
Empir Software Eng (2018) 23:3007–3033
https://doi.org/10.1007/s10664-017-9577-2

Overfitting in semantics-based automated program
repair

Xuan Bach D. Le1 ·Ferdian Thung1 ·David Lo1 ·
Claire Le Goues2

Published online: 2 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The primary goal of Automated Program Repair (APR) is to automati-
cally fix buggy software, to reduce the manual bug-fix burden that presently rests on
human developers. Existing APR techniques can be generally divided into two fam-
ilies: semantics- vs. heuristics-based. Semantics-based APR uses symbolic execution
and test suites to extract semantic constraints, and uses program synthesis to synthe-
size repairs that satisfy the extracted constraints. Heuristic-based APR generates large
populations of repair candidates via source manipulation, and searches for the best
among them. Both families largely rely on a primary assumption that a program is
correctly patched if the generated patch leads the program to pass all provided test
cases. Patch correctness is thus an especially pressing concern. A repair technique may
generate overfitting patches, which lead a program to pass all existing test cases, but
fails to generalize beyond them. In this work, we revisit the overfitting problem with
a focus on semantics-based APR techniques, complementing previous studies of the
overfitting problem in heuristics-based APR. We perform our study using IntroClass
and Codeflaws benchmarks, two datasets well-suited for assessing repair quality, to

Communicated by: Martin Monperrus and Westley Weimer

� Xuan Bach D. Le
dxb.le.2013@phdis.smu.edu.sg

Ferdian Thung
ferdiant.2013@phdis.smu.edu.sg

David Lo
davidlo@smu.edu.sg

Claire Le Goues
clegoues@cs.cmu.edu

1 School of Information Systems, Singapore Management University, Singapore, Singapore

2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9577-2&domain=pdf
http://orcid.org/0000-0001-5044-1582
mailto:dxb.le.2013@phdis.smu.edu.sg
mailto:ferdiant.2013@phdis.smu.edu.sg
mailto:davidlo@smu.edu.sg
mailto:clegoues@cs.cmu.edu

3008 Empir Software Eng (2018) 23:3007–3033

systematically characterize and understand the nature of overfitting in semantics-based
APR. We find that similar to heuristics-based APR, overfitting also occurs in semantics-
based APR in various different ways.

Keywords Automated program repair · Program synthesis · Symbolic execution · Patch
overfitting

1 Introduction

Automated program repair (APR) addresses an important challenge in software engineering.
Its primary goal is to repair buggy software to reduce the human labor required to manu-
ally fix bugs (Tassey 2002). Recent advances in APR have brought this once-futuristic idea
closer to reality, repairing many real-world software bugs (Mechtaev et al. 2016; Le Goues
et al. 2012; Long and Rinard 2016b; Kim et al. 2013; Xuan et al. 2016; Le et al. 2015b,
2016a, 2017b). Such techniques can be broadly classified into two families, semantics-based
vs. heuristic, differentiated by the underlying approach, and with commensurate strengths
and weaknesses. Semantics-based APR typically leverages symbolic execution and test
suites to extract semantic constraints, or specifications, for the behavior under repair. It then
uses program synthesis to generate repairs that satisfy those extracted specifications. Early
semantics-based APR techniques used template-based synthesis (Könighofer and Bloem
2011, 2012). Subsequent approaches use a customized component-based synthesis (Nguyen
et al. 2013; DeMarco et al. 2014), which has since been scaled to large systems (Mechtaev
et al. 2016). By contrast, heuristic APR generates populations of possible repair candidates
by heuristically modifying program Abstract Syntax Trees (AST)s, often using optimization
strategies like genetic programming or other heuristics to construct good patches (Weimer
et al. 2010, 2013; Le Goues et al. 2012; Le et al. 2016c; Qi et al. 2014; Long and Rinard
2016b).

Both heuristic and semantics-based APR techniques have been demonstrated to scale
to real-world programs. However, the quality of patches generated by these is not always
assured. Techniques in both families share a common underlying assumption that gener-
ated patches are considered correct if they lead the program under repair pass all provided
test cases. This raises a pressing concern about true correctness: an automatically-generated
repair may not generalize beyond the test cases used to construct it. That is, it may be plau-
sible but not fully correct (Qi et al. 2015). This problem has been described as overfitting
(Smith et al. 2015) to the provided test suites. This is an especial concern given that test
suites are known to be incomplete in practice (Tassey 2002). As yet, there is no way to
know a priori whether and to what degree a produced patch overfits. However, the degree to
which a technique produces patches that overfit has been used post facto to characterize the
limitations and tendencies of heuristic techniques (Smith et al. 2015), and to experimentally
compare the quality of patches produced by novel APR methods (Ke et al. 2015).

There is no reason to believe that semantics-based APR is immune to this problem.
Semantics-based approaches extract behavioral specifications from the same partial test
suites that guide heuristic approaches, and thus the resulting specifications that guide repair
synthesis are themselves also partial. However, although recent work has assessed proxy
measures of patch quality (like functionality deletion) (Mechtaev et al. 2016), to the best of
our knowledge, there exists no comprehensive, empirical characterization of the overfitting
problem for semantics-based APR in the literature.

Empir Software Eng (2018) 23:3007–3033 3009

We address this gap. In this article, we comprehensively study overfitting in semantics-
based APR. We perform our study on Angelix, a recent state-of-the-art semantics-based
APR tool (Mechtaev et al. 2016), as well as a number of syntax-guided synthesis techniques
used for program repair (Le et al. 2016b). We evaluate the techniques on a subset of the
IntroClass (Le Goues et al. 2015) and Codeflaws benchmarks (Tan et al. 2017), two datasets
well-suited for assessing repair quality in APR research. Both consist of many small defec-
tive programs, each of which is associated with two independent test suites. The multiple test
suites renders these benchmarks uniquely beneficial for assessing patch overfitting in APR.
One test suite can be used to guide the repair, and the other is used to assess the degree to
which the produced repair generalizes. This allows for controlled experimentation relating
various test suite and program properties to repairability and generated patch question.

In particular, IntroClass consists of student-written submissions for introductory pro-
gramming assignments in the C programming language. Each assignment is associated with
two independent, high-quality test suites: a black-box test suite generated by the course
instructor, and a white-box test suite generated by automated test case generation tool KLEE
(Cadar et al. 2008) that achieves full branch coverage over a known-good solution. Intro-
Class has been previously used to characterize overfitting in heuristic repair (Smith et al.
2015). The Codeflaws benchmark consists of programs from the Codeforces1 programming
contest. Each program is also accompanied by two set of test suites: one for the program-
mers/users to validate their implementations, and the other for the contest committee to
validate the users’ implementations.

Overall, we show that overfitting does indeed occur with semantics-based techniques. We
characterize the relationship between various factors of interest, such as test suite coverage
and provenance, and resulting patch quality. We observe certain relationships that appear
consistent with results observed for heuristic techniques, as well as results that stand counter
to those achieved on them. These results complement the existing literature on overfitting
in heuristic APR, completing the picture on overfitting in APR in general. This is especially
important to help future researchers of semantics-based APR to overcome the limitations
of test suite guidance. We argue especially (with evidence) that semantics-based program
repair should seek stronger or alternative program synthesis techniques to help mitigate
overfitting.

Our contributions are as follows:

– We perform the first study on overfitting in semantics-based program repair. We show
that semantics-based APR can generate high-quality repairs, but can also produce
patches that overfit.

– We assess relationships between test suite size and provenance, number of failing tests,
and semantics-specific tool settings and overfitting. We find, in some cases, results
consistent with those found for heuristic approaches. In other cases, we find results that
are interestingly inconsistent.

– We substantiate that using multiple synthesis engines could be one possible approach
to increase the effectiveness of semantics-based APR, e.g., generate correct patches for
a larger number of bugs. This extends Early Results findings from Le et al. (2016b).

– We present several examples of overfitting patches produced by semantics-based APR
techniques, with implications and observations for how to improve them. For example,
we observe that one possible source for overfitting in semantics-based APR could be

1http://codeforces.com/

http://codeforces.com/

3010 Empir Software Eng (2018) 23:3007–3033

due to the “conservativeness” of the underlying synthesis engine, that returns the first
solution found (without consideration of alternatives).

The remainder of this article proceeds as follows. Section 2 describes background on
semantics-based program repair. Section 3.1 explains the data we use in our experiments; the
remainder of Section 3 presents experimental results, and insights behind them. We discuss
threats to validity in Section 4, and related work in Section 5. We conclude and summarize
in Section 6.

2 Semantics-Based APR

We focus on understanding and characterizing overfitting behavior in semantics-based auto-
mated program repair (APR). Semantics-based APR has recently been shown by Mechtaev
et al. (2016) to scale to the large programs previously targeted by heuristic APR techniques
(Le Goues et al. 2012; Long and Rinard 2016b). This advance is instantiated in Angelix, the
most recent, state-of-the-art semantics-based APR approach in the literature.

