
Overfitting in Semantics-based Automated Program Repair

Xuan-Bach D. Le
Singapore Management University

dxb.le.2013@phdis.smu.edu.sg

Ferdian Thung
Singapore Management University

ferdiant.2013@phdis.smu.edu.sg

David Lo
Singapore Management University

davidlo@smu.edu.sg

Claire Le Goues
Carnegie Mellon University

clegoues@cs.cmu.edu

ABSTRACT

Existing APR techniques can be generally divided into two families:

semantics- vs. heuristics-based. Semantics-basedAPR uses symbolic

execution and test suites to extract semantic constraints, and uses

program synthesis to synthesize repairs that satisfy the extracted

constraints. Heuristic-based APR generates large populations of

repair candidates via source manipulation, and searches for the best

among them. Both families largely rely on a primary assumption

that a program is correctly patched if the generated patch leads the

program to pass all provided test cases. Patch correctness is thus

an especially pressing concern. A repair technique may generate

overfitting patches, which lead a program to pass all existing test

cases, but fails to generalize beyond them. In this work, we revisit

the overfitting problem with a focus on semantics-based APR tech-

niques, complementing previous studies of the overfitting problem

in heuristics-based APR. We perform our study using IntroClass

and Codeflaws benchmarks, two datasets well-suited for assessing

repair quality, to systematically characterize and understand the

nature of overfitting in semantics-based APR. We find that similar

to heuristics-based APR, overfitting also occurs in semantics-based

APR in various different ways.

KEYWORDS

Automated Program Repair, Program Synthesis, Symbolic Execu-

tion, Patch Overfitting

ACM Reference Format:

Xuan-Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018.

Overfitting in Semantics-based Automated Program Repair. In ICSE ’18:

ICSE ’18: 40th International Conference on Software Engineering , May 27-

June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 1 page. https:

//doi.org/10.1145/3180155.3182536

1 INTRODUCTION

In this article, we comprehensively study overfitting in semantics-

based APR. We perform our study on recent state-of-the-art se-

mantics based APR tools [1, 2, 4]. We evaluate the techniques on

a subset of the IntroClass [3] and Codeflaws benchmarks [5], two

datasets well-suited for assessing repair quality in APR research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5638-1/18/05.
https://doi.org/10.1145/3180155.3182536

Both consist of many small defective programs, each of which is

associated with two independent test suites. One test suite can be

used to guide the repair, and the other is used to assess the degree

to which the produced repair generalizes. This allows for controlled

experimentation relating various test suite and program properties

to repairability and generated patch question.

Overall, we show that overfitting does indeed occur with seman-

tics based techniques. We characterize the relationship between

various factors of interest, such as test suite coverage and prove-

nance, and resulting patch quality. We observe certain relationships

that appear consistent with results observed for heuristic tech-

niques, as well as results that stand counter to those achieved on

them. These results complement the existing literature on overfit-

ting in heuristic APR, completing the picture on overfitting in APR

in general. This is especially important to help future researchers

of semantics-based APR to overcome the limitations of test suite

guidance. We argue especially (with evidence) that semantics-based

program repair should seek stronger or alternative program syn-

thesis techniques to help mitigate overfitting.

Our contributions are as follows:

(1) The first study to show that semantics-based APR can produce

patches that overfit.

(2) We find that, in some cases, results are interestingly inconsistent

with that of heuristic approaches.

(3) We substantiate that using multiple synthesis engines could be

one possible approach to help semantics-based APR generate

correct patches for a larger number of bugs.

(4) We present implications and observations for how to improve

semantics APR. For example, one possible improvement is to

generate many patches and rank them based on potential likely-

hood of correctness.

REFERENCES

[1] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. JFIX: semantics-based repair of Java programs via symbolic PathFinder. In
ISSTA. 376–379.

[2] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. Empirical Study on
Synthesis Engines for Semantics-Based Program Repair. In ICSME. 423–427.

[3] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar T.
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass Benchmarks for Automated Repair of C Programs. IEEE Trans. Software
Eng. (2015), 1236–1256.

[4] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: scalable
multiline program patch synthesis via symbolic analysis. In ICSE. 691–701.

[5] Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, and Abhik Roychoudhury.
2017. Codeflaws: a programming competition benchmark for evaluating automated
program repair tools. In ICSE. 180–182.

163

2018 ACM/IEEE 40th International Conference on Software Engineering


