, using the best set of operators as identi-
fied in the first question, to four previously-proposed APR
tools: GenProg [21], PAR [18], TrpAutoRepair [32], and
Nopol [43]. These prior approaches provide coverage over
several dimensions that differentiate program repair techniques.
GenProg and TrpAutoRepair use the same statement-level
edits, but differ in their search strategies (GenProg uses a
genetic programming strategy; TrpAutoRepair, also known
as RSRepair, a random walk). PAR uses GenProg’s genetic
programming search strategy, but a different set of templated
mutation operators. Nopol is a semantics-guided generate-and-
validate repair approach that thus uses a fix code identification
strategy that is quite different from the operators we consider.4

The open-source implementation of GenProg for Java imple-
ments the first three approaches. We run these three techniques
on the dataset using parameters described below. For Nopol,
we use patch results released by the Nopol authors on this
same dataset, and do not rerun their experiments. The Nopol
authors have created patches for the same benchmark used in
this study [24] and made their results publicly available.5 We
use results from the “March 2017” (most recent) release.

For these experiments, we focus on expressive power
(bugs repaired) and patch quality rather than patch efficiency.
Although important, it efficiency is not central to our claims,
and, given our use of previously-released results, is difficult to
evaluate in a controlled fashion in our context.

c) Dataset: We consider for repair a subset of the
Defects4j [15] benchmark, a database and extensible framework

4We do not compare directly to SPR/Prophet [23], because they use machine
learning to tune the probabilities and rank schema instantiation and are thus
difficult to re-implement faithfully for Java; as established, their edit schemas
are generalized by the extended PAR template set.

5https://github.com/Spirals-Team/defects4j-repair/tree/master/results/
2017-march
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Statement Edits Templates Both
Held-out Line EqDist Prob EqDist Prob EqDist Prob

Bug ID Tests Coverage Time Gen? Time Gen? Time Gen? Time Gen? Time Gen? Time Gen?

Closure #10 472 60.2% 221.0 X 179.5 X 175.1 X 121.3 X 163.3 X 157.4 X
Closure #18 106 73.4% – – 36.2 X 197.5 X 45.0 X 139.0 X
Math #2 13 100.0% – – 109.4 X 39.6 X 109.4 X 39.6 X
Time #19 55 86.0% 94.1 X 80.7 X – – 135.1 X 91.9 X
Chart #1 93 74.4% 1.8 × 7.3 × 4.9 × 19.0 × 2.2 × 4.8 ×

Fig. 6. Repair success of various models for three different operator sets. Columns 2 and 3 characterize the Evosuite-generated, held-out tests for each bug. For
each bug, we report time in terms of variants evaluated to a repair (an average, if more than one patch is produced over the course of multiple random trials),
and whether all produced patches generalize (“Gen?”) to the held-out test suites (X) or not (×). “–” indicates no patch was found in the given configuration.

of real bugs that enables reproducible studies in software testing
and has been previously used to evaluate APR [24]. Table I
characterizes the bugs from the dataset we consider. Because
we compare to single-edit techniques, we restrict attention to
a subset of the Defects4J bugs with single-line human patches.
The number of bugs attempted per project varies based on how
many such bugs are available in the dataset.

d) Patch quality: We evaluate patch quality using held-out
test suites [21], [36]. We automatically generate a single held
out suite for each buggy program version that any technique
repairs. We use Evosuite [8], an established test suite generation
tool for Java, to generate these held-out tests. We run EvoSuite
with a 30-minute budget, using the human-repaired “after-fix”
version of each Defects4J bug as the behavioral oracle. We
use Cobertura6 to calculate test suite coverage, again over the
“after-fix” class that contains the human fix.

e) Settings: For the genetic programming based tech-
niques (including ours), the population size is 40, and maximum
generations is 10. For the other techniques, the maximum
considered variant count is 400. We cap all runs at a timeout
of 4 hours. These settings are consistent with prior work. We
run 20 seeds per repair trial, in keeping with recommendations
on the assessment of stochastic techniques [2].

