
Learning to Rank for Bug Report Assignee
Recommendation

Yuan Tian∗, Dinusha Wijedasa∗, David Lo∗, and Claire Le Goues†
∗School of Information Systems, Singapore Management University, Singapore

†School of Computer Science, Carnegie Mellon University, USA
{yuan.tian.2012,dwijedasa,davidlo}@smu.edu.sg, clegoues@cs.cmu.edu

Abstract—Projects receive a large number of bug reports,
and resolving these reports take considerable time and human
resources. To aid developers in the resolution of bug reports,
various automated techniques have been proposed to identify
and recommend developers to address newly reported bugs. Two
families of bug assignee recommendation techniques include those
that recommend developers who have fixed s imilar b ugs before
(a.k.a. activity-based techniques) and those recommend suitable
developers based on the location of the bug (a.k.a. location-
based techniques). Previously, each of these techniques has been
investigated separately.

In this work, we propose a unified model that combines infor-
mation from both developers’ previous activities and suspicious
program locations associated with a bug report in the form of
similarity features. We have evaluated our proposed approach on
more than 11,000 bug reports from Eclipse JDT, Eclipse SWT
and ArgoUML projects. Our experiments show that our unified
model can outperform a location-based baseline by Anvik et al.
and an activity-based baseline by Shokripour et al. In terms of
correct recommendations at top-1 position, our unified model
outperforms the activity-based baseline 50.0%-100.0%, and the
location-based baseline by 11.1%-27.0%.

Index Terms—Bug Reports; Bug Assignee Recommendation

I. INTRODUCTION

Software projects use bug tracking systems, such as Bugzilla
and JIRA, to access and manage change requests or bugs that
have been reported. Users, developers, and testers can leverage
such systems to easily submit a bug or a feature request as
a formatted bug report. Project maintainers can then use the
system to validate reports and manage the resolution process.

Although bug tracking systems help developers, bug reso-
lution still takes significant t ime a nd h uman r esources. This
is especially the case for large projects with large number of
bug reports. For instance, during September 2015, the Eclipse
project received approximately 2,500 bug reports, averaging 80
new reports each day.1 These large quantities of daily reported
bugs must be triaged by project maintainers (or triagers) to as-
sign each issue to an appropriate developer/team for handling.
This process is important, because assigning a bug report to
the incorrect developer or team can increase the overall time
required to fix the bug, increasing project maintenance cost [1].
Moreover, this process is time consuming and non-trivial since

1We calculated this number by looking at the number of bug reports
submitted from September 1st to 31st, 2015, based on the information
available at https://bugs.eclipse.org/bugs/

good comprehension of bug report, source code, and team
members is needed.

To improve bug triage efficiency a nd e ffectiveness, re-
searchers have proposed numerous approaches to automati-
cally assign bug reports to developers, by extracting useful
information from historical bug reports and source code [1],
[2], [3], [4], [5], [6]. Shokripour et al. categorized this prior
work into two groups, based on their underlying mechanism:
activity-based approaches, and location-based approaches [1].
Activity-based approaches [2], [3], [4] identify potentially
appropriate developers based on their activities (e.g., previ-
ously fixed b ugs) w ithin t he p roject, a cross v arious project
artifacts. By contrast, location-based approaches [1], [5], [6]
recommend a bug report assignment by localizing the bug to
a set of potential source code locations and then identifying
which developers touched the implicated code. Each approach
has its pros and cons. For instance, location-based approaches
are highly reliant on the performance of bug localization,
which might not be high (c.f. [7], [8], [9], [10]); activity-based
approaches might be inappropriately biased by the previous
activities of a given developer. We discuss these limitations in
more detail in Section II. Importantly, none of the previous
work has combined the two types of information, which
motivates our study.

In this work, we propose a unified model (based on learning
to rank machine learning technique) that combines informa-
tion from both developers’ previous activities and suspicious
program locations associated with a bug report in the form
of similarity features. Learning to rank is a machine learn-
ing technique widely applied in applications like document
retrieval. We choose learning to rank because we can map
the assignee recommendation task to a document retrieval
task by treating the bug report as the query, and developers’
profiles (previously fixed bugs and committed source code) as
documents to be returned. To incorporate location information,
the query can be enriched with the potential locations where
the bug may reside. This reduces the task to ranking documents
(developers) based on the similarity between a query (bug
report) and each document (developer profile).

To capture the similarity between a bug report and developer
profile, we propose 16 features, considering both the potential
location of the bug (location-based features) and previously
fixed b ugs b y e ach d eveloper (activity-based f eatures). To
evaluate our approach, we collect more than 11,000 bug

978-1-5090-1428-6/16/$31.00 ©2016 IEEE ICPC 2016, Austin, Texas 1

reports together with committed source code from three open
source projects: Eclipse JDT, Eclipse SWT and ArgoUML.
Our experiments show that combining these two types of
features improves the performance of learning to rank model
as compared to one that uses only one type of feature. The
experiments also show that our unified model achieves better
results as compared to a location-based baseline by Anvik et
al. [3] and an activity-based baseline by Shokripour et al. [1].

Our key contributions are thus:
1) A novel unified model based on learning to rank machine

learning algorithm. This unified model can leverage in-
formation from both developers’ activities and the result
of bug report localization task. This integrates activity-
based and location-based bug assignee recommendation
approaches.

2) 16 features to capture the degree a developer matches a
bug report.

3) Experimental results on more than 11,000 bugs from
three open source projects. The results show that com-
bining location-based features and activity-based fea-
tures through learning to rank technique can improve
the performance of using only one type of feature.

