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Abstract—Bug datasets are vital for enabling deep learning
techniques to address software maintenance tasks related to
bugs. However, existing bug datasets suffer from precise and
scale limitations: they are either small-scale but precise with
manual validation or large-scale but imprecise with simple
commit message processing. In this paper, we introduce Precise-
BugCollector, a precise, multi-language bug collection approach
that overcomes these two limitations. PreciseBugCollector is
based on two novel components: a) A bug tracker to map the
codebase repositories with external bug repositories to trace
bug type information, and b) A bug injector to generate project-
specific bugs by injecting noise into the correct codebases and
then executing them against their test suites to obtain test
failure messages.

We implement PreciseBugCollector against three sources: 1)
A bug tracker that links to the national vulnerability data set
(NVD) to collect general-wise vulnerabilities, 2) A bug tracker
that links to OSS-Fuzz to collect general-wise bugs, and 3) A
bug injector based on 16 injection rules to generate project-wise
bugs. To date, PreciseBugCollector comprises 1 057 818 bugs
extracted from 2 968 open-source projects. Of these, 12 602 bugs
are sourced from bug repositories (NVD and OSS-Fuzz), while
the remaining 1 045 216 project-specific bugs are generated
by the bug injector. Considering the challenge objectives, we
argue that a bug injection approach is highly valuable for the
industrial setting, since project-specific bugs align with domain
knowledge, share the same codebase, and adhere to the coding
style employed in industrial projects.

Index Terms—Bug datasets, Program repair, Software testing
and debugging

I. INTRODUCTION

A precise bug dataset plays a crucial role in various
software tasks, including bug detection [20, 21], fault lo-
calization [22, 23, 24, 25], pattern mining [26, 27, 28, 29],
automated program repair for patch generation [30, 31,
32, 33, 34], and patch assessment [35, 36, 37, 38]. Current
bug datasets can be categorized into two main types. The
first type involves human curation, resulting in carefully
processed but small-scale datasets, such as ManyBugs and
IntroClass [2], Defects4J [1] and QuixBugs [39]. All of these
datasets contain fewer than 1 000 bugs each. On the other
hand, the second type comprises large-scale datasets mined
from code repositories, such as ManySStubBs4J [13], which
processes commit messages or issues with text processing.
However, this approach tends to be imprecise in identifying

bugs or classifying their types, relying on simple keyword
comparison. Despite this loss of precision, crawling histor-
ical bug-fix commits from open-source projects remains a
widely used approach to collect training bug-fix data in
both academic [16, 40] and industry [41, 42], due to the
ease with which it can construct large-scale datasets.

There are several key challenges to collecting a truly
useful, precise bug dataset:

• Problem 1 - Data quality and scalability: Manual
collection ensures the quality of the dataset but does
not scale. Automatic collection with keyword matching
on commits is scalable, but imprecise [43].

• Problem 2 - Language diversity: Most datasets consist
only of a single language, limiting their usability and
posing a threat to the external validity of software tasks.

• Problem 3 - Lack of metadata: The most common
metadata provided by the dataset per bug is a commit
ID or commit message. Important information such as
the type of bug, the severity of the bug, and the date
of discovery is missing.

• Problem 4 - Lack of tests: Only a handful of bug
datasets provide test cases for the exposed bug. This
challenges both bug reproduction, and validating bug
fixes beyond the one provided by the developer.

In this paper, we introduce the PreciseBugCollector, a
novel approach to tackle the imprecision problem in bug
dataset creation. Our approach offers a curated collection of
software defects, providing not only accurate bug type clas-
sification but also meta information to describe the bug, in-
cluding original buggy code, fix code, precise location, error
type, and available executable/reproducible test cases. We
denote this information as < bug , f i x, l oc, t y pe, (test ) >. 1

The PreciseBugCollector is based on two components:
bug tracker for general bug collection, and bug injection
for project-specific bug generation. The bug tracker focuses
on extracting bug-fix commits, leveraging available code
repositories (e.g., GitHub, Bitbucket, Gitlab, SVN) and ex-
ternal bug repositories (e.g., OSS-Fuzz, Jira, Apache Bug Re-
port). The code repositories provide the exact source code

1Not all the bug-fix data contains executable test cases.
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TABLE I: Bug Dataset in the Literature.

Bug Dataset Publish Venue Publish Year Languages Type Tests Source # Bugs

Defects4J [1] ISSTA 2014 Java ✓ ✓ commits+text processing 835

ManyBugs [2] TSE 2015 C ✓ ✓ commits+text processing 185

IntroClass [2] TSE 2015 C ✓ ✓ student assignments 998

CodeFlaw [3] ICSE-Companion 2017 C ✓ ✓ contest 3902

QuixBugs [4] SPLASH-Companion 2017 Java/Python ✓ ✓ contest 40

CodRep [5] Arxiv 2018 Java ✗ ✗ commits+text processing 58 069

PatchPaser [6] ICSME 2018 Java ✓ ✗ commits+text processing 16 450

Bears [7] SANER 2019 Java ✓ ✓ commits+CI 251

BugsJS [8] ICST 2019 JavaScript ✓ ✓ commits+text processing 453

Bugswarm [9] ICSE 2019 Java/Python ✓ ✓ commits+CI 3 091

Defexts [10] ICSE-Companion 2019 Kotlin/Groovy ✓ ✓ commits+text processing 526

Refactory [11] ASE 2019 Python ✓ ✓ student assignments 1783

BugsInPy [12] FSE 2020 Python ✓ ✓ commits+text processing 493

ManySStuBs4J [13] MSR 2020 Java ✓ ✗ commits+text processing 153 652

CODIT’s dataset [14] TSE 2020 Java ✗ ✗ commits+CI 32 473

CodeBERT’s dataset [15] EMNLP 2020 Java/Python/Ruby/JavaScript/Go ✗ ✗ commits+text processing 2 millions