C. Mutation Operator and Model Utility

We evaluate our modified APR techniques, using each of
three sets of operators and each of two models to select between
them, on a subset of the bugs in Table I. Specifically, we
consider the first 6 defects from each project. Figure 6 shows
results. The first row (Closure #10) shows that the probabilistic
model outperforms the equally-distributed model for all three
edit sets. This happens as well for Math #2 and Time #19,
except for the cases where no patch was found. By contrast,
for bugs Chart #1 and Closure #18, the equally distributed
approach finds a patch faster on average. Investigating this case
manually, we find that these bugs are patched with mutations
that are rarely applied by developers (Expression Replace, and
Replacement accordingly), therefore it is more likely that the
mutation operators will be chosen by a random selection than
by the developer-informed model.

Our results suggest that considering all available mutation
operators is preferable to restricting the mutation operator pool
to just one of the categories. For the Statement-Edit category,

6http://cobertura.github.io/cobertura/

3 out of 6 were fixed faster when combining this kind of
mutations with Template-Based mutations, and 3 out of 6 were
slower. For the Template-Based category: 4 out of 8 were fixed
faster when combining it with Statement-Edit mutations, 2
out of 8 were the same, and 2 out of 8 were slower. This
suggests that the expressive power afforded by an increased
set of operators may outweigh the commensurate increase in
search space size, though it is safe to assume that this benefit
must be supported by sufficiently accurate fault localization.
In this sample, how quickly a model finds a patch appears
independent of the mutation set.

In terms of quality assessment, the patches generated behave
similarly within a given bug scenario. That is, for all bugs
for which any approach found multiple patches, either all
the patches generated by all configurations generalized to the
held-out test suite, or none did.

From these results, we conclude that the probabilistic model
using all available mutation operators (both Statement-Edit
and Template-based) appears to maximize expressive power
without an unacceptable loss to efficiency. In conjunction with
our model assessment results (Section IV-A), we thus use all
available mutations in our technique for the next experiment.

D. Comparison to Other Approaches
Next, we use our new APR approach to attempt to repair the

defects described in Table I, comparing to other state-of-the-art
approaches. Figure 7 shows results for the subset of bugs that
our technique repairs (in the interest of space, we describe
results for the remaining bugs in prose below). Figure 7 shows
the number of unique patches found for each bug and how
many of them generalized to a held-out test suite. The patches
that did not generalize failed one or several tests in the held-out
test suite. Of the 19 distinct patches created by our approach, 10
pass all held-out test suite (52.6%); 6.6% of GenProg’s patches
generalize; 22.2% of TRPAutoRepair’s; 23.1% of PAR’s; and
100% of the 5 Nopol patches generalize to the held-out test
suite. Figure 8 shows our technique’s patch for the Closure
#18 bug; it is identical to the human patch.

A key takeaway from these results is that the probabilistic
approach outperformed all the heuristic approaches. This is
important because these approaches by construction select
syntactic edits to perform according to some distribution. That
is, these techniques are those that could benefit from a more
informed edit distribution model. By contrast, Nopol produced
5 patches that all generalized to the held out test suite. However,
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Held-out Line Prob. Model GenProg TrpAutoRepair PAR Nopol
Bug ID tests Coverage Found Gen? Found Gen? Found Gen? Found Gen? Found Gen?

Chart # 1 93 74.4% 5 × 6 × 4 × 2 × –
Closure # 10 472 60.2% 2 X – – – 1 X
Closure # 18 106 73.4% 1 X – – – 1 X
Closure # 86 435 64.8% 2 X – 1 X – –
Lang # 33 85 92.3% 1 X – – 1 X –
Math # 2 13 100.0% 1 X – – 1 X 1 X
Math # 75 25 92.5% 1 X – – 1 X –
Math # 85 11 94.7% 4 × 8 × 3 × 8 × 1 X
Time # 19 55 86.0% 2 X 1 X 1 X – 1 X

Fig. 7. Comparison between the probabilistic model-based repair and other state-of-the-art approaches. “–” indicates no patch found. The “Found” column
indicate the number of patches found per bug over the multiple random trials. “Gen?” indicates whether all produced patches generalize to the held-out test
suites (X) or not (×). In these results, all produced patches for a bug, technique pair either generalized, or not.

