
Is it a Bug? Understanding Physical Unit Mismatches in Robot Software

Paulo Canelas†Φ, Trenton Tabor†, John-Paul Ore‡,
Alcides FonsecaΦ, Claire Le Goues†, and Christopher S. Timperley†

Abstract— Robot software is abundant with variables that
represent real-world physical units (e.g., meters, seconds).
Operations over different units (e.g., adding meters and sec-
onds) may be incorrect and can lead to dangerous system
misbehaviors; manually detecting such mistakes is challenging.
Current software analysis techniques identify such mismatches
using dimensional analysis rules and ROS-specific assumptions
to analyze the source code. However, these are ignorant of the
fact that physical unit mismatches in robotics code are often
intentional (e.g., when operating a differential drive robot),
resulting in false positive bug reports that can impede robotics
developer trust and productivity. In this work, we study how
developers introduce physical unit mismatches by manually in-
specting 180 errors detected by the software analysis technique,
Phys. We identify three types of physical unit mismatches and
present a taxonomy of eight high-level categories of how these
errors manifest. We find that developers often make unforced
and paradigmatic physical unit mismatches through differential
drives, small angle approximations, and controls. We draw
insights on current development to inform future research to
better detect, categorize, and address meaningful physical unit
mismatches.

I. INTRODUCTION

Robot code abounds with variables that are quantified us-
ing physical units representing real-world measurements. En-
suring the consistency of computations with these variables is
critical to prevent systems from misbehaving. Physical unit
mismatches arise when developers perform incorrect oper-
ations according to dimensional analysis [2]. For instance,
adding meters with seconds is an incorrect operation.

To free developers from the burden of locating physical
unit mismatches, software analysis tools, such as PhrikyU-
nits [3], Phys [4], and SA4U [5], help detect unit mismatches
through dimensional analysis. For instance, Phys checks for
incorrect unit assignments or mismatches in the arithmetic
operation of units. Equation (1) presents the formula for
physical unit arithmetic where given the multiplication of
two variables, each in the form (ua

1 , u
b
2, ..., u

m
n), with units

(un) and their powers (um), the result is the sum of the
powers of the base units.

*This work was supported by Fundação para a Ciência e Tecnologia
(FCT) in the LASIGE Research Unit under the ref. (UIDB/00408/2020,
UIDP/00408/2020 and EXPL/CCI-COM/1306/2021 [1]), the CMU-Portugal
Dual PhD program (SFRH/BD/151469/2021), and NSF-USDA-NIFA
#2021-67021-33451. The authors would like to thank Bogdan Vasilescu
for his feedback on this work.

†School of Computer Science, Carnegie Mellon University.
{pasantos,ttabor,clegoues,ctimperl}@andrew.cmu.edu

‡North Carolina State University.jwore@ncsu.edu
ΦLASIGE, Faculdade de Ciências da Universidade de Lisboa.

{pacsantos,amfonseca}@ciencias.ulisboa.pt

Robot rotates
counter clockwise

Right Wheel
Forward

Left Wheel
Reverse ROBOT

Fig. 1: Example of a differential robot where the linear and
angular velocities control the system’s direction and speed.

l e f t v e l = msg . l i n e a r . x − msg . a n g u l a r . z ;
r i g h t v e l = −msg . l i n e a r . x − msg . a n g u l a r . z ;

Code Example 1: Physical unit mismatch of a differential
drive mobile robot that subtracts linear (m/s) and angular
velocities (rad/s).

(ua
1 , . . . , u

x
n)× (ub

1, . . . , u
y
n) = (ua+b

1 , . . . , ux+y
n) (1)

All units and their powers must be the same for all vari-
ables when performing additions, subtractions, comparisons,
and assignments. Given two variables, with units u1 and u2,
the following unit operations are considered valid.

u1 + u2 when {u1 = u2}
u1 > u2 when {u1 = u2}
u1 := u2 when {u1 = u2}

(2)

Techniques also consider extra information to help im-
prove their analysis. For example, SA4U detects unit errors in
unmanned aerial vehicles by using the execution information
of the robot to detect dimensional inconsistencies (e.g., mil-
limeters vs. meters). PhrikyUnits and Phys are built on top of
the Robot Operating System (ROS) [6] and exploit conven-
tions regarding ROS messages and their units to determine
the physical units involved in the operations. Furthermore,
they use natural language processing on variable names to
infer their unit. For instance, a variable named vel x likely
represents a velocity (with high confidence) in m/s .