CoCoNuT’s dataset [16] ISSTA 2020 Java/Python/C/JavaScript ✗ ✗ commits+text processing 23 millions

Megadiff [17] Arxiv 2021 Java ✗ ✗ commits+text processing 663 029

Vul4J [18] MSR 2022 Java ✓ ✓ commits+text processing 79

FixJS [19] MSR 2022 JavaScript ✗ ✗ commits+text processing 300 000

changes made to address bugs, while the bug repositories
offer detailed metadata about each bug. However, simply
considering each repository in isolation is incomplete. Code
repositories contain source code changes but lack clear bug
metadata; bug repositories do not always include informa-
tion about the exact source code changes. Therefore, we
devise a method to merge these two sources, combining
the advantages of both.

Bug injection automatically generates artificial unseen
bugs, each of which is specified by an existing test suite
with at least one failing test that exposes the bug. To initiate
the bug generation process, we begin with code extracted
from various projects, ensuring that all existing tests pass
successfully. The code noising tool is then employed to
deliberately introduce changes into this code, simulating
bug injection. It is essential to acknowledge that not all the
injected code is genuinely buggy as some changes might be
benign; we use the original passing tests to identify mean-
ingful injected faults. The test failure diagnosis obtained via
this validation process precisely identifies the type of bug
introduced.

Considering the challenge objective, we consider bugs
from both the bug tracker and bug injection components to
be beneficial for industrial settings. The bug tracker ensures
that we have access to a diverse range of bug fixes from
real-world projects, making the dataset more representative.
Bug injection allows us to have project-specific bugs that
are difficult to learn from a general dataset, and tailored for
industrial settings.

The two bug tracking sources that we use for the

bug tracker are: the National Vulnerability Dataset (NVD)
2 and OSS-Fuzz 3. NVD is a repository of vulnerability
management data represented using the Security Content
Automation Protocol (SCAP); it includes databases of secu-
rity checklist references, software flaws, misconfigurations,
product names, and impact metrics. OSS-Fuzz, provided
by Google, is an open source continuous fuzzing service.
It uses random inputs (fuzzed data) to discover potential
vulnerabilities, bugs, or crashes. OSS-Fuzz is specifically
designed to identify security vulnerabilities and defects in
open-source projects. We implement the bug injector with
16 single-statement injection rules from previous work [44].

In the end, to date, the PreciseBugCollector collected a
total of 1 057 818 bugs from 2 968 open-source projects. We
name this dataset PreciseBugs. Out of these, 12 602 bugs
are contributed by the bug tracker (NVD and OSS-Fuzz),
while 1 045 216 bugs are generated by the bug injector. To
our knowledge, this is the largest executable bug dataset
with precise bug information compared with related work.

To sum up, we make the following contributions:

• We introduce PreciseBugCollector for collecting a pre-
cise bug dataset to collect general-wise real-world bug-
fix data and project-specific bug-fix data.

• We present a comprehensive dataset named
PreciseBugs, which includes 1 057 818 bugs
based on 2 968 open-source projects across more than
six programming languages.

2https://nvd.nist.gov/vuln
3https://google.github.io/oss-fuzz
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• We make our dataset readily accessible and openly
available to the community through the link:
https://github.com/SophieHYe/PreciseBugs.

II. BACKGROUND

In this section, we give background on bug-fix datasets
in the program repair literature. Table I presents a sum-
mary of 20 extensively utilized bug-fix datasets. These bug-
fix dataset collection approaches (found in the seventh
column of Table I) consists primarily of four commonly
used methods. We explain them according to the collection
approaches in the following.

Commits+Text Processing: Most datasets use commit
mining and filtering against specific keywords (e.g., BugsJS
[8]) to approximate bug-fix commits. Commonly used key-
words include “fix” and “bug".

Commits+Continuous Integration (CI): Another
approach uses continuous integration (CI) infrastructure
for bug collection, as observed in projects such as Bears [7]
and Bugswarm [9]. This method revolves around checking
the CI status of two consecutive commits. When the first
commit fails but the second one passes, it is considered
a bug-fix pair. One of the advantages of this approach
is gaining additional insights into the failing tests that
triggered the CI build failure, and thus the bug.

Programming Contests: This category of research in-
volves collecting bug-fix commits from contests or pro-
gramming competitions, as demonstrated by projects such
as CodeFlaw [3] and QuixBugs [4]. In programming con-
tests, developers are presented with a problem description
and test case specifications, which facilitates bug-fix col-
lection encompassing both bug types and corresponding
failing tests. The bug-fix commits are obtained by analyzing
users’ submission histories and identifying two submissions
where the first submission fails and the second one is
accepted. However, this approach is limited by the scarcity
of available contests and the relatively low participation of
developers.

Student Assignment Submissions: This group of ap-
proaches identifies and collects bug-fix commits from stu-
dent submissions in introductory programming courses,
exemplified by projects like IntroClass [2] and Refactor [11].
The process of collecting bug-fix commits in this context is
similar to that for programming contests, analyzing student
submission history. However, it is important to note that
this approach is limited to collecting bug-fix commits from
relatively small programs, typical of introductory program-
ming assignments.