The rest of this paper is organized as follows. First, we
provide background on prior bug assignee recommendation ap-
proaches in Section II. In Section III, we present our approach,
including the ranking model, the definition of features, and
how we collect these features. We describe our experimental
setup and process in Section IV, and present and analyze the
results in Section V. Related work is presented in Section VI.
Finally, we conclude and mention future work in Section VII.

II. BACKGROUND

In this section, we first introduce basic background on
the bug assignee recommendation task. Next, we summarize
the two types of automatic bug assignee recommendation
approaches that have been considered in prior work. To
illustrate this discussion, consider the sample bug report taken
from the Bugzilla report database for Eclipse (ID 424772),
shown in Figure 1. Bugzilla provides several fields to help
describe and manage a bug. In Figure 1, we list six fields of
particular interest to the bug assignee recommendation task:
bug Status, the Product in which the bug appears, the time
at which the bug was Reported, the developer to whom the
bug was assigned (Assigned To), and both a short Summary
and a long Description to provide details and describe steps
for reproduction. This report in particular describes a typing
related bug under text component of JDT. We also know
that this bug was fixed by a developer named Noopur Gupta
through a commit, ID of which starts with “8d013d”.

When a bug report like this arrives in the system, it usually
does not have an assigned developer (like Noopur Gupta). It
is the task of the triager or project maintainers to analyze
such a report, establish its validity and uniqueness, and then
identify the appropriate person or team to address it. This
process is manual and time-consuming, given the hundreds of
reports large projects receive daily. Our goal in this work is to

Fig. 1: Bug report #424772 from Eclipse JDT.

automate the process of identifying the appropriate developer
to whom such a new, valid report should be assigned. The
approaches in previous work extract information from such a
report and associated project activity recorded in a bug track-
ing or source control system to construct predictive models.
They can be categorized according to the type of information
they use: activity-based approaches (see Section II-A) rely on
developer activities across various artifacts, linked primarily
to textual features in the bug report, while location-based
approaches (see Section II-B) use the bug report to locate
potentially defective source code files, to identify the devel-
opers strongly associated with that code (e.g., developers who
created the file, developers who modified the file, developers
who modified similar files, etc.).

A. Activity-based Bug Assignee Recommendation

Activity-based approaches recommend a developer for a
particular bug report based on how well the developer’s exper-
tise is predicted to match with the given bug report. Developer
expertise is inferred from developer activities during previous
bug triage processes [3], [4] and then linked to the words that
appear in a new bug report. Consider the bug report shown
in Figure 1. The text in the summary and description fields
indicates that the problem lies in the JDT Text component,
using words like “Indentation”, “typing”, “braces”, “position”.
Searching the bug database for the JDT project for the keyword
“Indentation” reveals several previously fixed bugs related
to this concept, and find that many of them were fixed
by/assigned to Noopur, the developer that addressed this new
bug. For example, Noopur was also assigned to Bug #404821,2

which reported that the “Code Indentation” feature of the JDT
did not work. This illustrates that a report’s description and

2https://bugs.eclipse.org/bugs/show bug.cgi?id=404821

2

summary can provide useful textual information to suggest
developers with expertise in a given problem or concept, based
on previously fixed bugs.

Previous researchers leveraged this insight in several ways.
For instance, Anvik et al. [3] treat the developer as a class
label, and bug assignee recommendation task as a multi-class
classification problem. They extract features from a set of
bug bug reports, i.e., words that appear in the description and
summary field of bug report, and represent each bug report as
a feature vector. The value of a feature is the number of times
a particular word appears in the report. These feature vectors,
together with a set of known assignees drawn from previously-
addressed bugs, are used as input to learn a predictive model
using a classification algorithm (e.g., Support Vector Machine,
Naive Bayes Classifiers, Decision Tree). When a new bug
report arrives, a similar feature extraction process is applied,
and the trained predictive model can be applied on the new
feature vector to predict who should fix it.

Although activity-based bug assignee recommendation ap-
proaches have been shown to achieve acceptable results, they
ignore a valuable source of information, namely the link
between bug reports and source code files. This information
is leveraged by location based bug assignee recommendation.

B. Location Based Bug Assignee Recommendation

The underlying idea behind location-based bug assignee
recommendation approach is to indentify potential developer
expertise on the bug report through the source code itself [1],
[5], [6]. The basic assumption is that developers who have
recently fixed a bug in a given source code file are more
likely to have the required expertise to fix a new bug in the
same location than other developers. Under this assumption, a
developer, even one who has been less active in previous bug
fixing activities, has substantial expertise in recently-touched
or modified code in the repository.

Generally, these approaches consistent of two phases: (1)
bug report localization, followed by (2) bug assignee rec-
ommendation. For each of the phases, researchers have pro-
posed various approaches. Hossen et al. apply an information
retrieval technique, i.e, latent semantic indexing (LSI) [11]
to compute the similarity between a given source file and
a bug report [6]. They consider words appearing in identi-
fiers and comments extracted from a source code file as an
input document and words appearing in the summary and
description field of a bug report as a query. Different from
Hossen et al., Shokripour et al. compute a relevance score
between a bug report and a source code file by summing
the weights of each noun that is common between the bug
report and file [1]. The weight of a noun is determined
based on the number of times the noun appears in a bug
report, a commit message, a source code comment and an
identifier. For instance, to fix the sample bug shown in
Figure 1, Noopur committed several source files including one
named “/eclipse/jdt/internal/ui/text/JavaIndenter.java”. When
Shokripour et al. compute the similarity between the sample
bug and file “JavaIndenter.java”, the word “indentation” has a

weight of 3, because it appeared in three information sources,
the commit message, the identifiers in the file, and the bug
report.