Angelix follows a now-standard model for test-case-driven APR, taking as input a pro-
gram and a set of test cases, at least one of which is failing. The goal is to produce a small
set of changes to the input program that corrects the failing test case while preserving the
other correct behavior. At a high level, the technique identifies possibly-defective expres-
sions, extracts value-based specifications of correct behavior for those expressions from test
case executions, and uses those extracted specifications to synthesize new, ideally corrected
expressions. More specifically, Angelix first uses existing fault localization approaches,
like Ochiai (Abreu et al. 2007) to identify likely-buggy expressions. It then uses a selective
symbolic execution procedure in conjunction with provided test suites to infer correctness
constraints, i.e., specifications.

We now provide detailed background on Angelix’s mechanics. We first detail the two
core components of Angelix: specification inference (Section 2.1) and program synthe-
sis (Section 2.2). We explain various tunable options that Angelix provides to deal with
different classes of bugs (Section 2.3). We then provide background on the variants of
semantics-based APR we also investigate our experiments: SemFix (Section 2.4), and
Syntax-Guided Synthesis (SyGuS) as applied to semantics-based APR (Section 2.5).

2.1 Specification Inference via Selective Symbolic Execution

Angelix relies on the fact that many defects can be repaired with only a few edits (Mar-
tinez and Monperrus 2015), and thus focuses on modifying a small number of likely-buggy
expressions for any particular bug. Given a small number of potentially-buggy expressions
identified by a fault localization procedure, Angelix performs a selective symbolic execu-
tion by installing symbolic variables αi at each chosen expression i.2 It concretely executes
the program on a test case to the point that the symbolic variables begin to influence execu-
tion, and then switches to symbolic execution to collect constraints over αi . The goal is to
infer constraints that describe solutions for those expressions that could lead all test cases
to pass.

2Angelix can target multiple expressions at once; we explain the process with respect to a single buggy
expression for clarity, but the technique generalizes naturally.

Empir Software Eng (2018) 23:3007–3033 3011

These value-based specifications take the form of a precondition on the values of vari-
ables before a buggy expression is executed, and then a postcondition on the values of αi .
The precondition is extracted using forward analysis on the test inputs to the point of the
chosen buggy expression; The postcondition is extracted via backward analysis from the
desired test output by solving the model: PC ∧ Oa == Oe. PC denotes the path con-
dition collected via symbolic execution, Oa denotes the actual execution output, and Oe

denotes the expected output. The problem of program repair now reduces to a synthesis
problem: Given a precondition, Angelix seeks to synthesize an expression that satisfies the
postcondition (described in Section 2.2)

Angelix infers specifications for a buggy location using a given number of test cases,
and validates synthesized expressions with respect to the entire test suite. Angelix chooses
the initial test set for the specification inference based on coverage, selecting tests that
provide the highest coverage over the suspicious expressions under consideration. If any
tests fail over the course of validation process, the failing test is incrementally added to the
test set used to infer specifications for subsequent repair efforts, and the inference process
moves to the next potentially-buggy location. This process is repeated until a repair that
leads the program to pass all tests is found. We further discuss the number of tests used for
specification inference in Section 2.3.

2.2 Generating Repairs via Synthesis and Partial MaxSMT Solving

Angelix adapts component-based repair synthesis (Jha et al. 2010) to synthesize a repair
conforming to the value-based specifications extracted by the specification inference step.
It solves the synthesis constraints with Partial Maximum Satisfiability Modulo Theories
(Partial MaxSMT) (Mechtaev et al. 2015) to heuristically ensure that the generated repair is
minimally different from the original program.

Component-Based Synthesis The synthesis problem is to arrange and connect a given
set of components into an expression that satisfies the provided constraints over inputs and
outputs. We illustrate via example: Assume the available components are variables x and
y, and binary operator “−” (subtraction). Further assume input constraints of x == 1
and y == 2, and an output constraint of f (x, y) == 1. f (x, y) is the function over x

and y to be synthesized. The component-based synthesis problem is to arrange x, y, and
“−” (the components) such that the output constraint is satisfied with respect to the input
constraints. For our example, one such solution for f (x, y) is y − x; Another is simply
x, noting that the synthesized expression need not include all available components. The
synthesis approach encodes the constraints and available components in such a way that, if
available, a satisfying SMT model is trivially translatable into a synthesized expression, that
synthesized expression is well-formed, and it provably satisfies the input-output constraints

Partial MaxSMT for Minimal Repair Angelix seeks to produce repairs that are small
with respect to the original buggy expressions. Finding a minimal repair can be cast as
an optimization problem, which Angelix addresses by leveraging Partial MaxSMT (Mech-
taev et al. 2015). Partial MaxSMT can solve a set of hard clauses, which must be satisfied,
along with as many soft clauses as possible. In this domain, the hard clauses encode the
input-output and program well-formedness constraints, and the soft clauses encode struc-
tural constraints that maximally preserve the structure of the original expressions. Consider
the two possible solutions to our running example: f (x, y) = y − x, or f (x, y) = x. If the
original buggy expression is x −y, synthesis using Partial MaxSMT might produce f (x, y)

3012 Empir Software Eng (2018) 23:3007–3033

= y − x as a desired solution, because it maximally preserves the structure of the original
expression by maintaining the “−” operator.

2.3 Tunable Parameters in Angelix

We investigate several of Angelix’s tunable parameters in our experiments. We describe
defaults here, and relevant variances in Section 3.

Suspicious Location Group Size Angelix divides multiple suspicious locations into
groups, each consisting of one or more locations. Angelix generates a repaired expression
for each potentially-buggy expression in a group. During specification inference, Angelix
installs symbolic variables for locations in each group, supporting inference and repair syn-
thesis on multiple locations. Given a group size N , Angelix can generate repairs that touch
no more than N locations. For example, if N = 2 (the default setting), Angelix can generate
a repair that modifies either one or two expressions. Angelix groups buggy expressions by
either suspiciousness score, or proximity/location. By default, Angelix groups by location.

Number of Tests used for Specification Inference The number of tests used to infer
(value-based) specifications is important for performance and generated patch quality. Too
many tests may overwhelm the inference and synthesis engines; too few may lead to the
inference of weak or inadequate specifications expressed in terms of input-output examples,
which may subsequently render the synthesis engine to generate poor solutions that do not
generalize. As described above, Angelix increases the size of the test suite incrementally as
needed. By default, two tests are used to start, at least one of which must be failing.

Synthesis Level The selection of which components to use as ingredient components for
synthesis is critical. Too few components overconstrains the search and reduces Angelix’s
expressive power; too many can overwhelm the synthesis engine by producing an overly
large search space. Angelix tackles this problem by defining synthesis levels, where each
level includes a particular set of permitted ingredient components. For a given repair prob-
lem, the synthesis engine searches for solutions at each synthesis level, starting with the
most restrictive and increasing the size of the search space with additional components
until either a repair is found or the search is exhausted. By default, Angelix’s synthesis lev-
els include alternatives, integer-constants, and boolean-constants levels. The alternatives
synthesis level allows Angelix’s synthesis engine to use additional components similar to
existing code, e.g., “≤” is an alternative component for the component “<”. The integer-
constants and boolean-constants levels enable additional integer and boolean constants
available to the synthesis engine, respectively.

Defect Classes Angelix can handle four classes of bugs, related to, respectively, assign-
ments, if-conditions, loop-conditions, and guards. The “assignments” defect class considers
defective right-hand-sides in assignments. “if-conditions” and “loop-conditions” consid-
ers buggy expressions in conditional statements. The “guards” defect class considers the
addition of synthesized guards around buggy statements. For example, Angelix might syn-
thesize a guard if (x > 0) to surround a buggy statement x = y + 1, producing if (x > 0)
{x = y + 1}. The more defect classes considered, the more complicated the search space,
especially given the “guard” class (which can manipulate arbitrary statements). By default,
Angelix considers assignments, if-conditions, and loop-conditions.

Empir Software Eng (2018) 23:3007–3033 3013

2.4 SemFix: Program Repair via Semantic Analysis

SemFix, a predecessor of Angelix, is a synergy of fault localization, symbolic execution, and
program synthesis. The primary differences between SemFix and Angelix are: (1) SemFix’s
specification inference engine works on only a single buggy location (Angelix can operate
over multiple buggy locations at once), (2) SemFix defines the specification as a disjunction
of inferred path conditions. Angelix instead extracts sequences of angelic values that allow
the set of tests to pass from each path, and uses them to construct a so-called “angelic forest.”
As a result, the size of Angelix specification is independent of the size of the program
(depending only on the number of symbolic variables). This makes Angelix more scalable
than SemFix, (3) SemFix’s synthesis engine only synthesizes repairs for a single buggy
location (Angelix can synthesize multi-expression repairs), and (4) SemFix does not attempt
to minimize the syntactic distance between a solution and the original buggy expression
using Partial MaxSMT. These differences are particularly important for scalability (Angelix
can repair bugs in larger programs than can SemFix), and patch quality, which this article
explores in detail.

2.5 Syntax-Guided Synthesis for Semantics-Based Program Repair

Other synthesis approaches are also applicable to semantics-based program repair, with
possible implications for repair performance (Le et al. 2016b). We systematically evaluate
these implications for repair quality, and thus now describe the Syntax-Guided Synthesis
(SyGuS) (Alur et al. 2015) techniques we use in our experiments.