By considering different data collection approaches, we
make the following implications.

Problem 1 - Data quality and scalability: It becomes
evident that manual validation for bug-fix collection is not
scalable. While manual validation ensures the quality of the
collected bugs by including precise bug types and regres-
sion test cases, it requires extensive and laborious efforts
in committing searches, data cleaning, and execution. As

a result, manual bug collection is impractical for collecting
large-scale datasets. For instance, even widely-used datasets
like Defects4J [1] and ManyBugs [2] are limited to contain-
ing fewer than a thousand bugs each. On the other hand,
most of the datasets in Table I use commits+text processing
to crawl bugs. Although this approach is scalable and can
collect millions of examples. Antoniol et al. have shown that
text classification is not enough to classify the intent of a
commit [43].

Problem 2 - Language diversity: There is a lack of
language diversity in the bug dataset. Of the 20 widely used
bug-fix datasets, the majority (15 out of 20) are focused
solely on a single programming language, leaving only 5
datasets that cater to multiple languages. This language bias
in bug datasets can limit the generalizability of research
findings and may not adequately represent the diverse
landscape of software development. Different programming
languages have unique syntax, semantics, and coding prac-
tices, leading to varying types of bugs and bug-fix patterns.
Therefore, incorporating multiple programming languages
in bug-fix datasets is crucial to enable a more comprehen-
sive understanding of bugs and their repairs across different
language ecosystems.

Problem 3 - Lack of metadata: A significant issue with
many bug datasets is the lack of sufficient metadata on the
bugs. Crucial information, such as the date of bug discovery,
bug type, commit author, and bug severity, is often missing.
This absence of metadata poses challenges in analyzing the
bug dataset beyond its initial intended use case. Proper
metadata is essential for conducting in-depth research and
understanding the characteristics of bugs, their patterns,
and the context in which they occur.

Problem 4 - Lack of tests: Only a few bug datasets come
with accompanying tests. Test cases are an indispensable
means of specifying program correctness and validating
bug-fixes. Having test cases allows researchers to verify the
correctness of bug-fixes independently from the developer
bug-fix present in the dataset. Moreover, test cases enable
various dynamic analyses on the source code, such as fault
localization-based on test coverage. Including test cases in
bug datasets enhances the overall usability and utility of
the dataset, enabling researchers to conduct more extensive
and accurate evaluations of program repair techniques.

In our PreciseBug dataset, we strive to address these four
challenges, with the ultimate goal of creating a comprehen-
sive, precise, and large-scale bug dataset. The methodology
used to construct this dataset is detailed in section III.

III. PRECISEBUGCOLLECTOR

Figure 1 gives an overview of the PreciseBugCollector
collection architecture. PreciseBugCollector consists of two
novel components: a bug tracker for general bug collection
and bug injection for project-specific bug collection.

The bug tracker creates real-world bug datasets by estab-
lishing connections between code repositories and external
bug repositories. We use GitHub as the code repository
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Code Repository
<buggy, correct, loc>

General-wise Bug-Fix
<buggy, correct, loc, type, (tests)>

Passing
Tests

Correct
Project

Failing
TestsAfter: <loc, correct, buggy>

type:
test failure
 diagnosis

Bug Tracler
General-wise Bug Collection

Bug Injection
Project-wise Bug Collection  

Bug Repository
<buggy, type, (tests)>

produces

Original:∀ <loc, correct>

Bug Injection

executes

PreciseBugs Dataset
<buggy, correct, loc, type, (tests)>

Project-wise Bug-Fix
<buggy, correct, loc, type, tests>

Fig. 1: An Overview of PreciseBugCollector.

instance, given its vast size, hosting over 28 million public
repositories [45]. For bug repositories, many external bug
repositories can be used, so long as they provide precise bug
types and providing unique bug identifications that can be
linked to code repositories (like an issue ID). Widely-used
repositories that meet these criteria include the Common
Vulnerabilities and Exposures (CVE) repository by the NVD,
OSS-Fuzz, and Apache bug repositories.

The bug injection component relies on bug injection
tools to generate a project specific bug-fix dataset. Bug
injection generates new bugs by introducing noise into code
that passes all tests in its accompanying test suite, and using
those tests to evaluate the bugginess of the modified noisy
code. The test suite not only plays a role in determining the
bugginess of the noised code but also provides essential test
failure diagnosis information, describing the bug.

A. Bug tracker: mapping code and bug repositories

PreciseBugCollector leverages external bug repositories to
acquire accurate bug type information. Given a commit
from a code repository, one can easily obtain the buggy
code and fix code and their diffs to extract the code
change locations, denoted as < bug g y, f i x, loc >. However,
as discussed in section II, it is challenging to summarize
bug types from fix commit messages. Our work introduces
a novel approach to establishing mappings between code
and bug repositories, revealing the actual bug type, and
producing < bug g y, f i x, loc, t y pe > information. More-
over, there exist bug repositories that also contain failing
tests that expose the bugs; this is crucial for buggy code
reproduction and execution [46]. Consequently, the bug
tracker may obtain the bug-fix dataset in the format of
< bug g y, f i x, l oc, t y pe, (test s) >, where the test informa-
tion is optional depending on the external bug repositories.