Although location-based approaches consider similarities
between bug reports and source code files, which activity
based approaches ignore, they have drawbacks:
• High dependence on an underlying bug localization

technique. Finding the relevant source code files given a
bug report is the initial and one of the most important
steps for location-based bug assignee recommendation
approaches. Therefore, the performance of the bug local-
ization approach used highly impact the performance of
a location-based bug assignee recommendation approach.
However, bug localization based on a human written
report is a hard problem in and of itself, with common
accuracy around 30% for predicting the most suspicious
source file, e.g., [12].

• Ignore rich information contained in historical bug
reports. Many location based approaches do not consider
the textual information inside previously fixed bug report,
which often contain useful information to determine the
expertise of a developer.

To summarize, both activity-based and location-based bug
assignee recommendation approaches have advantages and
disadvantages. In this work, we combine the two to build a
unified bug assignee recommendation model that improves on
the performance of the previous approaches.

III. A UNIFIED ASSIGNEE RECOMMENDATION APPROACH

In this section, we detail our proposed bug assignee recom-
mendation approach. We first introduce the overall framework
of our approach (Section III-A). We then introduce the features
that we use to capture the degree of match between a developer
and a bug report, which include those derived from activity
information (Section III-C) and location-based information
(Section III-D). We also describe the process of extracting
these features.

A. Overall Framework

We apply learning to rank to train a ranking model that uses
both activity information and location information as features
to identify appropriate developers to address a particular bug
report. Learning to rank is a popular machine learning tech-
niques for training a model to solve a ranking problem. It has
been widely used in various applications, such as document
retrieval [13], [14]. Document retrieval is a task that takes
as input a query, and retrieves and ranks documents based
on their degrees of match with the query. This problem is
similar to our assignee recommendation problem, where a new
bug report is the query, and the profiles built from develop-
ers’ activity information form the documents. To incorporate
location information, the query would be enriched with the
potential locations where the bug may reside. In this way, we
can naturally apply learning to rank to build ranking models
for the bug assignee recommendation problem.

3

TABLE I: Sixteen Activity-Based and Location-Based Features Characterizing a Bug Report-Developer Pair.

Category ID Dimension Description

Activity-
Based

φ1−5 Bug Report-Code Similarity Similarity between source files related to the developer and
bug report.

φ6−10 Bug Report-Bug Report Similarity Similarity between previous bug reports related to the devel-
oper and bug report.

φ11 Developer Bug Fixing Frequency How frequently the developer fixes bugs.
φ12 Developer Bug Fixing Recency How recently the developer fixes bugs.

Location-
Based

φ13−14 Potential Buggy Code-Related Code Similarity Similarity between potential buggy files corresponding to the
bug report and source files related to the developer.

φ15 Touched Potential Buggy Files Whether the potential buggy files have been touched by the
developer.

φ16 Touched Mentioned Files Whether classes mentioned explicitly in bug reports have been
touched by the developer.

Figure 2 shows the general process of our approach. The
recommendation system maintains profiles for all available
developers, which we refer to as D1, . . . , DN . The main
task of this recommendation system is to train a ranking
model f(Bri, Dj) that accurately captures the degree to
which a given bug report Bri matches a given developer
j’s profile (Dj). To train f(Bri, Dj), this system requires
a set of previously fixed bug reports for which we know the
developers to whom they were ultimately assigned. Thus, for
a set of M training bug reports Br1 . . . BrM and associated
developers D1, . . . , DN the system collects a set of features
to represent the degree of match (or similarity) between each
bug report and developer. For instance, d1,1 represents the
similarity between Br1 and D1. This information is then
used to train the ranking model f(Bri, Dj) using an off-the-
shelf implementation of a learning to rank algorithm. Then,
when a new bug report arrives, the trained model calculates
the similarity between it and all the potential developers,
producing dM+1,1, dM+1,2, . . . , dM+1,N . The output of the
whole system for this bug report is a ranked list of developers,
where developers at the top of the list have higher similarity
scores with the given bug report and are thus more likely to
be good choices for addressing the defect.

The ranking model f(BrM , DN) is represented as a
weighted sum of k features, where each feature φi(BrM , DN)
captures an element of the similarity between the bug report
M and developer N :

f(BrM , DN) =
k∑

i=1

wi ∗ φi(BrM , DN)

The model parameters wi are learned from the training
set by the learning-to-rank algorithm. The learning-to-rank
algorithm employs an optimization procedure that seeks a set
of parameters that results in a function that correctly ranks the
developer profiles that are known to be assigned to the bug
reports in the training set, at the top of the lists for those bug
reports.

In the following sub-sections, we introduce 16 features, i.e.,
φ1(BrM , DN) . . . φ16(BrM , DN) that we use to measure the
degree of match (or similarity) between a bug report and a

developers’ profile. These features are derived from devel-
opers’ bug-fixing activities (see Section III-C) and estimated
bug locations in the source code (see Section III-D). Table I
summarizes these 16 features.

B. Dataset Collection and Text Pre-processing

In this work, we consider two kinds of resources to build a
developer profile that captures expertise: (1) bug reports that
have been fixed by the developer, and (2) the corresponding
committed source code files. Here, corresponding files refer
to the files containing code that has been added, modified,
or deleted over the course of fixing corresponding bugs. To
complete this task, we first collect a set of fixed bug reports
and their links to source files committed to a source control
system. In this work, we consider three datasets from project
Eclipse JDT, Eclipse SWT, and ArgoUML. For Eclipse JDT
and SWT, we use the same benchmark dataset provided by
Ye et al. [12], where bug reports are already linked with their
corresponding bug fixing commits. For project ArgoUML,
we apply the heuristic approach proposed by Bachmann and
Bernstein [15] to link bug reports with commits. We first scan
commit logs to find patterns, such as “issue 180”, that could
identify bug fixing commits. We then check if the bug reports
corresponding to the identifiers exist in the bug tracking system
with their status marked as fixed. We also check whether the
time the source code files were committed is later than the
time the bug report was reported.