Given a specification of desired behavior, a SyGuS engine uses a restricted grammar
to describe (and thus constrain) the syntactic space of possible implementations. Differ-
ent SyGuS engines vary in the search strategies used to generate solutions that satisfy the
specification and conform to the grammar. We investigate two such techniques:

– The Enumerative strategy (Alur et al. 2015) generates candidate expressions in increas-
ing size, and leverages specifications and a Satisfiability Modulo Theory (SMT) solver
to prune the search space of possible candidates. Since repeatedly querying an SMT
solver regarding the validity of a solution with respect to a specification (the validity
query) is expensive, it uses counter-examples to improve performance. That is, when-
ever a solution failed to meet the specification, a counter-example is generated and
added to the next validity query.

– CVC4 is the first SyGus synthesizer (Reynolds et al. 2015) implemented inside an SMT
solver, via a slight modification of the solver’s background theory. To synthesize an
implementation that satisfies all possible inputs, it translates the challenging problem
of solving universal quantifier over all inputs into showing the unsatisfiability of the
negation of the given specification. It synthesizes a solution based on the unsatisfiability
proof.

Recent SyGuS competitions suggest that the CVC4 and enumerative engines are the
among the best, evaluated on SyGuS-specialized benchmarks.3

We follow the approach described in previous work (Le et al. 2016b) to integrate the
Enumerative and CVC4 synthesizers into Angelix. At a high level, Angelix infers value-
based specifications as usual, and we automatically translate those specifications into a

3http://www.sygus.org/

http://www.sygus.org/

3014 Empir Software Eng (2018) 23:3007–3033

suitable SyGuS format, with optimizations to constrain the repair minimality. Different
SyGuS engines can then be run on the same generated SyGuS script to synthesize a repair
conforming to the inferred specifications, allowing for a controlled comparison of different
synthesis approaches in the context of a semantics-based repair technique.

3 Empirical Evaluation

The primary purpose of our experiments is to systematically investigate and characterize
overfitting in semantics-based APR. To this end, we use benchmarks that provide many
buggy programs along with two independent test suites. For each run of each repair tech-
nique on a given buggy program, we use one set of provided test cases (the training tests)
to generate a repair, and the other (the held-out tests) to assess the quality of the generated
repair. If a repair does not pass the held-out tests, we say it is an overfitting repair that is not
fully general; this is a proxy measure for repair quality (or lack thereof). Otherwise, we call
it a non-overfitting or general repair.4

We describe our experimental dataset in Section 3.1. We then begin by assessing baseline
patching and overfitting behavior generally (Section 3.2). We then evaluate relationships
between overfitting and characteristics of input test suites and input programs (Section 3.3),
as well as tunable tool parameters (Section 3.4). Finally, we present and discuss several
informative test cases from the considered dataset (Section 3.5) and a qualitative case study
on real-world bugs (Section 3.6).

3.1 Experimental Data

We obtained Angelix from https://github.com/mechtaev/angelix/, using the version evalu-
ated in Mechtaev et al. (2016). We set all tunable parameters to their defaults (Section 2.3)
unless otherwise noted.

We conduct the majority of our experiments on buggy programs from a subset of the
IntroClass benchmark (Le Goues et al. 2015), and the Codeflaws benchmark (Tan et al.
2017).5 Both benchmarks consist of small programs, but are particularly suitable benchmark
for assessing repair quality via overfitting, because they each provide two test suites for
each buggy program. One set can be used to guide the repair, while the second set is used
to assess the degree to which it generalizes.

IntroClass IntroClass consists of several hundred buggy versions of six different pro-
grams, written by students as homework assignments in a freshmen programming class.
Each assignment is associated with two independent high-coverage test suites: a black-
box test suite written by the course instructor, and a white-box test suite generated by the
automated test generation tool KLEE (Cadar et al. 2008) on a reference solution.

We filtered IntroClass to retain only textually unique programs. We then further filter to
retain those programs with outputs of type boolean, integer, or character because Angelix’s
inference engine does not fully support output of other types such as String or float due to
the limited capability of constraint solving technique used in Angelix’s underlying symbolic

4We use the words “repair” and “patch” interchangeably.
5We discuss the real-world bugs we describe qualitatively in Section 3.6.

https://github.com/mechtaev/angelix/

Empir Software Eng (2018) 23:3007–3033 3015

Table 1 Baseline repair results on IntroClass (top) and Codeflaws (bottom)

(a) Baseline repair results on IntroClass. Total benchmark program versions considered (Total), baseline
repair results for programs that fail at least one black-box test (Black-box, center columns), and those
that fail at least one white-box test (White-box, last columns). The sets of programs that fail at least one
test from each set are not disjoint

Black-box bugs White-box bugs

Subject Total # Angelix CVC4 Enum SemFix # Angelix CVC4 Enum SemFix

smallest 67 56 37 39 29 45 41 37 37 36 37

median 61 54 38 28 27 44 45 35 36 23 38

digits 108 57 6 4 3 10 90 5 2 2 8

syllables 48 39 0 0 0 0 42 0 0 0 0

checksum 31 19 0 0 0 0 31 0 0 0 0

total 315 225 81 71 59 99 249 77 75 61 83

(b) Baseline repair results on Codeflaws. The tests available
to the users serve as training tests; the contest committee
tests serve as held-out tests

Subject Total Angelix CVC4 Enum SemFix

CodeFlaws 651 81 91 92 56

execution engine. This leaves us with 315 program versions in the dataset, shown in column
“Total” in Table 1a (grouped by assignment type).

Codeflaws The Codeflaws benchmark contains 3,902 defects collected from the Code-
forces programming contest,6 categorized by bug types (Tan et al. 2017). Since running all
bugs is computationally expensive, we select for our experiments 665 bugs belonging to
different bug categories. The selected bugs are from the “replace relational operator” bug
category (ORRN), and the “replace logical operator” (OLLN) and “tighten or loosen condi-
tion” (OILN) categories. Examples of the selected defect types are shown in Fig. 1. These
three selected defect categories are best suited to repair via semantics-based techniques
(note that the majority of bugs fixed by Angelix in Mechtaev et al. (2016) belongs to the
“if-condition” defect type).

Similar to IntroClass, each program in Codeflaws is accompanied by two test suites: one
suite is available to the contest’s users to assess their implementation, and the other is only
available to the contest’s committee to assess the implementations submitted by users.

3.2 Baseline Patching and Overfitting

Our first three research questions (1) establish baseline patch generation results, (2) evaluate
whether there exists an apparent relationship between the number of tests a program fails
and repair success, and (3) assess the degree to which the semantics-based techniques under
consideration produce patches that overfit to a training test suite.

6http://codeforces.com/

http://codeforces.com/

3016 Empir Software Eng (2018) 23:3007–3033

Fig. 1 Examples of defect types from the Codeflaws dataset used in our experiments

Research Question 1 How often do Angelix (including various synthesis engines) and
SemFix generate patches that lead the buggy programs to pass all training test cases?

IntroClass In these initial experiments, we use the black-box tests as training tests, and
the white-box tests as held-out tests. Of the 315 program versions, 225 programs that have
at least one failing black-box test case. The center portion of Table 1a shows results (we
discuss white-box results in Research Question 6), in terms of the number of patches gen-
erated by Angelix, CVC4, Enumerative, and SemFix using black-box tests for training. In
total, Angelix generates patches for 81 out of 225 versions (36%). Note that Angelix gener-
ated no patches for the syllables and checksum programs; our manual investigation suggests
that this is primarily due to imprecision in the built-in fault localization module. Beyond
this, success rate varies by assignment type. Angelix has the most patch generation suc-
cess (70.4%) for programs written for the median problem. The overall results indicate
that Angelix generates patches frequently enough for us to proceed to subsequent research
questions.

Angelix incorporating the CVC4 and Enumerative SyGuS engines generated patches
for 71 and 59 versions, respectively, a lower patch generation success rate comparatively
(31.6% for CVC4, and 26.2% for Enumerative). SemFix, on the other hand, generates
patches for 99 versions with slightly higher patch generation rate (44%). Despite the
lower patch generation rates, CVC4 and Enumerative do generate patches for programs for
which Angelix cannot. This raises an interesting question regarding whether it might it be
beneficial to use multiple synthesis techniques to increase the effectiveness of semantics-
based APR. In subsequent research questions, we investigate whether Angelix, CVC4,
Enumerative, and SemFix do indeed generate non-overfitting patches for distinct program
versions.

Codeflaws For Codeflaws, we use the tests available to users as training tests, and the tests
that are only available to the contest’s committee as held-out tests. Table 1b shows results.
Angelix, CVC4, Enumerative and SemFix succeed in generating patches for 12.5%, 14%,
14%, and 9% of the buggy programs, respectively. Although this is a much lower patch
generation rate as compared to the IntroClass results, the number of generated patches is
adequate to allow us to proceed to subsequent research questions.

Empir Software Eng (2018) 23:3007–3033 3017

Research Question 2 Is the number of tests that a buggy program fails related to patch
generation success?