1288 -if(options.dependencyOptions.needsManagement()
1289 - && options.closurePass){
1290 +if(options.dependencyOptions.needsManagement()){
1291 for (CompilerInput input : inputs) {
1292 // Forward-declare all the provided types, so that
1293 // they are not flagged even if they are dropped.
1294 for (String provide : input.getProvides()) {
1295 getTypeRegistry().forwardDeclareType(provide);
1296 }
1297 }

Fig. 8. A patch generated using the probabilistic model, identical to the
developer patch; No other approach found this identical patch.

Nopol targets a specific bug type and does not use a heuristic
approach. Our approach therefore presents an important benefit
for a broader array of bug types, particularly those to which a
semantics-based approach like Nopol doesn’t apply. Overall,
these results demonstrate the benefit of applying a probabilistic
model for edit selection for those approaches to which such a
selection process applies.

Our technique patched 9 of the 63 bugs in our evaluation.
GenProg patched 9; Par, 16; Nopol, 27; and TRPAutoRepair,
8. There are 37 bugs for which at least one approach produced
at least one patch. patch. From these, 19 were patched by only
one approach; 10 were patched by two; 3 patched by three; 4
patched by four; and 1 patched by all five.

Many approaches can create several patches for each bug.
Our approach created 19 distinct patches for the aforementioned
9 bugs. Of these, 10 (52.6%) pass the held-out test suites.
Genprog created 46 distinct patches; 5 of them (10.9%) pass
the test suites. TRPAutoRepair created 30 patches; 4 of them
(13.3%) pass the test suites. PAR created 34 patches; 11 of
them (32.4%) pass the test suites. Finally Nopol created 28
patches; 21 of them (75.0%) pass the test suites.

E. Association Rule Mining

In this section, we describe and evaluate the mutation
operator association rules produced by mining human patches to
identify edits that commonly occur together in human-generated
patches (Section III-D). The goal of these models is to provide
intuition regarding how to form multi-edit source code changes.
Note that we create these association rules using strictly the
Mutation Operator model corpus; the Replacements operator
corpus is only informative when the “Replace” operator is

chosen, and thus does not apply to the question of chaining
together edits to produce larger patches.

1) Mutation Operator Rules: Below, we list the top 10 rules
identified with 100% confidence in the dataset. This means that
in 100% of the cases observed, every transaction that contained
the antecedent of a rule also contained the consequent. A high
threshold like 100% produces rules for APR that predict with
high accuracy which edits to perform, given an initial set of
edits. These rules are obtained with a 1% support, which means
that each of these rules individually appear in at least 1% of all
the transactions in the corpus. We show only the top association
rules (the full set of rules is released with the code and data
associated with this paper):

• Replace & Delete =⇒ Append
• Delete & AddNullCheck =⇒ Append
• Replace & SeqExchanger =⇒ Append
• Replace & ParamReplacer =⇒ Append
• Delete & CasteeMutator =⇒ Append
• Replace & Delete & ParamReplacer =⇒ Append
• Replace & AddNullCheck =⇒ Append
• Replace & Delete & SeqExchanger =⇒ Append
• Delete & ExpressionAdder =⇒ Append
• Delete & AddNullCheck & ParamReplacer =⇒ Append

The key observation to draw from these rules is that “Append”
is the most common single edit mutation operator applied by
developers. This behavior is reflected in the fact that it is the
consequent in all the top mined rules. Overall, association
rules provide an intuition of which common patterns of
behavior developers use. These rules tell us which edits happen
frequently together, supporting understanding of multi-edit
source code changes, an understudied area that covers the
majority of real patches.

2) Evaluation of Association Rules: To evaluate the effec-
tiveness of the association rules in the context of the automatic
program repair process, we first remove from the corpus human
patches with fewer than three edits. This is because our mined
rules all require at least two antecedents and one consequent.
This removed 62.83% of the corpus. We validated the rules on
the remaining 37.17% of patches as follows. First, we divide
our corpus in 10 folds. For each fold, we build association rules
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on the remaining nine, as described. Given the mined rules, we
then we analyze how many testing patches (instances in the
fold used as testing data) can be built by applying the learned
rules. We categorize them as either Fully covered, Partially
covered, or Not covered.