After collecting the bug reports and source code files, we
extract words appearing in the comments and identifiers of
each source code file, and words appearing in the summary
and description fields of each bug report. Next, we process the
extracted textual information following general textual pre-
precessing steps, i.e., tokenization, stop-word removal, and
stemming. A token is a string of characters, and includes no
delimiters such as spaces, punctuation marks, and so forth.
Tokenization is the process of parsing a character stream into
a sequence of tokens by splitting the stream at delimiters.
Stop words are non-descriptive words carrying little useful
information for retrieval tasks. These include verbs such as
“is”, “am” and “are”, pronouns such as “I”, “he” and “it”, etc.
Our stop word list contains 30 stop words, and also common

4

Fig. 2: Overall Ranking Process

abbreviations such as “I’m”, “that’s”, “we’ll”, etc. Stemming
is a technique to normalize words to their ground forms. For
example, a stemmer can reduce both “working” and “worked”
to “work”. We use the Porter stemming algorithm [16] to
perform this step.

C. Extraction of Activity-Based Features

This subsection describes features mined from developers’
bug fixing activities.

a) Bug Report-Code Similarity: This dimension (φ1−5)
captures textual similarity between a bug report Br and pre-
vious files containing source code committed by a developer
D to fix prior bugs. We combine the summary and description
fields in a bug report into one document per report. We
consider a source file that a developer has touched (i.e., added,
deleted, or modified) as a document. We also create a merged
document that contains all files a developer has touched. We
consider two metrics to measure document similarity: cosine
and BM25 similarity scores.

To compute the cosine similarity (i.e., φ1(Br,D)) between
a bug report Br and a developer D, we first define a function
Cosine(r, s) that calculates the cosine similarity between two
documents (in our case, a document could be a bug report, a
code file or a merged code file) r and s. Function Cosine first
transform pre-processed words in document r and s into two
vectors of weights. Each word is mapped to an element of the
vector. The weight of a word term in a vector corresponding
to a document doc is computed as:

wterm,doc = TFterm,doc × IDFterm

In the above equation, TFterm,doc is the number of times
word term appears in doc. IDFterm = log N

DFterm
, where

DFterm is the number of documents that contain word term,
given a document corpus. TF-IDF (term frequency - inverse
document frequency) is a popular way to assign weights
in information retrieval [17]. The vector representations of

two documents are then compared to compute their cosine
similarity as follows:

Cosine(r, s) =
−→r · −→s
‖−→r ‖‖−→s ‖

(1)

In the above equation, −→r and −→s are vector representations
of the bug report and the set of patches, · is the dot operation
between vectors, ‖−→v ‖ is the size of vector −→v .

BM25 is another way to compute similarity between docu-
ments [18]. Given a query q (e.g., a bug report) and a document
s (e.g., a document that contains all source code files touched
by developer D to fix prior bugs), BM25(q, s) computes a
similarity score as follows:

BM25(q, s) =
n∑

i=1

Idfqi ·
f(qi, s) · (k1 + 1)

f(qi, s) + k1 · ((1− b+ b · |s|avgdl))
(2)

In the above equation, qi is the ith word in the query
q, f(qi, s) is number of times qi appears in document s,
|s| is the length of the document (i.e., number of words in
the document), and avgdl is the average document length
in the text collection from which documents are drawn (i.e.,
average number of words in the documents containing touched
source code files of different developers). k1 and b are free
parameters. In our experiment, we set k1 and b as 1.2 and
0.75, as suggested by Manning et al. [17].

Based on these two types of similarity metrics, we define
the following five features:

φ1(Br,D) = max(Cosine(Br,m)|m ∈ DCodeCorpus)

φ2(Br,D) = avg(Cosine(Br,m)|m ∈ DCodeCorpus)

φ3(Br,D) = sum(Cosine(Br,m)|m ∈ DCodeCorpus)

φ4(Br,D) = Cosine(Br,DMergedCode)

φ5(Br,D) = BM25(Br,DMergedCode)

5

In the above equations, Br is the target bug report.
DCodeCorpus is the set of source files touched by developer
D to fix previous bugs. For φ1−3, we consider single source
file (m), as a document, and compute their similarity with
the bug report. We then use the maximum value, mean, and
sum of these similarity scores as the value of the features. For
φ4−5, we merge all source files to create a larger document
DMergedCode for developer D, and compute its similarity with
bug report Br using cosine similarity and BM25.

b) Bug Report-Bug Report Similarity: This dimension
(φ6−10) captures the textual similarity between a bug report
Br and all previous bug reports fixed by a developer D. The
underlying idea is that words appearing in the bug reports that
have been fixed by a developer might capture the expertise
of this developer along different aspects. Similar to φ1−5, we
consider five kinds of similarity metrics in this dimension,
given a bug report Br and a developer D:

φ6(Br,D) = max(Cosine(Br,m)|m ∈ DBugCorpus)

φ7(Br,D) = avg(Cosine(Br,m)|m ∈ DBugCorpus)

φ8(Br,D) = sum(Cosine(Br,m)|m ∈ DBugCorpus)