Our goal in this research question is to see whether and to what degree repairability
appears associated with the number of tests a program is failing. To answer this ques-
tion, we group programs that fail the same test case proportion, and then calculate the
patch generation success rate per group. We aggregate across both benchmarks in these
results (we use all defects from Codeflaws). We allow Angelix to generate more patches by
using --generate-all parameter for all synthesis engines. Our null hypothesis (H0)
is that there is no linear correlation between the number of tests a program fails and patch
generation success; the alternate hypothesis (H1) is that there is such a relationship.

Results Figure 2 shows a scatter plot relating test suite failure rate and patch generation
rate. Our statistical test shows that the correlation of linear regression between these two
rates is not statistically significant (p > 0.05). Thus, we cannot reject the null hypothesis.
However, we can observe interesting trends, as the the scatter plot suggests that there may
be a general downtrend between test suite failure rate and patch generation rate across all
configurations (after discounting outliers). That is, as test suite failure rate increases, the
patch generation rate decreases. This is consistent with prior results for heuristic repair, and
matches the intuition that producing a fully satisfactory patch may be more difficult the
more test cases are initially failing. In the extreme cases in which all tests fail, no patches
were generated. We manually investigated several such programs, and found that such bugs
in these datasets are usually caused by typos in a constant string, which none of the synthesis
techniques can modify.

Research Question 3 How often do the produced patches overfit to the training tests,
when evaluated against the held-out tests?

In this question, we evaluate whether the generated patches generalize, indicating that
they are more likely to be correct with respect to the program specification. An ideal program

Fig. 2 Patch generation rate (i.e., producing at least one patch that passes all tests in a test suite) vs. test suite
failure rate

3018 Empir Software Eng (2018) 23:3007–3033

repair technique would often generate general patches, and produce overfitting patches
infrequently. We test all patches produced for Research Question 1 against the held-out to
measure rate.

Results Table 2a and b show the number of patches produced for each subject program
that fail at least one held-out test for the IntroClass and Codeflaws datasets, respectively. On
IntroClass, 61 of the 81 (75%) Angelix-produced patches overfit to the training tests, while
80%, 81%, and 90% of the CVC4-, Enumerative-, and SemFix-produced patches do, respec-
tively. On Codeflaws, 44 of the 81 (54%) Angelix-produced patches overfit, while 83.5%,
87%, and 68% of patches generated by CVC4, Enumerative, and SemFix do, respectively.
This suggests that, although semantics-based repair has been shown to produce high-quality
repairs on a number of subjects, overfitting to the training tests is still a concern. We
present case studies to help characterize the nature of overfitting in semantics-based APR
in Section 3.5.

One possible reason that CVC4 and Enumerative underperform Angelix’s default syn-
thesis engine is that the SyGuS techniques do not take into account the original buggy
expressions. We observed that the resulting patches can be very different from the originals
they replace, which can impact performance arbitrarily. However, the CVC4 and Enu-
merative techniques do generate non-overfitting patches for programs that default Angelix
cannot produce non-overfitting patches, as shown in Fig. 3a and b. Similarly, SemFix,
CVC4, and Enumerative also have non-overlapping non-overfitting patches (results omit-
ted). This phenomenon also happens between Angelix and SemFix. This suggests that using
multiple synthesis engines to complement one another may increase the effectiveness of
semantics-based APR.

3.3 Training Test Suite Features

Our next three research questions look at the relationship between features of the training
test suite and produced patch quality, looking specifically at (4) test suite size, (5) number
of failing tests, and (6) test suite provenance.

Table 2 Baseline overfitting results on IntroClass (top) and Codeflaws (bottom). In both tables, A/B denotes
A overfitting patches out of B total patches generated

(a) IntroClass overfitting rates for each APR approach, using black box (center columns) and white box
(right-most columns) as training tests. We omit syllables and checksum, for which no patches
were generated

Black box White box

Subject Angelix CVC4 Enum SemFix Angelix CVC4 Enum SemFix

smallest 27/37 33/39 24/29 36/45 31/37 33/37 33/36 33/37

median 29/38 21/ 28 21/27 40/44 25/35 36/36 23/23 38/38

digits 5/6 3/4 3/3 10/10 0/5 2/2 2/2 2/8

(b) Codeflaws overfitting rates for each APR approach

Subject Total Angelix CVC4 Enum SemFix

Codeflaws 651 44/81 76/91 80/92 38/56

Empir Software Eng (2018) 23:3007–3033 3019

(a) (b)

Fig. 3 Non-overfitting patches by Angelix, CVC4, and Enumerative on IntroClass and Codeflaws
benchmarks

Research Question 4 Is the training test suite’s size related to patch overfitting?
To answer this question, we vary the training test suite size and observe the resulting

overfitting rate. To achieve this, we randomly sample the black-box test suite (for the Intro-
Class dataset) and user’s test suite (for the Codeflaws dataset) to obtain 25%, 50% and 75%
of the suite as training tests, and use the resulting tests to guide repair. We vary the number
of training tests, but keep the pass-fail ratio of tests in each version consistent. We repeat
this experiment five times and aggregate the results for each repair technique.

Results Table 3a and b show results on the IntroClass and Codeflaws benchmarks, respec-
tively. Interestingly, the overfitting rate fluctuation is very small. Table 3a, shows that on
IntroClass, using 25%, 50%, and 75% of black-box tests as training tests, Angelix has an
overfitting rate of 84%, 94%, and 78%, respectively. This highlights an interesting trend:
When training suite size increases, Angelix appears to generate fewer patches, but without a
major change in overfitting rate. For example, considering smallest programs, Angelix gen-
erates 29, 25, and 20 non-overfitting patches when 25%, 50%, and 75% of black-box tests
are used, respectively. We conclude that that it may be slightly more difficult to generate
patches in response to higher-coverage test suites. However, as test suite coverage increases,

Table 3 Overfitting rate of Angelix, CVC4, Enumerative, and SemFix when varying the number of tests
used for training on IntroClass (top) and Codeflaws (bottom)

Angelix CVC4 Enum SemFix

Subject 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

(a) Overfitting by number of tests used, IntroClass

Smallest 29/38 25/34 20/29 28/36 22/32 17/27 26/35 23/33 19/28 32/41 36/45 36/45

Median 35/40 29/34 25/30 33/39 26/32 26/30 33/38 27/32 25/30 36/43 40/45 41/46

Digits 8/8 6/6 7/7 8/8 6/6 6/6 8/8 6/6 6/6 9/9 12/12 12/12

(b) Overfitting by number of tests used, Codeflaws

87/99 78/95 58/73 86/90 85/94 104/111 73/78 77/88 112/120 89/97 77/85 57/64

3020 Empir Software Eng (2018) 23:3007–3033

overfitting rate does not appear to substantially decrease. Similar trends appear to apply to
CVC4, Enumerative, and SemFix.

Table 3b shows the results on the Codeflaws benchmark. We can see that Angelix and
SemFix follow the same trend as described above on the results on the IntroClass dataset.
CVC4 and Enum, however, depict an opposite trend in terms of patch generation rate,
wherein the number of generated patches increases with training test suite size.

These results are particularly interesting when contrasted with prior results character-
izing overfitting for heuristic repair (Smith et al. 2015). Smith et al. (2015) found that
lower-coverage test suites posed a risk for heuristic repair, leading to patches that were less
likely to generalize. By contrast, our results for semantics-based repair do not show this
relationship; test suite coverage overall may not influence the quality of semantics-based
patches to the same degree they do in heuristic techniques. As a result, semantics-based
approaches may be safer to use than heuristic techniques when only lower-coverage or
lower-quality test suites are available.

Note that these semantics-based APR techniques generate repairs eagerly. That is, they
generate one plausible repair at a time, and if that repair leads the program to pass all tests,
it is returned without considering other candidates. Since there can exist many plausible
patches that pass all tests, but are not necessarily correct (this has been empirically char-
acterized for heuristic techniques (Long and Rinard 2016a)), a potentially fruitful future
direction for semantics-based APR may be to lazily generate a number of candidates using
the synthesis strategy, and then employ an appropriate ranking function to heuristically rank
candidates according to predicted correctness, combining various elements of both heuristic
and semantics-based approaches.

Research Question 5 Is the number of tests a buggy program fails related to patch
overfitting?

As in question 2, we group buggy programs by test suite failure rate and calculate patch
overfitting rate (patches that overfit divided by patches generated) per group. We aggre-
gate across both benchmarks in these results (we use all defects from Codeflaws). We
allow Angelix to generate more patches by using --generate-all parameter. Our null
hypothesis (H0) is that there is no linear correlation between the number of tests that a
buggy program fails and patch overfitting; our alternate hypothesis (H1) is that there is such
a relationship.

Results Figure 4 shows a scatter plot relating test suite failure rate and overfitting rate. The
correlation coefficient of the linear regression between these two rates is not statistically
significant (p > 0.05). Thus, we cannot reject the null hypothesis. However, the visual trend
is instructive, suggesting potentially similar trends across all synthesis configurations: there
may be an downtrend between test suite failure rate and overfitting rate (after discounting
outliers). That is, the more tests that fail on the original buggy program), the higher the
overfitting rate. Since the amount of data that we have do not give us a statistical significant
result, we cannot draw strong conclusions; we leave the addition of such data to future work.