When robot source code contains physical unit mis-
matches, these techniques apply their conventions and anal-
ysis rules to detect them. For instance, Code Example 1
contains a unit mismatch that calculates left and right wheel
velocities for a differential drive robot (Figure 1). For this
system, the speed of both wheels impacts the linear (m/s)

TP +

FP

A1
Categoryer

ro
r

Phys970 115 54

Data Collection & Processing

A2

Phys
Dataset

Physical Unit Mismatch Categorization
Physical Unit Mismatches

Unintentional Unforced Paradigmatic

Fig. 2: Methodology followed to study the categories of physical unit mismatches in two steps. Step 1. Executes Phys in its
dataset and collects a report of the the unit mismatches detected. Step 2. Two authors (A1 and A2) manually inspect each
file, project, and error to determine if it corresponds to a unit mismatch and the mismatch type. Finally, both authors meet
and collaboratively devise the final taxonomy.

and angular (rad/s) velocities. When encountering two op-
erations, such as those in lines 1 and 2, whose unit types are
rad/s and m/s , with the second operation having opposite

signs, we confidently identify a differential drive. Introducing
a physical unit mismatch in this system is inevitable to
perform the differential drive. We refer to intentional and
unavoidable domain unit mismatches as paradigmatical.
Despite being an intentional mismatch by the developer,
current analysis techniques raise an error when analyzing
this system. Tools such as PhrikyUnits, Phys, and SA4U
report these paradigmatical mismatches as bugs that require
the developer’s attention. The increased number of irrelevant
positive detections hinders the trust and adoption of these
analysis techniques by developers [7], [8]. Therefore, to
make these tools effective in practice, we must understand
where mismatches occur and when they are paradigmatical.

In this work, we set out to understand the categories
of physical unit mismatches in ROS software and how
these intentional unit errors manifest. Previous research
quantitatively analyzed the frequency of units, messages,
and types of arithmetic operations involved in physical unit
mismatches [9]. However, to the best of our knowledge,
qualitative studies have yet to analyze the different kinds of
mismatches and how they manifest. We fill this knowledge
gap with the following contributions:

1) A taxonomy of physical unit mismatches with detailed
description and examples from real-world scenarios;

2) A discussion of our findings and implications for future
analysis techniques to detect unit mismatches.

II. METHODOLOGY

To understand the nature of physical unit mismatches in
robot software, we address the following research question:

RQ: What types of physical unit mismatches do devel-
opers make in ROS-based robot software?

To answer this question, we used the dataset from Phys [4],
a state-of-the-art technique for detecting physical unit mis-
matches. The Phys dataset is based on 28,484 C++ unique
files found on GitHub that use standard ROS Messages
libraries (i.e., geometry msgs). These come from various
systems (e.g., ground, aerial, and underwater) for many
purposes, like control, planning, communication, and nav-
igation. Unlike the other analysis techniques, such as SA4U,
Phys is a source-code level analysis tool that detects unit
mismatches without requiring system execution or program
traces, simplifying our analysis process. Our study method-
ology, illustrated in Figure 2, consists of two steps:

1. Data Collection & Processing. We gathered 970 C++
source code files from the Phys repository,1 and instrumented
Phys to obtain the low-confidence analysis information from
the tool. Phys’ execution on its dataset yielded 115 files
with a total of 180 unit mismatches. Our dataset contains
the analyzed code along with error messages from Phys.

2. Physical Unit Mismatch Categorization. Initially, two
authors randomly selected 54 files each, half of the dataset,
and manually inspected the error message and the respective
source code. When unsure, the authors also analyzed the
surrounding context of the contents in the file. Then, each
author reviewed the descriptions from the other to prevent
bias in the classification. During this validation step, the au-
thors updated the classification on the categories of six of the
files containing errors. This review resulted in updates to the
description or categorization as true positive or false positive
for each error. A true positive occurs when we effectively
detect a unit mismatch, and false positive otherwise. Finally,
we collaboratively devised a taxonomy to group each error
considered an example of an actual unit mismatch.