We use two external bug repositories: NVD and OSS-Fuzz,
both of which assign unique identifiers to vulnerabilities
and bugs (a CVE in the NVD, and unique identifiers in OSS-
Fuzz). Both NVD and OSS-Fuzz are large, with 220,748 CVE
records in the NVD, and 28,000 bugs in OSS-Fuzz. Notably,

both repositories support different programming languages,
including C/C++, Rust, Go, Python, and Java/JVM.

CVE collection-based on NVD. NVD serves as an invalu-
able resource for mining verified vulnerabilities reported
by humans. Many important and well-known vulnerabilities
are reported there, including HeartBleed (CVE-2014-01604),
Meltdown, (CVE-2017-57545), Spectr (CVE-2017-5753 and
CVE-2017-5715 6), and Log4Shell (CVE-2021-442287). Each
vulnerability reported on NVD includes essential the vulner-
ability description, its type identified by the CWE (Common
Weakness Enumeration) ID, a severity level, and references.
References often contain patches to the vulnerabilities,
providing source code before and after the vulnerability fix.
Our systematic procedure for collecting vulnerabilities from
NVD is as follows:

1) We use the NVD API 8 to download the complete vul-
nerability metadata, a total of 217 403 vulnerabilities.

2) We filter vulnerabilities by identifying external links
that lead to GitHub commits and with the Patch tag.
This narrows the vulnerabilities to 9,759.

3) We extract the fixed source code from the correspond-
ing GitHub commits. Extraction may fail due to name
changes or repositories having been removed.

After the last step, we are left with a dataset of 8487
vulnerabilities, each accompanied by its metadata and the
corresponding vulnerability fix. The decision to extract
vulnerability fixes exclusively from GitHub commits is based
on the fact that patches reported to NVD come in various
formats, making them challenging to parse. These formats
may include links to patches on patched product down-
load sites, blog websites, and bug discussions on various
platforms, among others. By focusing on GitHub commits
specifically tagged as Patch, we can mitigate noise and
ensure a more consistent and reliable dataset. Additionally,
using GitHub allows us to easily retrieve the project name
from the repository name, further enhancing accuracy.

Bugs collection-based on OSS-Fuzz. Fuzz testing [47,
48, 49] is a widely acknowledged technique for detecting
programming errors, especially critical issues like buffer
overflows. In contrast to the vulnerabilities collected in
NVD, each bug found by OSS-Fuzz provides explicit failing
tests that expose the bugs. Our systematic procedure of
collecting bugs from OSS-Fuzz is as follows:

1) We conduct an exploration of the OSS-Fuzz repository,
and retrieve open-source projects that have registered
to use the OSS-Fuzz infrastructure, resulting in a total
of 28348 bugs from 557 open source projects.

2) To obtain the bug-fixes for each project, we first filter
GitHub commit messages and search for OSS-Fuzz
identifiers. Then, we use these identifiers to query the

4https://nvd.nist.gov/vuln/detail/cve-2014-0160
5https://nvd.nist.gov/vuln/detail/CVE-2017-5754
6https://nvd.nist.gov/vuln/detail/cve-2017-5753 and https://nvd.nist.

gov/vuln/detail/cve-2017-5715
7https://nvd.nist.gov/vuln/detail/cve-2021-44228
8https://nvd.nist.gov/developers/vulnerabilities
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Step 1: Locate Bug Fix Commit: 25ad171f63 Step 2: Collect Bug Type

<buggy code, fix code, location>

<buggy code, fix code, location, bug type>

Step 3: Collect Failing Test Case 
<buggy code, fix code, location, bug type, failing tests>

Fig. 2: Running example of the bug tracker component with the external bug repository OSS-Fuzz.

TABLE II: Injection rules for bug creation.

Bug Injection Rules Description
Rule-1 modify declaring type
Rule-2 modify operator
Rule-3 modify literal
Rule-4 modify constructor
Rule-5 swap argument
Rule-6 modify boolean expression
Rule-7 modify invocation
Rule-8 compound modification
Rule-9 replace similar statement
Rule-10 move statement
Rule-11 insert statement
Rule-12 wrap statement
Rule-13 insert block
Rule-14 delete block
Rule-15 unwrap block
Rule-16 remove block

OSS-Fuzz API, which retrieves crash types per bug.
After this step, we are left with a dataset of 4025 bugs
collected from six programming languages.

3) (optional) We gather the failing tests that expose the
bugs from OSS-Fuzz. However, not all projects support
the download of failing test cases due to authorization
issues.

4) (optional) We create reproducible bugs by executing
collected failing tests against the fixed code (i.e., the
patched program) to check if they pass. We execute the
same tests against the buggy program to verify that it
indeed results in test failures.

Running Example of bug tracker with OSS-Fuzz Figure
2 illustrates the process of collecting bugs from the PHP
project using the external bug repository OSS-Fuzz. In the
initial step, we browse the PHP GitHub commits to collect
the OSS-Fuzz issue identifier. Next, we establish a link
between the GitHub code repository and the OSS-Fuzz bug
repository to identify the crash type (e.g., floating point
exception) and obtain the corresponding failing test cases.

Algorithm 1 Injection-based Bug Creation

1: Input: a correct program Cor r ectCodebase, Injection rules r ul es, test
suite test s

2: PreciseBugs ←;
3: for loc, fix in Cor r ectCodebase do
4: t y pe ← apply(rules, loc, fix)
5: er r or, t y pe ← compile(bug g y)
6: if !er r or then
7: t y pe ← execute(bug g y , test s)
8: end if
9: if t y pe then

10: PreciseBugs ← < bug g y , f i x, loc, t y pe, test s >
11: end if
12: end for
13: return PreciseBugs

Finally, we assess the executability and reproducibility of
the collected bugs by separately executing the fix code and
buggy code against the test cases.