To illustrate via example, Table II shows three instances
of patches in the testing data, and three rules. Instance 1
can be constructed by applying rules 1 and 3 and is thus
classified as Fully covered. Rule 1 would cover the first three
edits of Instance 2 instance, but there is no way to create the
Replace (“Rep”) mutation using the listed rules. This instance
is classified as Partially covered. For Instance 3, even though
Rule 3 contains two of the edits in the rule’s antecedent, the
instance does not contain the rule’s consequent. The rules do
not apply, and thus this instance is classified as Not covered.

TABLE II
PATCH INSTANCES (TOP); ASSOCIATED ASSOCIATION RULES (BOTTOM).

Instances

1 Del; App; NullCheck; ObjInit
2 Del; App; NullCheck; Rep
3 App; NullCheck; CastMut

Rules

1 Del ∧ App → NullCheck
2 App ∧ ParamRep → Rep
3 App ∧ NullCheck → ObjInit

Finally, we performed this analysis at 6 different confidence
thresholds (50%, 60%, 70%, 80%, 90%, 100%) to analyze
the tradeoff between ruleset expressive power and size. A
high confidence produces a small number of very accurate
rules (when the antecedent is present, it is very likely that the
consequent will be present as well). Setting the confidence
lower produces the opposite trade-off: a large set of rules
(covering more instances) where if the antecedent is present, it
is less likely that the consequent will be present too. For each
confidence threshold, we performed a standard 10-fold cross
validation process with all the instances and all the rules for
each fold and finally, we aggregate the results from all folds.

Figure 9 shows results. As expected, the number of rules
created increases as confidence decreases. Note also that the
number of Fully Covered instances increases as the confidence
decreases, due to the fact that there are more rules, even though
these rules are less accurate.

APR would benefit from having a small number of very
accurate (high confidence) rules that would describe what edit
to perform next after a series of edits, but at the same time, it
needs rules that are flexible enough that they can generalize
to a big portion of the patches. We find a good tradeoff at a
confidence threshold of 90%. The 100% threshold provides
very accurate rules, but can fully cover only 37.7% of the
evaluation patches. By contrast, the 90% confidence threshold
produces slightly more rules, but they are able to fully cover
84.6% of the patches.

Fig. 9. The wide bars use the left vertical axis to describe the percentage of
patches covered (Fully, Partially or Not) by the association rules. The thin
bars use the right vertical axis to describe the number of rules created for
each confidence threshold.

V. THREATS TO VALIDITY

Internal validity: Regarding possible errors in our imple-
mentation and experiments, to run our comparison with
Genprog, we used an open-source implementation of GenProg
targeting Java. We release our code, as well as our templates,
independently-generated tests, and mined models for scrutiny
and extension by other researchers, to mitigate the risk of
errors in our implementation or approach. We also use 10-fold
cross validation in assessing our model and association rules,
to reduce the risk of training and testing on the same data.
External validity: It is possible that our results will not
generalize to external datasets and to real bugs. To mitigate this
concern, we build our model from well-known open-source
programs, covering a diversity of applications, and distinct from
the dataset from which the models were mined, and we evaluate
our approach with bugs from an open-source framework.

There is also risk of producing low quality patches that would
not generalize to a different description of desired program
behavior. We attenuate this by assessing the quality of the
generated patches with a held-out test suite. There is risk in
the fact that we are manually giving the faulty location to
the APR tool, since APR tools do not know in advance what
the fault location is. This is for the purposes of evaluating
the patch creating process only without the noise that fault
localization might introduce.
Construct validity: Regarding the suitability of our evaluation
metrics, we evaluate patch quality by running the generated
patches on a second test suite created from a human patch,
which is to a certain extent a biased measure since we can
not guarantee that the human created patch is perfect [36].
Nevertheless, we consider this to be a best known practice,
since this way we provide an alternative to subjectively asking
a biased human developer whether he/she considered the patch
to be correct or not.
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We also rely on Evosuite [8] as our test suite generation
mechanism for the held-out test suite used for evaluation, and
we acknowledge that the test suites created by this tool may not
be perfect, nor provide full coverage for all cases. Nonetheless,
this is a state-of-the-art test suite generation tool that mitigates
the risk of bias in manually constructing evaluation test suites.