Threats to Validity. We provide the limitations of our
study as follows. Firstly, our analysis may be biased towards
the inspected files from the Phys dataset. Although our anal-
ysis is based on 108 source code files, these represent real
systems mined by Phys’ authors from GitHub. Secondly, the
authors’ manual source code analysis may introduce human
error. To prevent misinterpretations, each author reviewed the
other’s files. Thirdly, this study relies on Phys for detecting
physical unit mismatches. Phys has several limitations, in-
cluding that Phys is 1) incomplete because it infers physical
units based on ROS Message libraries and variable names,
and not all variable names are useful for inferring physical
units; and, 2) unsound because it is not flow-sensitive and
does not reason about aliasing (like C++ pointers). These
limitations mean that the Phys dataset contains physical unit
mismatches that are detectable within these limitations. Any
inherent limitations or biases in Phys’ analysis can affect the
completeness of the results. Nevertheless, we do not claim
our taxonomy to be complete. This study presents the starting
point for identifying unit mismatches, and we promote future
studies to inspect and present any unidentified categories.
Finally, this study is based on ROS-based code where some
categories (e.g., message abuses) may not generalize to non-
ROS software.

1https://github.com/unl-nimbus-lab/phys/

https://github.com/unl-nimbus-lab/phys/

11 7

5

41023 7

1

Physical Unit Mismatches

Unintentional Unforced Paradigmatic

General
Programming Message Misuse Message AbuseConstant Reuse

Differential Drive

Geometry by HandControl

Small Angle
Approximation

.

Fig. 3: Mindmap of the three high-level categories of physical unit mismatches, their sub-categories respective frequency.

v t h = (d t == 0) ? 0 : d t h / d t ;
/ / . . .
odom msg . t w i s t . t w i s t . a n g u l a r . z = d t h ;

Code Example 2: A typo error from the Phys dataset where
dth (rad) is assigned to angular .z (rad/s) rather than vth
(rad/s).

III. TAXONOMY OF PHYSICAL UNIT MISMATCHES

This section presents the categories of physical unit mis-
matches we defined during our study. We provide a high-
level categorization of each mismatch as “Unintentional”,
“Unforced”, or “Paradigmatic” depending on the intuition
on whether the developer intended to perform the mismatch,
and if it is avoidable in the robotics domain. For example,
copy/paste errors or using the wrong data structure in a
way that does not provide some benefit are Unintentional
Mismatches. Mismatches indicating knowledge about the
mismatch (e.g., a comment) that are avoidable, such as a
bad practice, are classified as Unforced mismatches. Finally,
mismatches that are inherent in an algorithm or standard
operation necessary for the execution of the system are
Paradigmatic Mismatches.

We present examples of real-world physical unit mis-
matches representative of the bugs encountered on the Phys
dataset. Figure 3 presents the mindmap with the eight cate-
gories of unit mismatches and their respective frequency.

A. Unintentional Mismatches

Intuitively known as bugs, these are examples of source
code parts where developers have an incorrect knowledge
of the code’s execution or a misunderstanding of ROS con-
ventions. These are the most common motivation of analysis
tools.

General Programming. This category encompasses mis-
matches that occur as a result of general programming
mistakes. Tools such as Phys, PhrikyUnits, and SA4U are
explicitly designed to identify these mismatches. Our anal-
ysis identifies four subcategories of general programming
mistakes that lead to unintended mismatches.

a) Duplication: These mismatches occur when the
developer duplicates the same statement into a different

d i f f p o s e 2 D . x = end pose2D . x− s t a r t p o s e 2 D . x ;
d i f f p o s e 2 D . y = end pose2D . y− s t a r t p o s e 2 D . y ;
d i f f e r e n c e . l i n e a r . x = d i f f p o s e 2 D . x ;
d i f f e r e n c e . l i n e a r . y = d i f f p o s e 2 D . y ;

Code Example 3: Message misuse where the difference of
two poses (m) is assigned to a linear velocity (m/s).

program context where variables with the same names use
different units. These usually happen in if-statements where
multiple ways exist to interact with the system. By copying
and pasting code from different places without adapting it,
the developer ends up using variables and values that may
have different units in the destination, leading to a physical
unit mismatch. For example, this occurred when trying
to compare linear and angular velocities after duplicating
previous expressions in the Phys dataset.2

b) Typo: Developers typically name variables accord-
ing to their meaning (e.g., pos x, pos y, pos z). Since a given
function may contain multiple variables whose names differ
by one or two characters, a small typo easily allows devel-
opers to unwarily use the wrong variable. Code Example 2
presents a unit mismatch due to a typo. In practice, such a
mistake can cause the robot to turn aggressively, which is
especially dangerous for larger robots.

c) Assignments: Mistakes also occur when a variable
with the wrong physical units is incorrectly assigned to
a variable. This error occurs when assigning the wrong
physical quantity (e.g., Code Example 2) or when using the
wrong units for the same physical quantity (e.g., radians
vs. degrees) due to a missing or incorrect conversion. For
example, a large dth in Code Example 2 impacts the system
rotation, unexpectedly having a heavy robot sharply turning.