φ9(Br,D) = Cosine(Br,DMergedBugs)

φ10(Br,D) = BM25(Br,DMergedBugs)

In the above equations, function Cosine and BM25 are
the same as defined in Equation 1 and 2 respectively. For the
feature φ6−8, DBugCorpus is the set of bug reports to which
developer D was assigned before Br was reported. For the
later two features, we merge all documents in DBugCorpus

as one document, i.e., DMergedBugs, and then compute the
similarities between two documents.

c) Developer Bug Fixing Frequency: A developer who
has fixed a lot of bugs for a project generally has more
expertise on the project compared with other developers. Based
on this assumption, we consider the number of bugs that have
been fixed by a developer over a period of time (one year,
in our experiments) as one of the activity-based features. It is
defined as:

φ11(Br,D) = |brOneyear(Br,D)|

In the equation above, brOneyear(Br,D) is the set of bugs
that developer D has fixed within one year prior to the
reporting of Br.

d) Developer Bug Fixing Recency: Similar to the intu-
ition captured by φ11, we speculate that a developer who has
recently fixed bugs might more likely to fix a new bug than
another developer who has not fixed any bugs in a long time.
Let br(Br,D) be the set of bug reports for which developer D
has fixed before bug report Br was reported. Let last(Br,D)
be the most recently fixed bug in br(Br,D). Also, for any bug
report Br, let Br.date denotes the date when the bug report
was created. We then define the bug-fixing recency feature φ12

to be the inverse of the distance (in months) between Br and
last(Br,D):

φ12(Br,D) = (diffMTH(Br.date, last(Br,D).date) + 1)
−1

In the equation above, diffMTH(Br.date, last(Br,D).date)
denotes the difference between the dates Br and last(Br,D)
were reported rounded down to the nearest number of months.

D. Extraction of Location-Based Features

a) Potential Buggy Code-Related Code Similarity: To
compute these features, we perform two steps: (1) given a bug
report, generate a list of source code files that are most likely to
be relevant to the bug report using the bug report localization
technique proposed by Ye et al. [12], (2) generate features
φ13−15, to capture degree of relevance between a developer
and a bug report by analyzing the potential location of the
bug. We consider approach proposed by Ye et al. because it
is reported to be the state-of-the-art bug report localization
technique so far.
φ13 and φ14 correspond to the cosine and BM25 similarity

scores between the top-k most likely source code files to
contain the bug and a document containing all source code
files that are touched by a developer to fix prior bugs. They
are mathematically defined below:

φ13(Br,D) =MAXCi∈TopK(Cosine(Ci, DMergedCode))

φ14(Br,D) = AV GCi∈TopK(BM25(Ci, DMergedCode))

In the equation above, TopK refers to a list of top-k files
that are most likely to contained the bug described in Br as
outputted by Ye et al.’s technique [12]. In the experiment, we
set K to 10. DMergedCode is a document that contains all code
files touched by D to fix prior bugs.

b) Touched Potential Buggy Files: φ15 measures whether
the developer has touched a file that is potentially buggy when
fixing prior bugs. We identify a list of top-K potentially buggy
files in a similar way as when we compute φ13 and φ14. In
the experiment, we set K to 10 by default.

φ15(Br,D) =

{
1, if developer D has touched Ci ∈ TopK
0, otherwise

(3)
c) Touched Mentioned Files: For some of the reported

bugs, developers mention the names of some classes (i.e.,
source code files) in the description of a bug report [19]. These
files are likely to be the buggy ones. Thus, we define another
feature as follows:

φ16(Br,D) = |Br.files
⋂
DCodeCorpus|

In the equation above, Br.files corresponds to the set of
source code files whose names appear in Br and DCodeCorpus

corresponds to a set of source code files that are touched by
D to fix prior bugs.

6

IV. EXPERIMENTAL SETUP

In this section, we first present the research questions that
we have considered in this paper. Next, we describe the
datasets that we use in this study, followed by our experimental
settings. We then present the measures used to evaluate the
approaches, followed by our results. Finally, we also mention
some threats to validity.

A. Research Questions

Our core hypothesis is that activity-based and location-based
information provide complementary information that can be
used to more accurately assign bug reports to developers in a
software project. We therefore investigate the following three
research questions:

RQ1: Does a bug assignee prediction model that com-
bines activity-based features and location-based features
achieve better performance than a model that uses only
one type of feature?

RQ2: Does our unified approach outperform existing
activity-based or location-based approaches?

RQ3: Which features are the most important to the
accuracy of our model?

For RQ1, we compare three results: the results of our
unified model using only activity-based features (i.e., φ1−12),
using only location-based features (i.e., φ13−16), and using all
features. We use the learning to rank tool named rankSVM 3

provided by Lee and Kuo to train our unified model.
For RQ2, we consider two baselines:

1) Activity-baseline: We use the activity-based approach
proposed by Anvik et al. that takes words from summary
and description of bug reports as features and applies
Support Vector Machine (SVM) classifier [3]. Note that
this method only returns one label (that is, a single
developer) for each bug report.

2) Location-baseline: We use the location-based approach
proposed by Shokripour et al. [1]. This baseline first
uses the weighted sum of common words appearing in
bug report and source code file to locate potential files
that are related to a bug report. It then recommends a
ranked list of assignees based on their recent activity on
the potential buggy files.

For the activity-baseline, we use the SVM package in
Weka [20] to train SVM classifiers from training data and
test it on testing data. For the location-baseline, we write Java
code to implement their approach.

For RQ3, we estimate the importance of each features (i.e.,
φ1−16) by considering its corresponding weight wi (defined
in Section III-A), averaged over all training folds.