B. Bug Injection: Creating Project-specific Bugs

Bug injection involves deliberately introducing faults into
a stable codebase and is widely used to test software
reliability and dependability [50, 51]. Bug injection is heavily
used in mutation testing to test the strength of existing test
suites [52], as well as to test bug finding tools [53, 54, 55].
Recent work in automatic program repair with machine
learning also uses bug injection to create training data to
train deep learning program repair models [56, 57].

We adopt this approach to generate project-specific
bugs by intentionally corrupting the correct codebase
and execute injected bugs against existing test suites to
collect precise bug type from compiler and test failure
diagnosis. Project-specific bugs hold significant value in
the industrial context, particularly for companies working
on projects that require domain-specific knowledge and
adhere to unique coding styles. These specialized bugs are
challenging to learn from general-purpose datasets.
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TABLE III: An overview of bug-fix data collected by PreciseBugCollector.

Languages NVD-based Vulnerabilities OSS-Fuzz-based Bugs Injection-based Bugs Summary

#projects #behavior bugs #projects #behavior bugs #projects #compilation bugs #behavior bugs #projects #bugs

C 419 2559 12 1604 1 1735 637 424 6 535

C++ 117 617 53 2439 - - - 151 3056

Python 291 468 3 3 3 4372 753 292 1224

Java 199 309 10 48 17 631 015 409 230 213 1 040 602

Go 189 323 9 15 - - - 195 338

Rust 28 38 5 6 - - - 30 44

PHP 597 1846 - - - - - 597 1846

Others 1065 4173 - - - - - 1065 4173

All 2905 8487 79 4115 21 637 122 410 620 2 968 1 057 818

Input and Output. Algorithm 1 illustrates the bug injec-
tion process. Bug injection takes a "correct" project code-
base and its corresponding tests as input, where "correct"
means that the considered project passes all test cases.
For every statement present in the project codebase, bug
injection introduces noise to that statement with the aim
of changing the program’s execution behavior (see line 3
in Algorithm 1). The original test suite is then utilized to
assess whether the injected code’s behavior has changed by
yielding at least one failing test.

We first attempt to compile noised code. If any compi-
lation error message is produced, this injected noisy code
is deemed to cause a compilation error (line 5). Otherwise,
the noisy code is further executed against the test suite to
determine whether it causes a behavioral bug (line 6 and
line 7). If any tests fail, a test failure diagnosis is performed
(line 9 and line 10). Otherwise, it is discarded.

Injection Rules. We employ abstract syntax tree (AST)-
based 16 bug injection rules from prior work [44]. Table II
details the rules, which cover different granularities of code
transformation, such as type, operation, literal, valuables,
expression, statement, and block. Note that these injection
rules provide more diverse code transformation rules than
existing works that mostly focus on operators and variables
[58, 59, 60, 56].

C. Comparison of Collected Bugs

TABLE IV: Comparisons of different sources considered by
PreciseBugCollector.

Sources Compilation
Bug

Behavior
Bug

Fix Location Type
Failing Tests

New Existing

CVE collection-based
on NVD ✗ ✓ ✓ ✓ ✓ ✗ ✗

Bugs collection-based
on OSS-Fuzz ✗ ✓ ✓ ✓ ✓ ✓ ✗

Bugs based
on Injection ✓ ✓ ✓ ✓ ✓ ✗ ✓

Table IV provides a comparison of the three considered
bug collection approaches. All three approaches gather bug
information in the format of < bug , f i x, locati on, t y pe >.

Both bug tracker with OSS-Fuzz and bug injection ap-
proaches can collect reproducible bugs along with their
corresponding failing tests. However, the failing tests from
OSS-Fuzz include additional new test cases that go beyond
the existing test suite. Failing tests from the bug injection
are the existing test cases in the test suite that were
originally passed before the bug injection took place.

Notably, Bug injection is the only one that produces
compilation bugs, where the error type and error message
directly come from the compilers. Therefore, bug injection
is a powerful approach to constructing both compilation
and behavior bugs.

IV. EVALUATION

To evaluate the PreciseBugCollector, we propose the three
following research questions:

• RQ1: What is the effectiveness of the PreciseBugCol-
lector to construct bug-fix commits?

• RQ2: What is the distribution of bug types collected by
PreciseBugCollector?

• RQ3: What is the distribution of the time period
covered by bugs collected by PreciseBugCollector?

A. RQ1: Number of Bugs

Methodology for RQ1. We summarize the number of
bugs that PreciseBugCollector has collected. Specifically, we
analyze 1) the number of major programming languages,
2) the number of projects, and 3) the number of bugs that
PreciseBugCollector is able to cover.

Result for RQ1. Table III gives an overview of the bug-fix
data obtained by PreciseBugCollector. PreciseBugCollector
collected 8487 CVEs from 2905 projects-based on NVD
dataset, 4115 bugs from 79 projects-based on OSS-Fuzz bug
repository, and respectively 637122 compilation bugs and
410620 behavior bugs from 21 open source projects.