d) Additive Operations: These errors occur when vari-
ables with different physical units are added or subtracted,
violating the dimensional analysis rules. Such errors can
occur due to using the wrong operator (e.g., due to a typo)
or a misunderstanding of the units involved.

e) Comparison Operations: Like Additive Operators,
these errors occur when the rules of dimensional analysis
are violated as a result of comparing variables with different

2robot trajectory node.cpp#L116

https://github.com/unl-nimbus-lab/phys/blob/main/data/SDI-11911/Proyecto2/src/ekbot_ctrl/robot_trajectory_node.cpp#L116

m a x v e l o c i t y = 0 . 1 ;

i f (cmd . l i n e a r . x > m a x v e l o c i t y)
cmd . l i n e a r . x = m a x v e l o c i t y ;

/ / . . .
i f (cmd . a n g u l a r . z > m a x v e l o c i t y)

cmd . a n g u l a r . z = m a x v e l o c i t y ;

Code Example 4: max velocity is reused to represent both
linear (m/s) and angular velocities (rad/s).

physical units (e.g., =, ≤, >). For example, during our
analysis we identified a mistake within the visualization
code where linear and angular velocities were incorrectly
compared when deciding which results to plot.3

Message Misuse. Mismatches also occur within ROS when
an inappropriate message format, intended to represent a
given physical quantity, is misused to share data of a different
physical quantity. In such cases, the developer could have
used a different standard ROS message format, intended for
the physical quantity, or otherwise defined their own. Within
our dataset, most misuses occurred when using Pose, Point,
and Twist messages in lieu of one another. This behavior is
common enough to appear on robotics software forums, such
as the ROS Reddit.4

Code Example 3 shows a common message misuse mis-
take. The developer assigns the difference of two Pose
messages, each representing the robot’s position and orien-
tation, to a Twist message, meant to represent velocity and
subsequently treated it as a relative position. This quantity
would have been more appropriately represented by a Pose
message. Message misuses may not be problematic as long
as they are known and accounted for. However, they may
eventually lead to mistakes when components (e.g., written
by different developers or at a later date) rely on the format
of the messages to understand their meaning.

B. Unforced Mismatches

Unforced mismatches are made with avoidable developer
intent, possibly with lost efficiency. These can include “code
smells” or patterns considered bad practice in the robotics
domain, but they are not intuitively considered bugs. In the
Phys dataset, most instances relate to the developer saving a
few bytes or trying to manage fewer data structures.

Constant Reuse. Unit mismatches can also occur when a
single constant is intentionally used throughout a program
to represent several, distinct physical quantities. Overloading
the meaning of a given variable negatively impacts the
readability of the code, makes it harder to diagnose problems,
and creates an opportunity to easily introduce a defect (e.g.,
when the developer wants to update one meaning of the
variable but not all meanings).5

3twist marker.cpp#L65
4https://www.reddit.com/r/ROS/comments/j6deqo/
5placement wrt workspace action server.cpp#L130

odom msg . pose . pose . p o s i t i o n . z = t h ;

Code Example 5: Message abuse where a Pose message
position field (m) carries extra information, th (rad),
about the robot on a 2D plane.

For example, in Code Example 4, the developers use a
single floating point constant, max velocity, to store an offset
for both linear (v) and angular velocity (ω). While this
mismatch may be acceptable to the developer if the offsets
are coincidentally the same for both velocities, using the
same variable to represent different errors or offsets is a
bad practice. Consider the task of changing the maximum
linear velocity of this system: In a large codebase, both
linear and angular velocity comparisons and assignments
may be separated by large chunks of code. Developers may
mistakenly believe that changing the max velocity assignment
will work as intended, however, this will also impact the
maximum angular velocity. For this reason, when defining
error constants and offsets, a separate variable should be
defined for each distinct physical quantity.