3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/#large scale ranksvm

B. Dataset

We use bug reports from several open source projects:
Eclipse JDT,4 Eclipse SWT,5 and ArgoUML.6. For the first
two datasets, we consider the same set of bug reports as Ye et
al. in their paper [12]. These bug reports have been linked to
commits that fix them. For ArgoUML, we manually download
the bug reports and link them to their corresponding bug fixing
commits following the heuristics described by Bachmann and
Bernstein [15]. Note that we only consider bug reports with
status “fixed” for training and testing. Overall, we consider a
total of 11,887 bug reports. Table II describes the details of
the three datasets.

TABLE II: Datasets: Eclipse JDT, Eclipse SWT, ArgoUML

Project Time Range # Bug Reports
JDT 2001-10-10 - 2014-01-14 6,274
SWT 2002-02-19 - 2014-01-17 4,151

ArgoUML 2000-02-01 - 2012-12-13 1,462

C. Experiment Setup and Evaluation Metrics

As described in Section III, our ranking model
f(BrM , DN) is based on a weighted combination of
features that capture domain dependent relationships between
a bug report BrM and a developer DN . We train the
model parameters wi using the learning-to-rank approach
implemented in the rankSVM package [21].

To mitigate the risk of overfitting, we create disjoint training
and test data by sorting the bug reports from each bench-
mark dataset chronologically by reporting timestamp. Note
that temporal order matters; for instance, we need to make
sure that features are extracted from source code and bug
reports that existed prior to the reporting time of a target
bug report. For all projects, the sorted bug reports are then
split into 10 equally sized folds {fold1, fold2, . . . , fold10},
where fold1 contains the oldest bug reports while fold10
consists of the most recently reported bugs. The ranking model
is trained on foldk − fold(k+5) and tested on fold(k+6),
for all 1 ≤ k ≤ 5. In this way, we collect 5 results for
each dataset. Since the folds are arranged chronologically,
this means that we always train on the previous existing bug
reports. For each bug report in a test fold, testing the model
means computing the weighted scoring function f(r, s) for
each source code file using the learned weights, and ranking
all the files in descending order of their scores. We then check
if the correct developer (that is, the developer who actually
ultimately repaired the bug in question) appears highly ranked
in the output list of developers.

Similar to previous work [1], [4], we use Accuracy@K
as evaluation metrics. This metric corresponds to the pro-
portion of top-K recommendations that contain the ground
truth developer who assigned to the bug report (as recorded

4http://www.eclipse.org/jdt
5http://www.eclipse.org/swt
6http://argouml.tigris.org/

7

in the bug tracking system). We consider K = 1,2,3,4,5, and
10. For instance, if a assignee recommendation system could
successfully capture 30 actual assignees for 100 bug reports at
top-1 recommendation, then the value of Accuracy@1 is 0.3.

V. EXPERIMENT RESULTS

In this section, we present the results of our experiments
in form of answers to research questions 1, 2 and 3. We then
discuss threats to validity.

A. RQ1: Activity-Based Features Vs Location-Based Features
Vs All Features.

In the first research question, we evaluate the efficacy of
our unified model for the bug report assignee problem and
compare it to models built with each of two types of features
alone. The results of our three unified models trained with
different sets of features are shown in Table III. From the
table, we note that we can achieve an Accuracy@1 of up
to 42%, 45%, and 30% on the JDT, SWT, and ArgoUML
datasets, respectively. The unified model (with all features)
outperforms the other split models in all cases, supporting
our claim that there is value in combining activity-based
and location-based features in this domain. For Accuracy@1,
using all features improves on the results of using activity-
based features alone by 12.5%-31.2%, and the results of using
location-based features alone by 15.4%-25.0%.

B. RQ2: Our Unified Model Vs Baselines

In the second research question, we compare our unified
model to state-of-the-art techniques that use activity- vs.
location-based features alone. The results of our model and
two selected baselines on the three datasets are shown in
Table IV. From the table, we note that in most of the cases, our
unified model with all features achieves the best results. The
activity baseline consistently performs worst in all cases. The
location baseline performs better than our model in two cases,
i.e., Accuracy@3 on JDT and SWT dataset, and Accuracy@4
on ArgoUML dataset. For Accuracy@1, our unified model
can outperform the activity-based baseline by Anvik and
Murphy by 50.0%-100.0%, and the location-based baseline
by Shokripour et al. by 11.1%-27.0%.

C. RQ3: Importance of Features

In our third research question, we analyze our model to
identify which features are most helpful to the assignee
recommendation process. For each dataset, we consider the
average weight of each feature returned by rankSVM tool
when building the prediction model. We select the top-5
features for each dataset; they are shown in Table V.

Generally, top-5 features consist of both location-based
features and activity-based features. Feature φ15 (whether a
developer has touched a potential buggy file) consistently
ranks the first among all features on the three data sets.
On the contrary, φ16, which refers to how many times a
developer has touched a source file directly mentioned in the
bug report, does not appear in any top-5 list. Other features,

such as φ3 (i.e., sum of bug report-code cosine similarities)
and φ12 (i.e., developer bug fixing recency) also rank highly
when considering the three datasets. Comparing bug report-
bug report similarity features (φ6−10) and bug report-source
code similarity features (φ1−5), the latter are slightly more
important with slightly more features appearing in the top-
5 lists. Overall, we note that the models built for all three
datasets include features from both types of data included in
the approach.