In total, PreciseBugCollector obtained 1 057 818 bugs
from 2 968 projects and more than six programming lan-
guages. To our knowledge, this is the largest bug-fix col-
lection with precise bug type and execution information
to date. All three are able to collect thousands of bugs,
and each of them individually collects more than the
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largest prior dataset shown in Table I. Listing 1 gives three
examples of collected bug-fix data from each approach.
Now, we discuss the implications of these results.

CVEs from NVD cover many projects. We have collected
CVEs from 2905 open source projects by tracking to NVD,
many more than the 79 and 21 projects covered by the
other two approaches. This discrepancy is primarily due to
the NVD’s establishment as one of the earliest and widely
utilized bug repositories, dating back to 2004 (whereas OSS-
Fuzz emerged in 2016).

Bug injection generates the most bugs. The bug injection
approach, while covering the fewest projects, proves to
be highly effective in generating a large number of bugs.
This is primarily attributed to the project-specific nature of
the bug injection technique, which aims to traverse every
statement in the program. However, it is worth noting that
the execution cost for the bug injection is relatively high,
which is why we restricted our experimentation to only 21
projects from three languages.

Bug injection generates various numbers of bugs for
different projects despite the same code corruption rules.
This is because the number of bugs generated relies on
the number of lines of code (LOC) and test suite size
and strength. In our experiment, the considered 17 Java
projects (e.g., Closure, JacksonDatabind, etc.) are comprise
25,000 LOC and more than 2000 test cases, meaning that
more bugs are generated compared with projects in C and
Python.

Answer to RQ1: PreciseBugCollector gathered a total
of 1,057,818 precise bugs from 2,968 open source
projects.

B. RQ2: Types of Bugs

Methodology for RQ2. In this RQ, we investigate the type
of collected bugs. Specifically, we look at unique bug types
that each component brings to PreciseBugCollector.

Result for RQ2. Figure 3 gives the top-10 bug types from
each component of PreciseBugCollector. The distribution
of bug types varies by component. This is due to the
differences among three sources: CVE types are labeled
by humans, OSS-Fuzz types are labeled by fuzzing tests,
and injection-based bug types are extracted by test failure
diagnosis.

CVE-based Types. Collected CVE bug-fix commits
contain CWE IDs, a community-developed list of software
and hardware weakness types. The most common CVE
type in PreciseBugCollector is CWE-799: Improper
Neutralization of Input During Web Page
Generation (’Cross-site Scripting’), which
accounts for 17.1% (1455/8487) of the total CVE types. The
remaining top-2 bug types are out-of-the-bounds read and
out-of-the-bounds write.

9https://cwe.mitre.org/data/definitions/79.html

366 - if(length<0xffffffff && length+index < size())

366 + if(length < size() - index)

CVE ID: CVE-2012-1584
Type: CWE-189 Numeric Errors
Loc: Before: 366, After: 366

(a) An NVD-based vulnerability collected from project
TagLib.

2859 - buf[i + 0] = - (USE_FIXED + 1)*buf[i + 0];

2859 - buf[i + 1] = (USE_FIXED + 1)*buf[i + 1];

2859 + buf[i + 0] = -(int)(USE_FIXED+1U)*buf[i + 0];

2860 + buf[i + 1] = (int)(USE_FIXED + 1U)*buf[i + 1];

OSS-Fuzz Issue ID: 57986
Type: Integer-overflow
Loc: Before: (2859,2860), After: (2859,2860)

(b) An OSS-Fuzz-based bug collected from project FFmpeg.

4493 - Collection c = r.getAnnotations();

4493 + if (r != null) {

4494 + Collection c = r.getAnnotations();

4495 + }

Failing Test: LogAxisTests:testXYAutoRange1
Type: NullPointerException
Loc: Before: 4493, After: (4493,4495)

(c) An injection-based bug collected from project
JFreeChart.

Listing 1: Examples of collected bugs from three sources.

OSS-Fuzz-based Types. For each collected OSS-Fuzz-
based bug-fix commit, a unique issue ID leads to a certain
crash type produced by fuzzing tests. The dominant bug
type from OSS-Fuzz is integer-overflow, which accounts for
19.6 (805/4115) of the total OSS-Fuzz-based collected bugs.
The remaining top-2 bug types are heap-buffer-overflow
and direct-leak, which are not included in the top 10 of
another two sources.

Injection-based Types. Each collected injection-based
bug-fix commit is accompanied by a precise error message.
Either this message comes from a compiler or a test suite
execution result. The most frequent compilation error type
from injection-based bugs is “cannot find symbols”, while
the top-2 behavior bug types are assertion failures with
concrete error messages and null pointer exceptions.

Answer to RQ2: PreciseBugCollector contains a bug-fix
dataset with diverse and precise bug types, and each
source contributes unique types of bugs.

C. RQ3: Time Period and Data Leakage

Methodology for RQ3. Large language models (LLMs) are
evaluated on many existing bug datasets [61, 62]. Yet, these
LLMs are also trained on data available prior to 2022 on
the internet, which poses a threat of data leakage [63]. We
analyze the PreciseBugCollector bug-fix dataset by year and
particularly look at the bug-fixes available as of 2022 and
2023.
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(a) NVD-based CVE Type (b) OSS-Fuzz-based Bug Type (c) Injection-based Bug Type

Fig. 3: Top-10 bug types in three considered sources by PreciseBugCollector.

TABLE V: Year distribution of collected bug-fix dataset. The
rows is valuable to avoid data leakage evaluation for LLM

models.