Research Question 6 How is the training test suite’s provenance (automatically generated
vs. human-written) related to patch overfitting?

Automatic test generation may provide a mechanism for augmenting inadequate test
suites for the purposes of program repair. However, previous work assessing overfitting for
heuristic repair found that patch quality varied based on the origin (or provenance) of the

Empir Software Eng (2018) 23:3007–3033 3021

Fig. 4 Overfitting rate (i.e., number of overfit patches over generated patches) vs. the test suite failure rate

training test suite on the IntroClass dataset. That is, the human and instructor-provided black
box tests led APR techniques to produce higher-quality repairs, i.e., the ones that pass more
held-out tests, than the automatically generated tests (generated by KLEE) (Smith et al.
2015). We assess the same concern for semantic-based APR by comparing the quality of
patches generated using the white-box (KLEE-generated) tests to those of the black-box
(human-generated) tests from the IntroClass dataset. We only use IntroClass for this ques-
tion since its held-out tests are automatically generated; the provenance of the held-out tests
in Codeflaws is unspecified (Tan et al. 2017).

Results The right-hand-side of Table 1a shows baseline patch results using the white-box
tests for training; the right-hand side of Table 2a shows how many of those patches overfit.
Angelix generates patches for 77 buggy programs using these test suites, including 37, 35,
and 5 versions for subjects smallest, median, and digits, respectively. Of those, 31, 25, and
5 patches fail to generalize, respectively. Overall, when using white-box tests as training
tests, Angelix generates patches with an overfitting rate of 72.7% on average. This is very
slightly lower as compared to the rate for the black-box tests, seen in Research Question 3
(75% versus 72.7%).

This is particularly interesting as compared to the results from the heuristic case, sug-
gesting that automated test generation could be particularly useful in helping Angelix to
mitigating the risk of overfitting. As above, lower-quality test suites may pose a smaller risk
to the output quality of this technique type.

By contrast, the performance of CVC4 and Enumerative suffers when using the white-
box as compared to the black-box tests. CVC4 and Enumerative can only generate non-
overfitting patches for 4 and 3 versions of smallest, respectively. This indicates a very high
overfitting rate (around 95%). The performance of SemFix is almost the same when either
using black-box or white-box tests as training tests (overfitting rate of around 87%). Thus,
there remains a need to improve automated test generations before it can be used across the
board for automatic repair, and to understand the source of this quality discrepancy.

3022 Empir Software Eng (2018) 23:3007–3033

Table 4 Overfitting rate when using all training tests for specification inference for IntroClass (top; we omit
syllables and checksum, for which no patches were generated) and Codeflaws (bottom)

Subject Angelix CVC4 Enum SemFix

smallest 10/20 27/39 27/39 12/19

median 18/22 13/ 20 24/32 18/23

digits 5/5 3/3 3/3 5/5

Codeflaws 102/126 102/108 79/84 100/112

3.4 Tunable Technique Parameters

Our next two research questions concern the relationship between patch generation success
and quality and (7) number of tests used for specification inference and (8) the Angelix
group size feature.

Research Question 7 What is the relationship between the number of tests used for
specification inference and patch generation success and patch quality?

Theoretically, the more tests used for specification inference, the more comprehensive
the inferred specifications, which may help synthesis avoid spurious solutions.7 Thus, we
investigate the relationship between the number of considered tests and patch generation
and quality for all considered techniques.

IntroClass Results We use black-box tests as training tests, and white-box tests as held-
out tests to answer this question, and instruct the inference engine to use all available tests
for specification inference. The top of Table 4 shows results. Angelix generates 47 patches,
of which 33 do not fully generalize, indicating an overfitting rate of 70.2% on average. As
compared to the results from Research Question 3, in which we use Angelix’s default setting
(starting with two tests), the overfitting rate is slightly reduced (from 75 to 70.2%).

CVC4 and Enumerative generate patches with overfitting rate of 69.4% (43 incorrect
patches over 62 generated patches), and 73% (54 incorrect patches over 74 generated
patches), on average, respectively. The effect on overfitting rate is more dramatic for these
approaches. CVC4’s overfitting rate decreases, from 80.3 to 69.4%. Similarly, SemFix’s
overfitting rate decreases from 90 to 74%: it generates 35 incorrect patches over 47 gener-
ated patches. Overall, these results suggest that using more tests for specification inference
helps semantics-based program repair to mitigate overfitting, supporting our hypothesis.

Codeflaws Results We use tests that are available to users as training tests, and tests that
are available only to the contest’s committee as held-out tests. The last row of Table 4
shows results. Angelix generates 126 patches, of which 102 do not generalize, indicating an
overfitting rate of 81%. Compared to the results shown in Table 2b in research question 3,
which uses two tests for specification inference, Angelix generates more patches (increased
from 81 to 126 patches) but escalates the overfitting rate (from 54 to 81%). The similar
trend can be seen for CVC4, Enumerative, and SemFix. This results actually contradict our
hypothesis.

7Recall the explanation in Section 2.3 on the number of tests used for specification inference.

Empir Software Eng (2018) 23:3007–3033 3023

We believe that this fact could be due to a combination of several reasons. When using all
repair (training) tests for inference task, once a solution is synthesized consistent with the
specifications, it satisfies the whole repair test suite and thus regarded as a patch. Therefore,
if the repair test suite is weak enough to allow such a situation, it results in an increase in
patch generation rate. However, the in-comprehensiveness of the repair test suite also brings
about a reasonably high probability of the overfitting rate since the generated patches may
not generalize. In fact, the size of repair test suite in the Codeflaws benchmark is quite small
(only 3 tests on average), while the held-out test suite’s size is much larger (40 tests on
average) (Tan et al. 2017).

Research Question 8 How does the number of fault locations grouped together affect
patch generation rate and overfitting?

The second tunable feature we study is the effect of grouping faulty locations. The larger
the group, the expressions considered for repair at once. We observe the behaviors of dif-
ferent repair techniques when the group size is set to 3 and 4, respectively. We note that
SemFix is left out in this research question since it is not able to fix multi-line bugs (Nguyen
et al. 2013).

Results Table 5 shows the results on both IntroClass and Codeflaws benchmarks. Over-
all, the number of generated patches and the overfitting rate when group size varies only
slightly between the group sizes. On IntroClass, Angelix generates 49 and 46 patches, with
overfitting rates of 67% and 74%, when group size is set to 3 and 4, respectively. As com-
pared to research question 3, which uses default group size of two, the number of generated
patches substantially decreases, e.g., from 81 to 49 and 46 for Angelix. CVC4 and Enu-
merative show a similar trend. We hypothesize that increasing the number of likely-buggy
locations being fixed proportionally enlarges the search space, and subsequently makes it
harder to generate patches.

The same trend generally holds on the Codeflaws dataset, with an interesting exception
for Angelix. Angelix generates more patches (87 vs 108), while reducing the overfitting rate
slightly (86% vs 82%) when group size is varied from 3 to 4. This shows that Angelix’s
ability in fixing multi-line bugs is potentially helpful in this case.

3.5 Examples from the IntroClass Dataset

We now present and discuss several examples that may provide deeper insights into the
overfitting issue for semantics-based APR.

Table 5 The overfitting rate of Angelix, CVC4, Enumerative, and SemFix in subject programs from Intro-
Class (omitting syllables and checksum, for which no patches were generated) and Codeflaws, when group
size is set to three and four, respectively

Size 3 Size 4

Subject Angelix CVC4 Enum Angelix CVC4 Enum

smallest 8/20 10/19 10/20 12/18 10/19 11/21

median 18/24 17/ 23 18/23 17/23 17/23 19/25

digits 5/5 5/5 5/5 5/5 5/5 5/5

Codeflaws 75/87 84/86 57/60 89/108 43/44 48/49

3024 Empir Software Eng (2018) 23:3007–3033

Fig. 5 Example of a buggy median program (simplified slightly for presentation). The buggy line is shaded
in blue at line 15. The ANGELIX OUTPUT macro is explicitly required Angelix instrumentation; it indicates
output variables to Angelix

Figure 5 shows an example of a buggy median program. The goal of a median pro-
gram is to identify the median value between three integer inputs. The buggy line in our
example is colored blue, at line 15. We now consider Angelix-generated patches for this
example program using 25% and 50% of the black-box tests for training. Figure 6a shows
the Angelix patch for the program in Fig. 5 using 25% of black-box tests for training. The
patch considers the expressions at lines 13 and 15, respectively, for repair (colored red).
Line 13 remains unchanged, while the true buggy condition at line 15 is changed. This patch

(a)

(b)

Fig. 6 Patches generated by Angelix for the program in Fig. 5 using 25% of the black-box tests (top) and
50% of the black-box tests (bottom) as training tests. Line numbers are aligned with those in Fig. 5

Empir Software Eng (2018) 23:3007–3033 3025

Table 6 Specifications inferred by Angelix for the example in Fig. 5 using 50% of black-box tests for
training

Test ID n1 n2 n3 Expected State

#3 6 2 8 (L13 → false) ∧ (L15 → false)

#5 8 2 6 (L13 → false) ∧ (L15 → true)

(The first row shows the specification inferred using only 25% of the tests for training). The first column
shows the test id. The next three columns show values of n1, n2, and n3, respectively. The last column shows
the expected states at different lines given the input values. For example, (L13 → false) ∧ (L15 → false) in
test id #3, means the expected state of the if-conditions at lines 13 and 15 are both false

overfits, such that the resulting program does not pass all held-out tests (such as the test
{n1 = 8, n2 = 2, n3 = 6}).

