
ROSDiscover: Statically Detecting Run-
Time Architecture Misconfigurations in

Robotics Systems*
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le

Goues

Carnegie Mellon University, Pittsburgh, PA, USA

1

* This work has been supported in part by NASA (Award 80NSSC20K1720), AFRL (Award 19-PAF00747), and the NSF (Award CCF-1750116)

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

What is ROS?

● Robot Operating System

● Popular framework for component-based robot software

● Used by Amazon, Bosch, CAT, and many other companies

● 200,000+ software projects

● Library infrastructure of reusable software packages

● Uses late binding for architectural connectors
○ Flexible & extensible but error-prone

2

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Here is a Real Architecture
Misconfiguration Bug from
Autoware.AI (Existed for 2 Months)

3

Bug-introducing commit (inconsistent topic-renaming):

Intended Architecture:

- ros::Publisher pub = n.advertise<[…]>("/line_class",[…]);

+ ros::Publisher pub = n.advertise<[…]>("/line",[…]);+ ros::Publisher pub = n.advertise<[…]>("/line",[…]);

Legend

Node TopicPort Role

line_class

vector_map_loader lane_rule

subscribe

feat_proj velocity_
set

publish subscribe subscribe

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Here is a Real Architecture
Misconfiguration Bug from
Autoware.AI (Existed for 2 Months)

4

Legend

Node TopicPort Role

line_class

vector_map_loader lane_rule

subscribe

feat_proj velocity_
set

publish subscribe subscribe

line

Buggy Architecture:

Bug-introducing commit (inconsistent topic-renaming):
- ros::Publisher pub = n.advertise<[…]>("/line_class",[…]);

+ ros::Publisher pub = n.advertise<[…]>("/line",[…]);

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Architecture Misconfiguration
Bugs can be Detected in Run-
Time Architecture Models

5

Legend

Node TopicPort Role

line_class

vector_map_loader lane_rule

subscribe

feat_proj velocity_
set

publish subscribe subscribe

line

Dangling Publisher Dangling Subscriber
Similar Name

Same Type

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Architecture Misconfiguration Bugs …

… result from an inconsistent composition of software components.

6

parameterization or configuration
of components or connectors.

Broken connector
(e.g., wrong name or type)

Incorrect component
parameterization
(e.g., wrong name or type)

We manually collected a public data set of 29 architecture misconfiguration bugs
in ROS on GitHub (see paper & artifact)

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Problem Definition

7

How can an automatic analysis technique find

architecture misconfiguration bugs in ROS?

Why is static architecture recovery hard?
Static recovery of a run-time architectures is undecidable in general.

Architecture-defining code is scattered across the entire system.

=> Exploiting 3 key observations about the ROS framework and

ecosystem

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

8

Solution: ROSDiscover

Component Models Run-Time Architecture

System Architecture
Composition

Component Model
Recovery

Bug
Detection

Architectural recovery using static analysis + rule checking

Problem Definition
How can an automatic analysis technique find

architecture configuration bugs in ROS?

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

● Observation: ROS systems often have quasi-static architectures

defined by a small set of API calls [1]

● Approach: Flow-sensitive static analysis of architecture-defining API calls

9

vector_map_loader.cpp:
ros::Publisher line_pub = n.advertise<[…]>
("vector_map_info/line", […]);

velocity_set.cpp:
ros::Subscriber sub_line = nh.subscribe
("vector_map_info/line_class", […]);

[1] A. Santos, A. Cunha, N. Macedo, R. Arrais, and F. N. dos Santos, “Mining the usage patterns of ROS primitives,” in
International Conference on Intelligent Robots and Systems (IROS ’17), IEEE, 2017, pp. 3855–3860

System Architecture CompositionComponent Model Recovery Bug Detection

Static Architectural Recovery Approach

publishes-to
"/vector_map_info/line"
LineArray

subscribes-to
"/vector_map_info/line_class"
LineArray

Module View Component Run-Time Model

}

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Flow-sensitive Static Analysis is Needed to
Resolve API Call Arguments

10

System Architecture CompositionComponent Model Recovery Bug Detection

Component Parameters

PoseToTF(ros::NodeHandle nh, std::string rtopic)
{

std::string pose_topic_name;

nh.getParam("pose_topic", pose_topic_name);

nh.subscribe(pose_topic_name, 10, &PoseToTF::callbackGetPose, this);

nh.advertise<std_msgs::Empty>(rtopic, 1);

Function Arguments

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

System Lines of XML Lines of Code Stars on GitHub
AutoRally 43,455 190,340 638

Autoware 30,771 250,509 4,985

Fetch 149,664 434,022 126

Husky 54,699 876,405 264

TurtleBot 1,237,887 1,596,546 239

System API Calls Nodes Fully recovered API Calls
AutoRally 75 25 86.67%

Autoware 882 209 85.49%

Fetch 103 93 98.06%

Husky 223 105 97.31%

TurtleBot 130 104 85.38%

All 1306 507 87.37%

RQ1: How accurately does ROSDiscover statically
recover architecture-defining API calls?
● Metric: percentage of API calls for which architectural recovery can

resolve all arguments (i.e., for which static analysis is complete)