Year NVD-based OSS-Fuzz-based Injected-based Summary

2023 717 161 1 047 724 1 048 620

2022 1941 435 - 2376

2021 1399 521 - 1920

2020 865 413 - 1278

2019 662 495 - 1157

2018 644 1033 - 1677

2017 723 1054 - 1777

2016 520 3 - 523

≤ 2015 1016 - - 1016

Result for RQ3. Table V summarizes the bug-fixes mined
by PreciseBugCollector over timesince 2015. CVEs have
a broader time distribution, as it is one of the earliest
and widely used vulnerability datasets. OSS-Fuzz began in
2016, and the majority of its bugs are repaired since 2017.
Injection-based bugs by their nature are not available until
the bug is injected, therefore, all the bugs are unseen by
LLMs. Compared to related work, PreciseBugCollector pro-
vides an up-to-date bug-fix dataset. The rows highlighted
in Table V are useful to avoid data leakage in state-of-the-
art software engineering maintenance tasks (bug detection,
fault localization, program repair, etc).

Answer to RQ3: PreciseBugCollector contains valuable
bug-fixes mined from 2022 and 2023, unseen by mod-
ern LLMs. These are valuable datasets for both training
and testing to avoid data leakage.

V. RELATED WORK

A. Bug-fix Dataset

Now we present all the related work that collected a bug
dataset.

Defects4J is a collection of 835 real-world Java programs
with known software defects [1]. The bugs are curated from

well known open source projects such as Apache Lang and
Mockito.

ManyBugs and IntroClass datasets are both bug datasets
focusing on C programs [2]. ManyBugs contains 185 defects
collected from version control repositories of 9 projects.
IntroClass consists of 998 defects from student written
assignments for an introductory C programming course. All
defects are reproducible with corresponding test cases.

Codeflaws is another bug dataset focusing on C programs
[3]. It aims to fix the diversity and size problem of Many-
Bugs and IntroClass dataset. It crawls Codefroces for re-
jected submissions and finds another accepted submission
by the same user for the same programming problem.

QuixBugs is a multi-lingual bug dataset, with 40 programs
translated to Python and Java [4]. All bugs are in one line
of code, and each bug has passing and failing test cases.

CodRep is a machine learning on source code competi-
tion [64]. The goal of this competition is to find the line
number in a file to insert a given code line. All data are
extracted from real-world one line commits.

Liu et al. collected 16450 bugs to do a systematic and
fine-grained study to gain insights into tuning automatic
program repair tools [6]. The bugs are collected from 6 Java
projects using keyword matching and bug linking.

Bears is an extensible bug benchmark for program repair
tools [7]. It collects bugs in a unique way by looking at the
commit building state from continuous integration to find
potential bug-fix commits.

BugsJS is a JavaScript bug benchmark that can be used
to facilitate the research of fault localization [8]. All bugs
are extracted from the issue tracking system of the selected
popular repositories from GitHub.

BugSwarm, similar to Bears, is an extensible bug bench-
mark by mining bugs from continuous integration [9]. The
collected bugs are in two languages, Java and Python. All
bugs are reproducible within the packaged container.

Defexts is a bug benchmark dataset aiming to collect
bugs for the less popular JVM programming languages,
namely Kotlin and Groovy [10]. The bugs are collected
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through finding a commit message with keywords related
to bugs.

Hu et al. collected 1783 bugs from 5 Python programming
assignments in a Python introductory course [11]. This
dataset is then used to evaluate their tool for generating
patches for student programs.

BugsInPy is a Python bug dataset, aiming to create a
bug dataset similar to Defects4J, but for Python. 493 bugs
are collected manually identify bug-fix commits, reproduce
bugs with failing test cases and isolate the bug-fix change
from other unrelated changes.

ManySStuBs4J is a collection of 153652 single statement
bugs from 1000 popular Java projects [13]. The bugs are
curated by classifying bug-fix commits using keywords and
filtering our clear refactors. The remaining bugs are then
classified into 16 bug patterns.

Chakraborty et al. gathered 32473 patches to train and
evaluate their tree-based neural model for code editing [14].
The dataset is collected from 48 Java projects that used
TravisTorrent, have at least 50 commits, and 10 watchers
on GitHub.

Lutellier et al. collected a multi-lingual bug dataset to
train an ensemble model for program repair. The bugs are
collected by keyword matching on commits. In total, they
collected 23M samples for Java, Python, C, and JavaScript.

Megadiff is a collection of possible bug-fix commits for
Java. Megadiff is curated by keyword matching on commit
messages and filter commits that do not change Java or
changed more than 40 lines of code.

Vul4J is a dataset of reproducible Java vulnerabilities
[18]. All vulnerabilities from filtered from the Project KB
knowledge base. The filter criteria include that it is Java,
contains Java test suite, and is reproducible and isolated.

FixJS is a dataset of bug-fix commits for the JavaScript
language [19]. The dataset is constructed by matching
keywords on GitHub commits and filtering commits that
did not change JavaScript files.

PreciseBugCollector stands apart from all the previously
mentioned dataset construction approaches due to the
following distinctions. Firstly, while the aforementioned
datasets focus solely on codebases, PreciseBugCollector
takes a different approach by connecting codebases to
external bug repositories, allowing it to track precise bug in-
formation. Secondly, PreciseBugCollector includes project-
specific bugs generated by bug injector, which is not con-
sidered by any aforementioned datasets.