To better understand this issue, consider the specification inferred by Angelix that lead to
this erroneous patch. The first line of Table 6 shows the specification that lead to this patch,
produced on a test with input values of n1 = 6, n2 = 2, and n3 = 8. This specification
indicates that this test would pass if the states of the if-conditions at lines 13 and 15 are both
false, which the patch in Fig. 6a satisfies. This shows the danger of weak specifications.

Returning to the example program (Fig. 5), consider adding an additional test, with asso-
ciated inferred specification, shown in the second line of Table 6. Adding this test to the
training set leads Angelix to find the patch shown in Fig. 6b, which is generally correct in
the way it changes the logic of the if-condition at line 15. In this case, increasing the num-
ber of training tests (from 25 to 50% of black-box tests) provided a huge benefit: This patch
fully generalizes to the held-out tests, and it better matches our intuition. One conclusion is
that additional tests can help guide synthesis to a better repair, which is especially satisfying
in this case, where only two total are required.

Figure 7 shows patches generated by Angelix’s synthesis engine and SyGuS engines for
another median program. Angelix’s patch replaces line 4 with line 5; the SyGuS engines
(including CVC4 and Enumerative) replace line 4 with line 6. Angelix’s generated patch is
incorrect; the SyGuS- generated patch is correct. Angelix’s synthesis engine does not force
generalization, where a generalized solution involves as few constants as possible (Gulwani
et al. 2016). SyGuS engines, on the other hand, are more flexible in forcing generalization
by simply emphasizing permitted constants after variables in its grammar. This suggests a
straightforward strategy to improve the generality of patches produced by such techniques.

Figure 8 shows an example of an overfitting patch for the smallest subject program, gen-
erated by Angelix when using all black-box tests as training tests. The goal of the smallest
program is to return the smallest of three integer numbers. The patch generated by Angelix
replaces line 2 with line 3, loosening the if-condition. As with our prior example, this patch

Fig. 7 Patches generated by Angelix’s synthesis engine, and SyGuS engines for a median program

3026 Empir Software Eng (2018) 23:3007–3033

Fig. 8 Example of an overfitting patch for the smallest subject program, generated by Angelix when using
all black-box tests as training tests

clearly overfits to a particular set of tests. This example demonstrates that overfitting can
occur even when a full set of black-box tests is used.

This bug would likely benefit from multi-location patch that adds equality signs to each
of the conditions in lines 2, 5 and 8. Yet, Angelix’s ability to generate multi-location patch
does not help in this case. Angelix’s ad-hoc approach to deciding how many buggy loca-
tions to consider, and how to group them, could be improved with stronger heuristics, more
accurate fault localization, or more precise dataflow information to better group the three
implicated conditions. Generally, however, these results call for the development of stronger
or alternative synthesis engines that are more resilient to overfitting.

3.6 Qualitative Study on Real-World Bugs

Our results in preceding sections describe program repair as applied to small programs with
two independent test suites. We now present qualitative results assessing the performance of
different synthesis engines on defects in large, real-world programs. Automatically generat-
ing independent full-coverage test suites on real-world programs is prohibitive. As such, we
employ a stricter proxy to assess the correctness of machine-generated patches: A machine-
generated patch is considered correct if it is equivalent to the patch submitted by developers.
Two patches are considered equivalent if: (1) they are syntactically identical, or (2) one
patch can be transformed into the other via basic syntactic transformation rules. For exam-
ple, a || b and b || a are considered equivalent if no observable side effects occur
when evaluating either a or b, e.g., exceptions thrown, modifications to global variables, etc.
We choose syntactic transformations as the proxy for correctness validation because check-
ing for semantic equivalence is a hard problem, and undecidable in general. A semantic
equivalence check may involve deep human reasoning, which may be subjective. We thus
use syntactic equivalence to ease the validation process and avoid subjectivity, although it
may be overly strict in certain cases.

To ease this manual process, we require a transparent baseline, in that the developer-
submitted patches (ground truth) must be sufficiently concise and transparent to support a
manual patch-equivalence check. Unfortunately, existing benchmarks (such as ManyBugs
(Le Goues et al. 2015)) often include changes of multiple lines, complicating manual cor-
rectness assessment. To this end, we reuse a benchmark consisting of nine real-world bugs
in large programs (such as the Common Maths library, consisting of 175 kLOC), and tool
named JFIX, from our work in Le et al. (2017a). JFIX adapts the Angelix specification infer-
ence engine to Java programs (Le et al. 2017a), and uses the synthesis engine of Angelix,

Empir Software Eng (2018) 23:3007–3033 3027

CVC4, and Enumerative to synthesize repairs conforming to the inferred specifications. We
omit SemFix, because it generally does not scale to these programs (Nguyen et al. 2013).

Table 7 shows results. Note that this study extends our previous work (Le et al. 2017a) by
further studying the effect of a majority voting scheme. That is, we check whether we can
choose a correct patch from a set of patches suggested by the synthesis engine by employ-
ing majority voting (i.e., patches that are generated by most of the synthesis engines are
chosen). Machine-generated patches that are equivalent to patches submitted by developers
are indicated by “ ”, and “7” indicates otherwise in Table 7.

As Table 7 shows, Angelix, Enumerative and CVC4 can complement one another. There
are no bugs for which all three techniques produce equivalent patches, but for all bugs, at
least one technique does succeed. For example, there are three bugs for which Enumerative
and CVC4 can generate patches equivalent to their developer counterparts, where Angelix
does not. This shows that the nature of each repair technique may lead to different kind
of patches, suggesting that employing an agreement (majority voting) on generated solu-
tions between different synthesis engines may increase confidence when choosing a correct
patches. The high level idea is that the more different synthesis engines agree on a solution,
the higher the confidence that the solution is correct. For example, CVC4 and Enumerative
generate the same (correct) solutions for SFM and EWS, while Angelix generates a differ-
ent solution. We note that this majority voting method can still lead to incorrect patches.
For example, Angelix generates a correct patch for Qabel, but CVC4 and Enumerative both
generate the same incorrect patch. Thus, if majority voting is employed, it leads to an incor-
rect patch in this case. However, as the overall results indicate, the majority voting method
is more effective than any individual technique in identifying correct patches.

4 Threats to Validity

Threats to internal validity relate to errors in our instrumentation and experiments. Angelix
requires users to instrument the program under repair with its provided C macros in order to

Table 7 Real bugs collected from real-world software

Project Rev Type Angelix Enum CVC4 Majority Voting

Time Dev Time Dev Time Dev

Math 09fe II 23s 26s 36s

ed5a I & II 168s NA 7 NA 7

Jflex 2e82 II NA 7 70s 72s

Fyodor 2e82 II 20s 19s 31s

SFM 5494 II 12s 7 10s 13s

EWS 299a I NA 7 14s 258s

Orientdb b33c II 20s 22s NA 7

Qabel 299c II 37s 22s 7 23s 7 7

Kraken 8b0f II 12s 13s 7 15s 7 7

Column “Rev” shows the revisions that fix the bugs. Column “Type” shows the bug types: “I” denotes
method call, “II” denotes arithmetic. Column “Time” indicates the time required (in seconds) to generate the
repair (“NA” denotes not available). Column “Dev” indicates whether a generated repair is equivalent to the
repair submitted by developers. The “ ” denotes equivalent, and the “7” denotes otherwise. The “Majority
Voting” column shows the result of using majority voting method to choose correct patches

3028 Empir Software Eng (2018) 23:3007–3033

capture the program’s output. This task involves manual effort and some degree of under-
standing the program under repair. Thus, it is a somewhat error-prone process. There could
be hidden errors that we did not notice despite our effort on rechecking our instrumentation
and experiments. Our experiments are reproducible, using the release of Angelix, mitigat-
ing this risk. The results of our experiments are hosted at Zenodo with DOI: https://doi.org/
10.5281/zenodo.1012686, accessible from the following link: https://goo.gl/4BwK3s.

Threats to external validity correspond to the generalizability of our findings. We have
analyzed several hundreds of bugs from a dataset that has been used to systematically evalu-
ate overfitting in heuristic repair techniques (Smith et al. 2015) and assess quality of patches
produced by new program repair approaches (Ke et al. 2015). More programs with real bugs
would further help mitigate this threat, though such a dataset (with two comprehensive test
suites) may be difficult to construct. Additionally, we could complement our study with
more repair and synthesis techniques to compare and contrast the strengths and weaknesses
of them.