Message Abuse. We define Message Abuse as using a
minority of the fields of a message incorrectly to pass
extra data. Standard messages often have fields that are not
required in a given application. A developer may choose to
store related information in these fields, avoiding the need
to send either a separate or a more complicated message.
We identify a message abuse when the developer uses the
incorrect unit in such fields consistently throughout a system.
For instance, when abusing Pose messages in a 2D plane,
developers take advantage of the z Quaternion field to transmit
an angle rad (Code Example 5). In another example from
the Phys dataset, the developer uses a Pose message to pack
angles into the quaternion field, a misuse also seen on the
official ROS Answers forum.6

Similar to Message Misuse, these mismatches can lead
to problems with component reuse without careful docu-
mentation. However, since these fields are often ignored,
problems may not surface until later development stages. If
a developer produces a new component that interact with the
current version, they may quickly introduce bugs by violating
undocumented assumptions. Furthermore, if one intends to
change the system later, it can become difficult to track which
messages follow the implicit assumption and which do not.

C. Paradigmatic Mismatches

Robot software relies on standard algorithms and tech-
niques from geometry, control, and other fields that often
contain intentional but benign dimensional analysis viola-
tions. We refer to the mismatches that inherently result
from these algorithms as paradigmatic mismatches, and
consider them essential to developing robot software. Ex-
isting analysis techniques such as Phys and SA4U treat
these mismatches in the same manner as unintentional and

6https://answers.ros.org/question/9400/

https://github.com/unl-nimbus-lab/phys/blob/main/data/twist_mux/src/twist_marker.cpp#L65
https://www.reddit.com/r/ROS/comments/j6deqo/
https://github.com/unl-nimbus-lab/phys/blob/main/data/research-camp-5/raw_navigation/raw_base_placement/ros/nodes/placement_wrt_workspace_action_server.cpp#L130
https://answers.ros.org/question/9400/

double r o b o t a t a n 2 = a t a n 2 (
r o b o t p o s e . g e t O r i g i n () . y () + s i n (r o b o t y a w) ,
r o b o t p o s e . g e t O r i g i n () . x () + cos (r o b o t y a w)

) ;

Code Example 6: A unit mismatch occuring due to manual
geometry calculations in lieu of relying on a library.

unforced mismatches, potentially hampering developer trust
in the analysis by alerting on known non-issues.

Geometry by Hand. These mismatches occur when geom-
etry calculations are written from scratch instead of using a
library. Code Example 6 illustrates such a mismatch. The
code calculates the angle and direction of a robot’s 2D
position and orientation. The unit mismatch occurs due to
the sum of the robot position with the yaw angle. Performing
geometry by hand may contain operations involving multiple
variables and sub-expressions, making them prone to errors.

Differential Drive. In a differential drive robot (e.g.,
Figure 1), one can rotate the body of the robot by combining
linear and angular velocities. When specifically working with
differential wheeled systems, combining both velocities is a
standard practice, taught in any robotics class. Nevertheless,
as this practice violates the dimensional rules, verification
techniques incorrectly raise an error during their analysis.

As previously discussed, Code Example 1 presents the
code for a mobile robot where the speeds of the left and
right wheels (rad/s) influence both the robot’s rotational
(rad/s) and straight-line (m/s) motion. When we detect
operations, such as those with unit types rad/s and m/s ,
especially when the second operation has opposite signs, it
indicates a differential drive mechanism. This code pattern
is relevant for improving analysis techniques, preventing
them from falsely detecting unit mismatches, and helping
developers focus on fixing unintentional mismatches. This
practice occurs in introductory robotics courses, as well as
across the official ROS answers page.7,8

Small Angle Approximation. There was one occurrence
of a small angle [10] approximation in the dataset. When
working with systems where compute budgets are tight, small
angle approximations are used for speedup. A variable that
contained an angle radian was used as a ratio unitless .
Since for small angles, θ ≈ sin(θ) we considered this an
example of an intentional mismatch.9

Control. As physical systems with dynamics, robot action
requires control algorithms, often with a form like:

correction(units / second) = f(error(units))

Expressions of this form are always a unit mismatch, unless
a developer chooses a function f that specifically scales the
error by 1/sec . Most frequently in this dataset, controllers

7https://answers.ros.org/question/197626/
8https://answers.ros.org/question/380434/
9virtual trajectory tracking.cpp

a n g l e e r r o r = f r o n t l e f t − f r o n t r i g h t ;
speed . a n g u l a r . z = BOUND(− 0 . 1 ,

a n g l e e r r o r * angle Kp ,
0 . 1) ;

Code Example 7: A mismatch in a P controller pattern due
to the possible assignment of an angle to an angular velocity.

were P controllers, with or without saturation, like in Code
Example 7. Similarly, we also found another example of
exotic controllers in this data which manifested the same
physical unit mismatch as the P controller.10,11

D. Analysis Limitations

We identify three limitations in analysis tools that can lead
to incorrectly reporting or failing to report unit mismatches:

Physical Unit Inference. Automatically and correctly de-
termining the physical unit behind a variable is essential
to accurately idneitfying mismatches. Phys, for example,
makes assumptions about commonly used ROS messages and
variable naming conventions to predict variable physical unit
types. However, Phys does not consider custom-created mes-
sages, which account for 15% of messages in the packages
they analyze [11]. Furthermore, developers do not always
use informative or accurate variable names (e.g., using width
to define a scaling factor when it usually used for distance).
To detect physical unit mismatches effectively, bug-finding
techniques must also be robust to poorly-named variables.