B. Bug Injection

Bug injection is most commonly employed in mutation
testing to assess if an existing test suite captures a small
source code change and to evaluate source code analyzing
tools. Additionally, it has been utilized to generate training
data for machine learning models focused on source code
analysis. In this section, we will explore related works that
involve creating artificial bugs.

Mutation testing has a lengthy history of altering source
code to introduce bugs and verifying if the existing test suite
detects them. For further information on mutation testing,
we direct readers to two surveys [52, 65] as there are numer-
ous studies on this subject. The main distinction between
mutation testing and PreciseBugCollector bug injection lies
in their focus. While mutation testing aims to identify bugs
that do not cause test failures, PreciseBugCollector bug
injection is employed to construct a bug dataset.

The Juliet test suite comprises over 81,000 synthetic
C/C++ and Java programs with 181 categories of inserted
faults [66]. Developed by the National Security Agency’s
Center for Assured Software (CAS), this test suite aims
to evaluate the effectiveness of software assurance tools.
However, the process by which the Juliet test suite creates
these synthetic bugs remains unclear.

Shiraishi et al. created 638 C/C++ programs with inten-
tionally injected faults [67]. These injected faults are cate-
gorized into 9 defect types. The dataset is used to evaluate
static analysis tools. However, the method employed by
Shiraishi et al. to create these bugs remains unclear.

LAVA is an automated system capable of injecting faults
into large open-source C programs [53]. The bugs are
triggered by pre-defined inputs, whereas normal inputs are
unlikely to trigger them. This system is used to evaluate
bug-finding tools. LAVA differs from PreciseBugCollector
in that it uses execution traces to insert bugs and only
incorporates out-of-bound read/write bugs. On the other
hand, PreciseBugCollector utilizes more rewrite results to
create a wider variety of bug types.

EvilCoder is another automated tool that injects vul-
nerable code [54]. It identifies potentially vulnerable code
locations and modifies them to become actually vulnerable
by utilizing data flow analysis. This tool facilitates the
systematic evaluation of bug-finding tools. EvilCoder varies
from PreciseBugCollector in that the bugs it inserts are
characterized by improperly secured data flow. In contrast,
PreciseBugCollector employs more rewrite results to create
a broader range of bug types.

Apocalypse is an automated bug injection tool based on
symbolic execution [55]. It aims to inject realistic bugs,
distinguishing itself from LAVA and EvilCoder. Apocalypse
demonstrated its ability to generate diverse, difficult, and
highly realistic bugs according to various metrics. The key
difference between PreciseBugCollector and Apocalypse lies
in the bug creation process. Apocalypse utilizes symbolic
execution, whereas PreciseBugCollector relies on rewrite
rules.

SemSeed introduced a novel method for automatically
inserting realistic bugs [60]. It employs machine learning
techniques to learn patterns and characteristics from col-
lected bug-fixing commits. The learned features are then
used to seed new bugs into existing programs. The main
distinction between PreciseBugCollector and SemSeed is in
their bug creation approach. SemSeed relies on machine
learning, while PreciseBugCollector uses rewrite rules.
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BugLab is an approach that utilizes self-supervised train-
ing for bug detection and repairs [56]. They create rewrite
rules to artificially insert bugs into programs, which serve
as training data. The rewrite rules used by BugLab include
variable swap, argument swap, operator swap, and literal
swap. The key difference between PreciseBugCollector and
BugLab is the number of rewrite rules used. BugLab does
not execute the injected bugs, therefore, no type and error
message are obtained in their approach.

DrRepair is a graph-based program repair approach
that also uses self-supervised training to generate artificial
training data [57]. It randomly deletes, inserts, or replaces
operators, punctuation, identifier, and keywords to create
bugs and record the compiler message. DrRepair is different
from PreciseBugCollector in that it focus on compiler errors
instead of bug that are exposed by the test suite.

SelfAPR is another example of using a bug injection
model to create training data for machine learning models
on program repair [44]. They use 16 rewrite rules to create
artificial bugs for training data, ensuring that all bugs
are validated against the compiler and test suite. Precise-
BugCollector’s rewrite rules are essentially derived from
SelfAPR, however, we have re-formatted them to construct
a bug dataset that includes important bug location and
error message information. On the contrary, SelfAPR largely
ignores these aspects as its goal is to focus on code change
pattern learning.

VI. CONCLUSION

We introduce a comprehensive and extensive bug-fix
collection approach named PreciseBugCollector, which en-
compasses three distinct sources for bug acquisition: CVEs
from NVD, bugs from OSS-Fuzz, and injection-based bugs.
This endeavor has resulted in a total of 1 057 818 bugs across
2 968 open source projects. Notably, this dataset stands
out as the largest bug-fix collection to date, encompassing
precise bug types and accompanying message information,
making it valuable for future software maintenance tasks,
such as bug detection, fault localization, and automated
program repair.

PreciseBugCollector offers solutions to create two types of
bug-fix datasets: a general-wise dataset composed of real-
world bug fixes made by developers, and a project-specific
dataset that incorporates domain knowledge and aligns
with the code style of the project. We believe that address-
ing the industry challenge of imprecise bug-fix datasets
requires both components to build deep learning models
that can learn broadly and in-depth. In industry settings,
where private and sensitive projects exist, having a project-
specific bug-fix dataset becomes essential to enable training
and learning from the same codebase while ensuring data
security and privacy. Furthermore, the flexibility of both
components is significant as they are extensible, allowing
for future expansion and adaptation.
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