
Poster: BugZoo – A Platform for Studying
Software Bugs

Christopher Steven Timperley
Carnegie Mellon University

ctimperley@cs.cmu.edu

Susan Stepney
University of York

susan.stepney@york.ac.uk

Claire Le Goues
Carnegie Mellon University

clegoues@cs.cmu.edu

Abstract

Proposing a new method for automatically detecting, lo-

calising, or repairing software faults requires a fair, repro-

ducible evaluation of the effectiveness of the method rel-

ative to existing alternatives. Measuring effectiveness re-

quires both an indicative set of bugs, and a mechanism for

reliably reproducing and interacting with those bugs. We

present BugZoo: a decentralised platform for distributing,

reproducing, and interacting with historical software bugs.

BugZoo connects existing datasets and tools to developers

and researchers, and provides a controlled environment for

conducting experiments. To ensure reproducibility, exten-

sibility, and usability, BugZoo uses Docker containers to

package, deliver, and interact with bugs and tools. Adding

BugZoo support to existing datasets and tools is simple and

non-invasive, requiring only a small number of supplemen-

tary files. BugZoo is open-source and available to download

at: https://github.com/squaresLab/BugZoo

ACM Reference format:

Christopher Steven Timperley, Susan Stepney, and Claire Le Goues.

2018. Poster: BugZoo – A Platform for Studying

Software Bugs. In Proceedings of International Conference on Soft-

ware Engineering, 2018, Gothenburg, Sweden, May 27–June 3, 2018

(ICSE ’18 Companion), 2 pages.

DOI: 10.1145/3183440.3195050

1 Introduction

Empirical evaluations are a fundamental part of software en-

gineering research. Introducing a new technique for solving

a particular problem (e.g., program repair, fault localisation,

test generation) entails measuring its effectiveness on a com-

mon benchmark and comparing its results to those obtained

by similar techniques. Benchmarks for these types of studies

typically consist of a dataset of software versions that we

shall refer to as software snapshots. For many techniques (e.g.,

program repair or fault localization), snapshots correspond

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

ICSE ’18 Companion, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). 978-1-4503-5663-

3/18/05. . . $15.00

DOI: 10.1145/3183440.3195050

to known bugs [3, 5, 7]; for others (e.g., genetic improve-

ment [6] or decompilation [4]), simply a fixed release. We

focus our attention on snapshots representing bugs, but our

framework generalises.

To conduct a high-quality empirical study, one requires

both a suitable dataset of software snapshots, and a con-

trolled environment in which to reproducibly interact with

them. This environment must possess three qualities:

1. Reproducibility: Program behaviour is often depen-

dent upon the exact configuration of its host environ-

ment at both compile- and run-time (e.g., library and

compiler versions, environment variables). Snapshot

behavior should be reliably immutable, allowing re-

sults to be accurately and independently reproduced.

Simply providing a set of natural-language instruc-

tions for building and using snapshots does not ensure

this reproducibility. Ideally, tests used by the program

in the snapshot should not be flaky.

2. Extensibility: Others should be able to reproducibly

evaluate new techniques on the datasets used in pre-

vious evaluations, and reliably extend those datasets.

3. Usability: Environments should be lightweight, both

in terms of disk space and their run-time overhead,

and should be easy to install and use.

The current best practice [5] uses a monolithic virtual

machine (VM) to provide an environment in which to inter-

act with snapshots. This approach ensures reproducibility,

but does so at the cost of extensibility and usability. The

need to compile tools and techniques using the same set of

libraries and binaries used by the snapshots (which may rely

on old technology) quickly leads to “DLL hell”: the environ-

ment required by a tool may conflict with the environment

provided by the VM. Modifying the VM to overcome this

problem compromises reproducibility, as snapshots are no

longer guaranteed to behave as they originally did. VMs

also incur a significant penalty to performance, and require

considerable disk space.

2 BugZoo

We present BugZoo, a decentralised platform for distribut-

ing, reproducing, and interacting with historical bugs, con-

necting datasets and tools, and providing a controlled en-

vironment for conducting experiments. Developers and cu-

rators can connect their existing tools and datasets to the

BugZoo platform by simply adding a set of supplementary

446

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

ICSE ’18 Companion, May 27–June 3, 2018, Gothenburg, Sweden Christopher S. Timperley, Susan Stepney, Claire Le Goues

YAML files, known asmanifest files, to the Git repository that

hosts their tool or dataset. Manifest files identify the tool or

dataset, and provide machine-readable instructions for build-

ing and interacting with the bug or tool. BugZoo thus allows

users to independently add their tools and datasets using a

small number of non-invasive supplementary files. Users

maintain ownership and control over their artifacts, and the

decentralised system avoids the bottlenecks and scalability

issues common with a centralised approach.