11

System Architecture CompositionComponent Model Recovery Bug Detection

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Static Architecture Recovery Approach

● Compose component models using architecture configuration files

(“launch files”)

System Architecture CompositionComponent Model Recovery Bug Detection

<!-- -->
<launch>

<!-- send table.xml to param server -->
<arg name="car" default="true" />
<arg name="pedestrian" default="false" />
<arg name="obj_car" default="obj_car" />
<arg name="obj_person" default="obj_person" />
<arg name="vscan_image" default="false" />
<arg name="points_image" default="true" />
<arg name="scan_image" default="false" />

<group ns="sync_ranging">
<group if="$(arg car)">

<group ns="obj_car">
<node pkg="synchronization" type="sync_range_fusion" name="sync_$(arg obj_car)_ranging">

<remap from="/image_obj" to="/$(arg obj_car)/image_obj"/>
<remap from="/vscan_image" to="/vscan_image" if="$(arg vscan_image)"/>
<remap from="/vscan_image" to="/points_image" if="$(arg points_image)"/>
<remap from="/vscan_image" to="/scan_image" if="$(arg scan_image)"/>
<remap from="/image_obj_ranged" to="/$(arg obj_car)/image_obj_ranged"/>
<remap from="/sync_ranging/image_obj" to="/sync_ranging/$(arg obj_car)/image_obj"/>
<remap from="/sync_ranging/vscan_image" to="/sync_ranging/$(arg obj_car)/vscan_image" if="$(arg vscan_image)" />
<remap from="/sync_ranging/vscan_image" to="/sync_ranging/$(arg obj_car)/points_image" if="$(arg points_image)" />
<remap from="/sync_ranging/vscan_image" to="/sync_ranging/$(arg obj_car)/scan_image" if="$(arg scan_image)" />

</node>
</group>

</group>

<group if="$(arg pedestrian)">

12

Launch
Parameters

Topic Remaps

Parameter Use

Conditions

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Static Architecture Recovery Approach

● Compose component models using architecture configuration files

(“launch files”)

● Challenge: For realistic systems, static recovery will never be complete

● Observation: ROS systems rely on a small de facto core library

of components [2]

○ These components use very dynamic structures

● Solution: Let developers provide hand-written models

13

[2] S. Kolak, A. Afzal, C. Le Goues, M. Hilton, and C. S. Timperley, “It Takes a Village to Build a Robot: An Empirical Study of The
ROS Ecosystem,” in International Conference on Software Maintenance and Evolution (ICSME ’20), IEEE, 2020, pp. 430–440

System Architecture CompositionComponent Model Recovery Bug Detection

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

RQ2: How accurately does ROSDiscover statically
recover run-time architectures of real ROS systems?
● Baseline: Executing a configuration of the system

and dynamically observe run-time architecture

● Compare with statically recovered run-time architecture

14

System Precision Recall
AutoRally 100.00% 100.00%

Husky 94.74% 84.21%

TurtleBot 83.33% 91.67%

All 93.18% 90.91%

System Architecture CompositionComponent Model Recovery Bug Detection

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Bug Detection Approach

● Checking architectural well-formedness rules

15

vector_map_loader

line

publish

line_class

lane_rulefeat_proj velocity_set

subscribesubscribe subscribe

Rule Violation
There should not be a dangling

subscriber/publisher if there is a
publisher/subscriber that has a

compatible type and a similar topic
name.

System Architecture CompositionComponent Model Recovery Bug Detection

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

RQ3: How effectively does ROSDiscover find
configuration bugs in real ROS systems?
● Goal: Minimize false positives while still finding enough bugs
● Method: manually collected data set from documented bugs (see artifact),

rule checking on statically recovered architectures

16

System Architecture CompositionComponent Model Recovery Bug Detection

System Bugs Bugs Found False Positives
Autoware 8 2 (25%)

AutoRally 5 3 (60%) 8

Husky 5 3 (60%) 5

TurtleBot 1 0 (0%) 2

All 19 8 (42%)

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

We have an Artifact!

● Available at Zenodo: https://doi.org/10.5281/zenodo.5834633

● Reusable ROSDiscover tool (code and docker image)

○ Also on GitHub: https://github.com/rosqual/rosdiscover

● Reusable Data set of 29 architecture misconfiguration bugs across

5 real-world ROS systems reproduceable in provided Docker images

● All results and analysis scripts of the evaluation for replication

17

Reusable Badge Open Science
Badge

https://doi.org/10.5281/zenodo.5834633
https://github.com/rosqual/rosdiscover

ROSDiscover: Statically Detecting Run-Time Architecture Misconfigurations in Robotics Systems
Christopher S. Timperley, Tobias Dürschmid, Bradley Schmerl, David Garlan, Claire Le Goues

Summary

18

Problem: How can an automatic

analysis find architecture

misconfiguration bugs in real-world

ROS systems?

Solution: Rule checking on statically recovered

architectures enabled by key observations:

- Well-defined component framework API

- Quasi-static architectures

- Highly reused core library

Results: 90% recall of system recovery

Detecting 8 of 19 of real-world bugs

Artifact: Tool, bug data set, and results

Conclusion: Static recovery of run-time architectures in ROS is feasible and can be used

for finding architecture misconfiguration bugs in real-world systems