VI. RELATED WORK

There have been previous efforts to create an edit model
based on human behavior. Soto et al. [37] built a probabilistic
model to describe the replace operator only. They do not
evaluate the model in the context of a repair tool, and the
model is based on an instance count of statements rather than
a more accurate analysis of AST differences, which our model
was built from. HDRepair [5] uses fix history to assess patch
suitability and fitness in the context of a genetic programming
search strategy. The fitness of the generated fix candidates is
determined by the frequency with which the changes included
in a given patch occur in the corpus, using a graph-based
representation of the bug fixes. Similarly, Prophet [23] uses
a probabilistic model of a subset of our considered mutation
operators built on the history of 8 different projects to rank
candidate patches. Our approach follows this intuition to mimic
human behavior; unlike the previous work, we apply this
knowledge when actually creating patch candidates rather
than when evaluating them, which reduces the search space at
creation time.

Zhong and Su [44] perform an empirical study of real bug
fixes on six projects, studying the incidence of three mutation
operators, among other questions about the applicability of
APR. Martinez and Monperrus [25] similarly study mutation
operator incidence across 14 projects. Our work considers a
broader set of mutation operators over a larger corpus, the
largest, to the best of our knowledge, studied in existing work.
To counter the risk of overfitting to a small set of training
projects as performed before, our current study trains the model
over 500 projects, covering a diversity of domains.

Par [18] describes a manual set of 10 templates of common
behavior to create patches, showing that such templates result in
patches of higher human-adjudged acceptability than statement-
edit-based patches. Our study takes into consideration a superset
of these templates, provides steps towards accounting for
multi-edit source code changes, an understudied problem,
and, importantly, mines and models these operators and their
incidence automatically (rather than manually).

There exist a broad array of APR techniques proposed,
especially recently; we survey many of them in Section II,
focusing on heuristic or syntactic generate-and-validate tech-
niques. Semantic-based techniques use semantic analysis or
reasoning [20], [26], [27], [29], or semantic search [17] to
construct candidate patches. Similarly, synthesis-based repair
is a family of techniques that uses constraints to build patches
following the description of the constraints [13], [39]. These
constraints may be specifications created by developers, formal
verification, invariants, etc. [13], [39]. Such techniques typically
use synthesis to construct repairs, with a different mechanism

for both constructing and traversing the search space, and our
approach is thus less immediately comparable.

VII. CONCLUSION

In this paper, we analyze the way in which current state-of-
the-art automatic program repair approaches select mutation
operators to create candidate patches. We analyze, categorize
and compare the mutation operators being used by state-of-the-
art approaches. We analyzed the last 100 bug fixing commits
from the 500 most-starred Java projects on GitHub, which
is the largest corpus analyzed to date, to the best of our
knowledge. We picked the most-stared projects because stars
in Github are seen as proxies for popularity, which usually
entail well-maintained, well-stablished, mature projects, that
are more likely to have more and better quality bug fixes. We
created a two-level probabilistic model describing the likelihood
of selecting bug-fixing mutation operators, according to the
observed incidence of their use by human developers. All
the data gathered, tools and test suites used in this study are
publicly available for open peer review and scrutiny.

We evaluated our approach in several ways: by performing
an internal evaluation of its predictive power, and by running
an APR tool using our model on 63 bugs from Defects4j.
Finally we compare the quality of the patches generated
against patches created for these same bugs by other state-
of-the-art approaches. We measure both efficiency of patch
production, and generalizability of the patches to a held-out
test suite. Note that in Figure 6, for the majority of bugs, when
using the probabilistic model we obtained better results than
their equally distributed counterpart. Overall, we found that
automatic program repair appears to benefit from having a
diverse mutation operator pool; future improvements in fault
localization thus will serve to further benefit from more precise
models of mutation selection.

Multi-edit source code changes are understudied, but cover a
large portion of bug fixes in software systems. To move towards
advancing this area, we constructed a set of association rules
that describe how subsets of mutation operators are applied
together. Overall, our initial analysis of how to chain single-
edit changes by following human behavior provides a first step
towards an efficient mechanism for traversing the large search
space of multi-edit repairs.

All code and data associated with these experiments are
available for replication and extension: https://github.com/
squaresLab/ProbabilisticModelSaner2018.
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