D. Threats to Validity

Threats to construct validity relate to the suitability of our
evaluation metrics. We consider Accuracy@K as the metric,
which is commonly used in previous work in this space [1], [4]
and attempts to capture the degree to which our model achieves
their stated goals (accurate prediction of which developer
should tackle a given report). Similar to previous studies [1],
[2], [3], [4], [5], [6], we consider the developer who actually
fixed the bug report as ground truth. It is possible that other
developers are good alternatives.

Threats to internal validity relates to potential errors in our
experiments. We have checked our code, but there might still
be errors that we did not notice. Threats to external validity
refers to the generalizability of our findings. In our experi-
ments, we consider more than 11,000 bug reports from Eclipse
JDT, Eclipse SWT, and ArgoUML. Experiments on these
datasets show that our unified model performs better when it
combines both activity-based and location-based information.
It also outperforms two exiting baselines. To further mitigate
these threats to external validity, we plan to experiment with
more bug reports from more projects in the future.

VI. RELATED WORK

In this section, we highlight related studies on bug assignee
recommendation, and many other tasks related to bug triage
process.

A. Past Studies on Bug Report Assignee Recommendation

As mentioned in Section II, studies on bug assignee recom-
mendation can be categorized into two groups based on their
underlying mechanism: activity-based [2], [3] and location-
based approaches [1], [5], [6]. We describe them below. Note
that for some work, we only briefly mention them because
their details are already introduced in previous sections.

A number of activity-based bug assignee recommendation
approaches have been presented in the literature. For exam-
ple, Cubranic and Murphy collect features from description
and summary fields of bug report and build a Naive Bayes
classifier for determining the similarity between the expertise
of a developer and a new bug report [2]. Later, Anvik and
Murphy compare the performance of various machine learning
techniques for automatic bug report assignee recommendation
task [3], and show that Support Vector Machine (SVM)
classifier performs the best among several commonly-used
classifiers. Based on this result, we chose SVM as the classifier
for our location-based baseline. Most of these approaches

8

TABLE III: Results of Our Unified Model Trained with Various Features on Eclipse JDT, Eclipse SWT, and ArgoUML Data

Project Feature Acc@1 Acc@2 Acc@3 Acc@4 Acc@5 Acc@10
Activity Only 32% 58% 72% 85% 90% 96%

JDT Location Only 35% 57% 69% 78% 83% 89%
All 42% 65% 79% 89% 93% 97%

Activity Only 40% 62% 77% 89% 92% 97%
SWT Location Only 39% 60% 73% 81% 86% 92%

All 45% 66% 80% 90% 94% 98%
Activity Only 26% 29% 32% 38% 41% 52%

ArgoUML Location Only 24% 27% 30% 36% 39% 44%
All 30% 35% 41% 45% 50% 56%

TABLE IV: Results of Our approach and Baselines on Eclipse JDT, Eclipse SWT, ArgoUML

Project Feature Acc@1 Acc@2 Acc@3 Acc@4 Acc@5 Acc@10
Activity Baseline 28%

JDT Location Baseline 33% 57% 82% 88% 89% 92%
All 42% 65% 79% 89% 93% 97%

Activity Baseline 25%
SWT Location Baseline 36% 60% 81% 88% 91% 93%

All 45% 66% 80% 90% 94% 98%
Activity Baseline 15%

ArgoUML Location Baseline 27% 30% 39% 47% 50% 52%
All 30% 35% 41% 45% 50% 56%

TABLE V: Top-5 Most Important Features

JDT SWT ArgoUML
Top-1 φ15 φ15 φ15

Top-2 φ12 φ3 φ3

Top-3 φ3 φ12 φ7

Top-4 φ7 φ11 φ12

Top-5 φ14 φ7 φ1

use term-weighting techniques, such as term frequency-inverse
document frequency (tf-idf), to determine the value of word
features.

Similarly, a number of location-based bug assignee recom-
mendation approaches have been presented in the literature.
For example, Linares-Vasquez et al. used Latent Semantic
Indexing (LSI) to first locate potential source files related
to a change request and then recommend developers using
authorship information in the corresponding source files [5].
Later, Hossen et al. extend Linares-Vasquez et al.’s work by
adding more information, i.e., maintainers of relevant source
code and change proneness of source code [6]. Shokripour et
al. propose a two-phase location-based approach to leverage
multiple information sources including identifies and com-
ments in source code files, commit messages, and previous
fixed bug reports [1]. In this work, we take their approach as
the representative baseline for location-based approaches.

B. Other Studies Related to Bug Triage Process

Beside bug assignee recommendation, many researchers
have tried to improve other tasks involved in the bug triage
process, e.g., duplicate bug report detection, bug report cate-
gorization, bug report prioritization, etc. We describe some of
the studies below.

Users of software systems may report bugs that are already
exist in the bug tracking system, since bug reporting is an

uncoordinated and distributed process. These duplicates need
to be manually labeled as such during the bug triage process
which takes considerable human effort and time. A number
of automated duplicate bug report detection approaches have
thus been proposed [22], [23], [24], [25]. Given a new bug
report, these approaches return a list of previously reported
bugs which are similar to the new report. Runeson et al.
extract words from bug report description and summary fields
and use cosine, Dice, and Jaccard to measure the similarity
of reports [22]. Sun et al. consider not only text in bug
reports, but also many other non-textual fields in the bug
reports, e.g., product, etc., to capture degree of relevance
between two bug reports [24], [25]. They propose a machine
learning approach and extend a variant of BM25 to retrieve
duplicate reports. Wang et al. enrich textual information from
bug reports with execution traces to more accurately detect
duplicate bug reports [23]. In this work, we exclude duplicate
bug reports as we only consider bug reports that are labeled
as “Fixed”.