Threats to construct validity correspond to the suitability of our evaluation metrics. We
use the fact of a patch’s generality to a held-out set of tests as a proxy for its quality. Note that
this does not necessarily mean that the patch is fully correct, nor that it would be accepted
by humans with other quality goals in mind. However, this metric is consistent with that
used in other recent studies Smith et al. (2015) and Le et al. (2016b), and repair quality is an
important and unsolved problem in program repair research. We also used a stricter metric
to evaluate patch correctness by checking whether a machine-generated patch is equiva-
lent to the patch submitted by developer via manual syntactic transformations. Still, this
metric could be too strict and overstate the incidence of overfitting patches. We leave the
consideration of other such criteria to future work.

5 Related Work

In this section, we described related work in automated program repair, including repair
techniques, datasets and empirical studies on program repair.

Program Repair Recent years have seen a proliferation in the development of program
repair techniques. Repair techniques can generally be divided into two families: heuristic vs
semantics-based families. Heuristic approaches generate a large number of repair candidates
and employ search or other heuristics identify correct repairs among them. Semantics-based
approaches extract semantics constraints from test suites, and synthesize repairs that sat-
isfy the extracted constraints. GenProg (Weimer et al. 2010; Le Goues et al. 2012) is an
early APR tool that uses genetic programming as a heuristic to search for a repair that
causes a program to pass all provided tests cases among a possibly huge pool of repair
candidates. AE (Weimer et al. 2013) leverages an adaptive search approach to search for
similar syntactic repairs. Qi et al. (2014) propose RSRepair, which uses a random search
approach to find repairs, and show that RSRepair is better than GenProg on a subset of Gen-
Prog’s benchmark. Other recent techniques belong to the heuristic repair (Long and Ribard
2015, 2016b; Le et al. 2016c) use condition synthesis, and development history (Kim et al.
2013) to guide the search for repair. Semantics-based repair approaches (Könighofer and
Bloem 2011; Nguyen et al. 2013) typically use symbolic execution and program synthe-
sis to extract semantic constraints and synthesize repairs that satisfy the constraints; other
work exists at the intersection of the two families (Ke et al. 2015). There further exists work

https://doi.org/10.5281/zenodo.1012686
https://doi.org/10.5281/zenodo.1012686
https://goo.gl/4BwK3s

Empir Software Eng (2018) 23:3007–3033 3029

that is farther afield that uses abstract interpretation, unguided by test suites, but requiring
specially-written, well-specified code (Logozzo and Ball 2012). We study Angelix (Mech-
taev et al. 2016), a recently-proposed repair tool that makes the semantics-based approach
scale to repair large real-world programs by using a selective symbolic execution procedure
to replace classical symbolic execution used for repair in previous techniques. In a similar
vein, for Java, Nopol (DeMarco et al. 2014) translates the Object-oriented program repair
problem into SMT formulae and uses a constraint solver to synthesize repairs. Our recent
work JFIX translates and extends Angelix to work on Java programs, which we adapt to
study real-world bugs here (Le et al. 2017a).

In this work, we do not propose a new program repair technique, but rather assess and
compare the quality of output patches from a well-known recent technique in semantics-
based repair.

Dataset Researchers have created a number of benchmarks intended for research and
empirical studies in testing, fault localization, and program repair. Defects4J (Just et al.
2014) includes more than 300 real-world defects from five popular Java programs.
Defects4J is originally intended for to facilitate fault localization research, but it is likely
suitable for program repair research as well. We do not focus on it because Angelix targets
C programs. The ManyBugs and IntroClass benchmarks (Le Goues et al. 2015) provide
collections of bugs for C programs, including large real-world C programs, and small C
programs as students’ homework assignments. The two benchmarks serve different empir-
ical purposes, and are suitable for different types of studies. In this work, we consider the
IntroClass benchmark, which contains several hundreds of small C programs, written by
students as homework assignments in a freshmen class. Although the IntroClass benchmark
only contains small programs, its unique feature is that it includes the two high-coverage
test suites: black-box test suite generated by the course instructor, and white-box test suite
generated by the automated test generation tool KLEE (Cadar et al. 2008). This feature
makes it suitable for assessing overfitting in automated program repair; one test suite can
be used for repair, and the remaining test suite can be used for assessing the quality of
generated patches. Recently, Codeflaws was proposed as another benchmark for assessing
automatic repair techniques following the spirit of the IntroClass benchmark. Codeflaws
contains 3,902 defects from 7,436 small programs from programming contests hosted by
Codeforces,8 each of which contains two independent test suites.

Empirical Studies on Program Repair The rapid growth of program repair techniques
has motivated empirical studies that compare and reveal strengths and weaknesses of dif-
ferent repair techniques. Qi et al. (2015) introduce the idea of a plausible versus correct
patch, manually evaluating patches produced by previous heuristic techniques to highlight
the risks that test cases pose when guiding repair search. The previous study that is closest
to our work is by Smith et al. (2015), empirically and systematically studying the overfitting
issue for heuristic repair techniques, including GenProg and RSRepair. Our study comple-
ments this previous study, in that we investigate the overfitting issue in the semantics-based
repair family. Long and Rinard (2016a) study the search space to find repair of the heuris-
tic approaches, showing that the search space is often large and correct repair sparsely
occur within the search space. Le et al. (2016b) empirically study the effectiveness of many

8http://codeforces.com/

http://codeforces.com/

3030 Empir Software Eng (2018) 23:3007–3033

synthesis engines when employed for semantics-based program repair, suggesting that many
synthesis engines could be combined or used at the same time to enhance the ability of
semantics-based repair to generate correct repairs. We leverage the technique from Le et al.
(2016b) to use multiple SyGuS engines in the context of a semantics-based repair approach.

Overfitting or manual annotation are not the only measure by which patch quality may
be assessed. In proposing Angelix, Mechtaev et al. (2016) assess functionality deletion as
a proxy for quality. Le Goues et al. (2012) evaluate generated patches in a case study con-
text, quantitatively assessing their impact in a closed-loop system for detection and repair
of security vulnerabilities. Kim et al. (2013) assess relative acceptability of patches gener-
ated by a novel technique via a human study. Fry et al. (2012) conduct a human study of
patch maintainability, finding that generated patches can often be as maintainable as human
patches. While overfitting as measured by high-quality test suites provide one signal about
patch quality, human acceptability and real-world impact are also important considerations,
if not more so, and should also be considered in characterizing the pragmatic utility of novel
APR techniques.

6 Conclusions

Recent years have seen a proliferation of automated program repair techniques (APR),
including heuristic and semantics-based APR, each with different strengths and weaknesses.
Although the techniques have successfully tackled some of the main issues in APR (e.g.,
scalability), one special concern that still remains unaddressed is patch quality. The quality
of patches generated by these APR techniques is not always assured, partly but not entirely
due to the inadequacy of test suites in practice.

In this work, we perform the first study on overfitting issue in semantics-based APR.
We show that semantics-based APR techniques do indeed produce patches that overfit.
We further study the nature behind the overfitting in semantics-based APR by assessing
the relationships between test suite coverage and provenance, number of failing tests, and
semantics-specific tool settings and overfitting. Particularly, we find that in some cases
results are consistent with those found for heuristic approaches, while in other cases results
are interestingly inconsistent. We also present several case studies of overfitting patches
produced by semantics-based APR techniques, with implications and observations for how
to improve them. For example, we observe that one possible source for overfitting in
semantics-based APR could be due to the “conservativeness” of the underlying synthesis
engine, that returns the first solution found (without consideration of alternatives). Also, to
mitigate overfitting in semantics-based APR, we substantiate that using multiple synthesis
engines could be one possible approach, as mentioned in Le (2016). In the future, we plan to
develop a synthesis technique that can combine the strengths of many synthesis techniques
to help semantics-based APR overcome the overfitting issue. We also plan to develop a
specification inference technique, e.g., specification mining techniques such as SpecForce
(Le et al. 2015a), that can infer a stronger specifications to help better capture the semantics
of the program under repair. Another future direction is to use machine learning techniques
to automatically classify defect types, e.g., Thung et al. (2015), which could help deal with
each bug type more effectively.

Acknowledgements We thank the authors of Angelix for making the tool publicly available. We also thank
the authors of CVC4 and Enumerative synthesis engines for making these engines accessible.