BugZoo uses instructions in the manifest files to build

Docker1 containers that package and deliver snapshots and

tools. Docker container images provide a lightweight means

of encapsulating a piece of software and all of its dependen-

cies into a single, portable executable package, known as

a container.2 Containers virtualise at the operating-system

(rather than hardware-) level by sharing the kernel of the

host machine, allowing them to use fewer compute and mem-

ory resources than their VM counterparts [2]. Furthermore,

since Docker containers are built as a series of file system

differences (known as layers), they typically size in the tens

of MBs. BugZoo thus avoids the problem of conflicting de-

pendencies by ensuring that each bug and tool provides an

isolated execution environment (container).

BugZoo provides a range of interfaces, suited to different

use cases. The command-line interface allows users to easily

register, download, and build bugs and tools provided by

remote Git repositories, and to quickly provision interactive

containers for studying the bug and running experiments.

The RESTlike API and its associated Python bindings allow

developers to safely perform structured interactions (e.g.,

applying patches, executing specific tests, collecting cover-

age) with historical bugs from within their own programs.

BugZoo can also be used as a library by dynamic program

analysis tools (e.g., program repair, fault localisation, test

generation) to provide reliable and reproducible results, and

to reduce code repetition.

3 Related Work

The Software-artifact Infrastructure Repository (SIR) [1], in-

troduced in 2005, contains over 100 versions of 85 programs,

written in C, C++, C#, and Java. Unlike later datasets, such as

ManyBugs andDefects4J [3], SIR is almost entirely composed

of hand-seeded, artificial faults. Furthermore, SIR does not

provide a controlled environment for studying its subjects,

such as a VM or a container, hampering reproducibility.

ManyBugs [5] is a collection of 185 historical bugs from

several real-world C programs, including PHP and Python,

and has been used extensively for studies on program repair.

The majority of the bugs within the ManyBugs dataset are

supported by BugZoo.

1https://www.docker.com. [Accessed November, 2017.]
2https://www.docker.com/what-container [Accessed June, 2017.]

Defects4J [3] is a more recently created repository of soft-

ware faults, introduced in 2014, containing over 300 real-

world bugs in several large-scale Java projects. Like BugZoo,

Defects4J also provides a CLI and a Java API for interacting

with its bugs. Due to the nature of its design, Defects4J only

supports bugs in Java programs (that must be compiled using

a specific version of Java). BugZoo is not tied any particular

language and offers a more general solution.

Unlike the SIR and ManyBugs, BugZoo does not provide a

dataset of faulty programs. Rather, it provides a decentralised

platform for sharing, persisting, and interacting with both

tools and datasets.

4 Conclusion

We have presented BugZoo as a platform for connecting

empirical software engineering researchers to software snap-

shots, allowing them to conduct high-quality, reproducible

experiments and evaluations. BugZoo can be used in studies

of program repair, fault localisation, automated test genera-

tion, specification mining, and genetic improvement.

To learn more about BugZoo, see:

https://github.com/squaresLab/BugZoo.

5 Acknowledgements

This research was partially funded by AFRL (#FA8750-15-2-

0075) and DARPA (#FA8750-16-2-0042), and an EPSRC DTG;

the authors are grateful for their support. Any opinions, find-

ings, or recommendations expressed are those of the authors

and do not necessarily reflect those of the US Government.

References

[1] H Do, S Elbaum, and G Rothermel. 2005. Supporting Controlled

Experimentation with Testing Techniques: An Infrastructure and its

Potential Impact. Empirical Software Engineering 10, 4 (1 Oct. 2005),

405–435.

[2] W Felter, A Ferreira, R Rajamony, and J Rubio. 2015. An updated

performance comparison of virtual machines and Linux containers.

In International Symposium on Performance Analysis of Systems and

Software (ISPASS ’15). 171–172.

[3] R Just, D Jalali, and M D Ernst. 2014. Defects4J: A Database of Existing

Faults to Enable Controlled Testing Studies for Java Programs. In

Proceedings of the 2014 International Symposium on Software Testing

and Analysis (ISSTA ’14). ACM, New York, NY, USA, 437–440.

[4] J Lacomis, A Jaffe, E J Schwartz, C Le Goues, and B Vasilescu. 2018.

Statistical Machine Translation is a Natural Fit for Identifier Renaming

in Software Source Code. In Statistical Modeling of Natural Software

Corpora, 2018 AAAI Workshop. (To appear).

[5] C Le Goues, N Holtschulte, E K Smith, Y Brun, P Devanbu, S Forrest,

and W Weimer. 2015. The ManyBugs and IntroClass Benchmarks for

Automated Repair of C Programs. Transactions on Software Engineering

41, 12 (Dec. 2015), 1236–1256.

[6] J Petke, M Harman, W B Langdon, andWWestley. 2014. Using genetic

improvement and code transplants to specialise a C++ program to

a problem class. In European Conference on Genetic Programming.

Springer, Berlin, Heidelberg, 137–149.

[7] C S Timperley, S Stepney, and C Le Goues. 2017. An Investigation

into the Use of Mutation Analysis for Automated Program Repair. In

Symposium on Search-Based Software Engineering (SSBSE ’17). 99–114.

447