To help bug triagers assign correct categories (e.g., affected
component, valid or invalid) to a bug report, Anvik shows
that applying an SVM clasifier to bug reports with features ex-
tracted from textual information contained in the summary and
description fields achieves accuracy between 72% to 92% if
top-3 returned categories are considered [26]. Somasundaram
and Murphy consider using Latent Dirichlet Allocation (LDA)
and Kullback Leibler divergence to represent bug reports and
categorize them [27].

Khomh et al. automatically prioritize crash reports for
Firefox project based on the frequency and entropy of the
crashes [28]. Along similar By contrast, Tian et al. investigate
bug reports that are manually submitted by users [29]. They
propose a machine learning approach that recommends pri-

9

ority levels based on information available in bug reports by
considering many factors from multiple dimensions: temporal,
textual, author, related-report, severity, etc.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a unified model based on learning
to rank technique to automatically recommend developers to
address particular bug reports. The unified model naturally
combines location-based information and activity-based infor-
mation extracted from historical bug reports and source code
for more accurate recommendation. We propose 16 similarity
features to capture the similarity between a bug report and
a developer profile. We evaluate our unified model on a set
of more than 11,000 bug reports from several open source
projects: Eclipse JDT, Eclipse SWT and ArgoUML. Our
experiments show that combining the two types of features
(activity-based and location-based) improves the performance
of our unified model as compared to when only one type of
features is used. The experiments also show that our unified
model performs the best when compared to a location-based
baseline by Anvik et al. [3] and an activity-based baseline by
Shokripour et al. [1]. Among the 16 features we proposed,
we find that feature φ15 (whether a developer has touched
a potential buggy file) is the most important feature in our
unified model on all of the three data sets. Feature φ3 (i.e., sum
of bug report-code cosine similarities) and φ12 (i.e., developer
bug fixing recency) are the second and third most important
features.

In the future, we would like to consider more features
that could better represent the degree of relevance between
a developer and a bug report. We also plan to compare the
execution times of all considered approaches under different
settings.

REFERENCES

[1] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013, pp. 2–11.

[2] G. Murphy and D. Cubranic, “Automatic bug triage using text catego-
rization,” in Proceedings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering. Citeseer, 2004.

[3] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 20, no. 3,
p. 10, 2011.

[4] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, 2011, pp. 365–375.

[5] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on, 2012.

[6] M. K. Hossen, H. Kagdi, and D. Poshyvanyk, “Amalgamating source
code authors, maintainers, and change proneness to triage change
requests,” in Proceedings of the 22nd International Conference on
Program Comprehension, 2014, pp. 130–141.

[7] T. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and spectrum
based bug localization: better together,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015, 2015, pp. 579–590.

[8] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen, “On the use of
stack traces to improve text retrieval-based bug localization,” in 30th
IEEE International Conference on Software Maintenance and Evolution,
Victoria, BC, Canada, September 29 - October 3, 2014, 2014, pp. 151–
160.

[9] C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis,” in 30th IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada, September 29 -
October 3, 2014, 2014, pp. 181–190.

[10] S. Wang, D. Lo, and J. Lawall, “Compositional vector space models for
improved bug localization,” in 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September
29 - October 3, 2014, 2014, pp. 171–180.

[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, p. 391, 1990.

[12] X. Ye, R. C. Bunescu, and C. Liu, “Learning to rank relevant files
for bug reports using domain knowledge,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014,
2014, pp. 689–699.

[13] T.-Y. Liu, “Learning to rank for information retrieval,” Foundations and
Trends in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

[14] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, W.-Y. Xiong, and H. Li,
“Learning to rank relational objects and its application to web search,”
in Proceedings of the 17th international conference on World Wide Web,
2008, pp. 407–416.

[15] A. Bachmann and A. Bernstein, “Software process data quality and
characteristics: a historical view on open and closed source projects,” in
Proceedings of the joint international and annual ERCIM workshops on
Principles of software evolution (IWPSE) and software evolution (Evol)
workshops, 2009, pp. 119–128.

[16] K. S. Jones, Readings in information retrieval. Morgan Kaufmann,
1997.

[17] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. Cambridge University Press, 2008.

[18] S. Robertson, H. Zaragoza, and M. Taylor, “Simple bm25 extension
to multiple weighted fields,” in Proceedings of the thirteenth ACM
international conference on Information and knowledge management,
2004, pp. 42–49.

[19] P. S. Kochhar, Y. Tian, and D. Lo, “Potential biases in bug localization:
Do they matter?” in Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering, 2014, pp. 803–814.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[21] C.-P. Lee and C.-b. Lin, “Large-scale linear ranksvm,” Neural compu-
tation, vol. 26, no. 4, pp. 781–817, 2014.

[22] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Software Engineer-
ing, 2007. ICSE 2007. 29th International Conference on, 2007, pp. 499–
510.

[23] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering, 2008, pp. 461–470.

[24] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, 2010, pp. 45–54.

[25] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2011, pp. 253–262.

[26] J. Anvik, “Assisting bug report triage through recommendation,” 2007.
[27] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug

reports using latent dirichlet allocation,” in Proceedings of the 5th India
software engineering conference, 2012, pp. 125–130.

[28] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan, “An entropy evaluation
approach for triaging field crashes: A case study of mozilla firefox,” in
Reverse Engineering (WCRE), 2011 18th Working Conference on, 2011,
pp. 261–270.

[29] Y. Tian, D. Lo, and C. Sun, “Drone: Predicting priority of reported
bugs by multi-factor analysis,” in 2013 IEEE International Conference
on Software Maintenance, 2013, pp. 200–209.

10