Empir Software Eng (2018) 23:3007–3033 3031

References

Abreu R, Zoeteweij P, Van Gemund AJ (2007) On the accuracy of spectrum-based fault localization.
In: Testing: academic and industrial conference practice and research techniques-MUTATION, 2007.
TAICPART-MUTATION 2007. IEEE, pp 89–98

Alur R, Bodik R, Juniwal G, Martin MM, Raghothaman M, Seshia SA, Singh R, Solar-Lezama A, Torlak E,
Udupa A (2015) Syntax-guided synthesis. Dependable Software Systems Engineering 40:1–25

Cadar C, Dunbar D, Engler DR et al (2008) Klee: unassisted and automatic generation of high-coverage tests
for complex systems programs. In: Operating systems design and implementation, OSDI, pp 209–224

DeMarco F, Xuan J, Le Berre D, Monperrus M (2014) Automatic repair of buggy if conditions and missing
preconditions with SMT. In: Proceedings of the 6th international workshop on constraints in software
testing, verification, and analysis, pp 30–39

Fry ZP, Landau B, Weimer W (2012) A human study of patch maintainability. In: International symposium
on software testing and analysis (ISSTA), pp 177–187

Gulwani S, Esparza J, Grumberg O, Sickert S (2016) Programming by examples (and its applications in data
wrangling). Verification and synthesis of correct and secure systems

Jha S, Gulwani S, Seshia SA, Tiwari A (2010) Oracle-guided component-based program synthesis. In: Pro-
ceedings of the 32nd ACM/IEEE international conference on software engineering, ICSE, pp 215–224

Just R, Jalali D, Ernst MD (2014) Defects4j: a database of existing faults to enable controlled testing studies
for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis,
ISSTA, pp 437–440

Ke Y, Stolee KT, Le Goues C, Brun Y (2015) Repairing programs with semantic code search. In: Proceedings
of the 30th IEEE/ACM international conference on automated software engineering, pp 295–306

Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written patches. In:
ACM/IEEE international conference on software engineering, ICSE, pp 802–811

Könighofer R, Bloem R (2011) Automated error localization and correction for imperative programs. In:
Formal methods in computer-aided design, IEEE, FMCAD, pp 91–100

Könighofer R, Bloem R (2012) Repair with on-the-fly program analysis. In: Haifa verification conference.
Springer, pp 56–71

Le XBD (2016) Towards efficient and effective automatic program repair. In: International conference on
automated software engineering (ASE). IEEE, pp 876–879

Le TDB, Le XBD, Lo D, Beschastnikh I (2015a) Synergizing specification miners through model fissions
and fusions. In: International conference on automated software engineering (ASE). IEEE, pp 115–125

Le XBD, Le TDB, Lo D (2015b) Should fixing these failures be delegated to automated program repair? In:
International symposium on software reliability engineering (ISSRE). IEEE, pp 427–437

Le XBD, Le QL, Lo D, Le Goues C (2016a) Enhancing automated program repair with deductive verification.
In: International conference on software maintenance and evolution (ICSME). IEEE, pp 428–432

Le XBD, Lo D, Le Goues C (2016b) Empirical study on synthesis engines for semantics-based program
repair. In: International conference on software maintenance and evolution (ICSME). IEEE, pp 423–427

Le XBD, Lo D, Le Goues C (2016c) History driven program repair. In: Proceedings of the 23rd IEEE
international conference on software analysis, evolution, and reengineering, SANER, pp 213–224

Le XBD, Chu DH, David L, Le Goues C (2017a) Jfix: sematics-based repair of java programs via symbolic
pathfinder. In: Proceedings of the 2017 ACM international symposium on software testing and analysis,
ISSTA

Le XBD, Chu DH, Lo D, Le Goues C, Visser W (2017b) S3: syntax-and semantic-guided repair synthesis
via programming by examples. In: Joint meeting of the european software engineering conference and
the ACM SIGSOFT symposium on the foundations of software engineering. ACM, pp 593–604

Le Goues C, Dewey-Vogt M, Forrest S, Weimer W (2012) A systematic study of automated program repair:
fixing 55 out of 105 bugs for $8 each. In: 2012 34th international conference on software engineering
(ICSE). IEEE, pp 3–13

Le Goues C, Nguyen T, Forrest S, Weimer W (2012) Genprog: a generic method for automatic software
repair. IEEE Trans Softw Eng 38(1):54–72

Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W (2015) The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Trans Softw Eng 41(12):1236–1256

Logozzo F, Ball T (2012) Modular and verified automatic program repair. SIGPLAN Not 47(10):133–146
Long F, Rinard M (2015) Staged program repair with condition synthesis. In: Joint meeting of the european

software engineering conference and the ACM SIGSOFT symposium on the foundations of software
engineering. ACM, pp 166–178

3032 Empir Software Eng (2018) 23:3007–3033

Long F, Rinard M (2016a) An analysis of the search spaces for generate and validate patch generation
systems. In: Proceedings of the 38th international conference on software engineering. ACM, pp 702–
713

Long F, Rinard M (2016b) Automatic patch generation by learning correct code. In: ACM SIGPLAN notices,
vol 51. ACM, pp 298–312

Martinez M, Monperrus M (2015) Mining software repair models for reasoning on the search space of
automated program fixing. Empir Softw Eng 20(1):176–205

Mechtaev S, Yi J, Roychoudhury A (2015) Directfix: Looking for simple program repairs. In: Proceedings
of the 37th ACM/IEEE international conference on software engineering, ICSE, pp 448–458

Mechtaev S, Yi J, Roychoudhury A (2016) Angelix: scalable multiline program patch synthesis via sym-
bolic analysis. In: Proceedings of the 38th ACM/IEEE international conference on software engineering,
ICSE, pp 691–701

Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) Semfix: Program repair via semantic analysis. In:
Proceedings of the 2013 international conference on software engineering, ICSE, pp 772–781

Qi Y, Mao X, Lei Y, Dai Z, Wang C (2014) The strength of random search on automated program repair. In:
Proceedings of the 36th international conference on software engineering, ACM, ICSE, pp 254–265

Qi Z, Long F, Achour S, Rinard M (2015) An analysis of patch plausibility and correctness for generate-
and-validate patch generation systems. In: Proceedings of the 2015 international symposium on software
testing and analysis, ISSTA, pp 24–36

Reynolds A, Deters M, Kuncak V, Tinelli C, Barrett C (2015) Counterexample-guided quantifier instantiation
for synthesis in SMT. In: International conference on computer aided verification. Springer, pp 198–216

Smith EK, Barr ET, Le Goues C, Brun Y (2015) Is the cure worse than the disease? Overfitting in auto-
mated program repair. In: Joint meeting of the european software engineering conference and the ACM
SIGSOFT symposium on the foundations of software engineering, ACM, ESEC/FSE, pp 532–543

Tan SH, Yi J, Yulis, Mechtaev S, Roychoudhury A (2017) Codeflaws: a programming competition
benchmark for evaluating automated program repair tools. In: ICSE Poster, to appear

Tassey G (2002) The economic impacts of inadequate infrastructure for software testing. National Institute
of Standards and Technology, RTI project 7007(011)

Thung F, Le XBD, Lo D (2015) Active semi-supervised defect categorization. In: International conference
on program comprehension (ICPC). IEEE Press, pp 60–70

Weimer W, Forrest S, Le Goues C, Nguyen T (2010) Automatic program repair with evolutionary
computation. Commun ACM 53(5):109–116

Weimer W, Fry ZP, Forrest S (2013) Leveraging program equivalence for adaptive program repair: models
and first results. In: Proceedings of the 28th international conference on automated software engineering,
IEEE, ASE, pp 356–366

Xuan J, Martinez M, DeMarco F, Clément M, Lamelas S, Durieux T, Le Berre D, Monperrus M (2016)
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE Trans Softw Eng
https://doi.org/10.1109/TSE.2016.2560811. https://hal.archives-ouvertes.fr/hal-01285008/document

Xuan Bach D. Le is PhD students at Singapore Management University since 2014 and 2013, respectively.

https://doi.org/10.1109/TSE.2016.2560811
https://hal.archives-ouvertes.fr/hal-01285008/document

Empir Software Eng (2018) 23:3007–3033 3033

Ferdian Thung is PhD students at Singapore Management University since 2014 and 2013, respectively.

David Lo is associate professor at SingaporeManagement University, received PhD fromNational University
of Singapore in 2007.

Claire Le Goues is assistant professor at Carnegie Mellon University, received PhD from the University of
Virginia.

	Overfitting in semantics-based automated program repair
	Abstract
	Introduction
	Semantics-Based APR
	Specification Inference via Selective Symbolic Execution
	Generating Repairs via Synthesis and Partial MaxSMT Solving
	Component-Based Synthesis
	Partial MaxSMT for Minimal Repair

	Tunable Parameters in Angelix
	Suspicious Location Group Size
	Number of Tests used for Specification Inference
	Synthesis Level
	Defect Classes

	SemFix: Program Repair via Semantic Analysis
	Syntax-Guided Synthesis for Semantics-Based Program Repair

	Empirical Evaluation
	Experimental Data
	IntroClass
	Codeflaws

	Baseline Patching and Overfitting
	Research Question 1
	IntroClass
	Codeflaws
	Research Question 2
	Results
	Research Question 3
	Results

	Training Test Suite Features
	Research Question 4
	Results
	Research Question 5
	Results
	Research Question 6
	Results

	Tunable Technique Parameters
	Research Question 7
	IntroClass Results
	Codeflaws Results
	Research Question 8
	Results

	Examples from the IntroClass Dataset
	Qualitative Study on Real-World Bugs

	Threats to Validity
	Related Work
	Program Repair
	Dataset
	Empirical Studies on Program Repair

	Conclusions
	Acknowledgements
	References