Single File Analysis. Analysis techniques, such as Phys,
only analyze single files. However, ROS-based systems rely
on the interaction between multiple nodes in multiple files.
When files are considered individually, analysis tools cannot
distinguish between incorrect message assignments (Sec-
tion III-A), messages abuses (Section III-B), and message
misuses meaning there is intent behind these mismatches.
However, the unit inconsistencies encountered in messages
abuses and misuses are consistent throughout the system, and
the interaction between different software components. If one
intends to distinguish message abuses from unintended mes-
sage assignments, it is critical to understand how message
contents are used throughout the system.

Code Execution Path Sensitivity. We detected unit mis-
matches related to the reuse of variables depending on the
mode the system is running. Code Example 8 presents
an example of this physical unit mismatch. In this case,
the developer switches between rotating and going forward
depending on the value of x forward. The physical unit
mismatch occurs due to the assignment of multiple units to
rotate and forward. However, during code execution, only
a branch is executed, and the units are consistent on either
path individually. These may be limitations of the analysis
technique itself.

10eband trajectory controller.cpp#L526
11eband local planner.cpp#L1086

https://answers.ros.org/question/197626/
https://answers.ros.org/question/380434/
https://github.com/unl-nimbus-lab/phys/blob/a5145576f1bb9239c483f2ccf0feed41efc62952/data/cws/src/hitwall/src/virtual_trajectory_tracking.cpp
https://github.com/unl-nimbus-lab/phys/blob/main/data/Husky_robot_packages/eband_local_planner/src/eband_trajectory_controller.cpp#L526
https://github.com/unl-nimbus-lab/phys/tree/main/data/Husky_robot_packages/eband_local_planner/src/eband_local_planner.cpp#L1086

f l o a t x = m. l i n e a r . x ;
f l o a t y = m. a n g u l a r . z ;

i f (x f o r w a r d) {
r o t a t e = y ;
f o r w a r d = x ;

} e l s e {
r o t a t e = x ;
f o r w a r d = y ;

}

Code Example 8: An example of a unit mismatch that is
reported due to limitations in the underlying analysis.

IV. DISCUSSION

Types of Physical Unit Mismatches. Our study identified
three types of physical unit mismatches: unintentional, unen-
forced, and paradigmatic. Despite the previous assumptions
regarding the analysis of physical unit mismatches, we found
that not all of these are unintentional. Given the studied
dataset, we detect that developers often unforcedly and
pragmatically perform physical unit mismatches. Compared
to the prior quantitative analysis [9], our qualitative work
supports the author’s findings related to the frequency of
messages (e.g., Pose and Twist) and operations involved in
unit mismatches. However, our qualitative analysis provides a
deeper understanding of how these mismatches manifest. We
determine the types of physical unit mismatches and the ways
they manifest by providing a taxonomy of unit mismatches.

For each type of unit mismatch, we saw specific cate-
gories of mismatches that arise. Unintentional mismatches
occur within two categories: when developers make general
programming mistakes and misuse messages. Unforced mis-
matches happen when a developer uses a message field to
transport extra information or reuses constant to compare
linear and angular velocities. Paradigmatic physical unit mis-
matches arise when using robot-related concepts, such as dif-
ferential drive, controls, geometry by hand, and small angle
approximations. When developers create robot software, they
purposely create these mismatches. However, introducing
these mismatches in the robotics domain is correct, and
techniques that raise errors hinder their adoption.

Improving Analysis Techniques. When detecting physical
unit mismatches, it is essential to distinguish the different
types and provide helpful error messages for developers to
understand and fix their system quickly. Some specific cate-
gories of intentional physical unit mismatches present precise
semantics in the source code, i.e., a pattern in the operations
and units leads to a unit mismatch. For instance, differen-
tial drives are identifiable through consecutive operations
involving rad/s and m/s , where the latter is the reversed
signal. Constant reuses occur when the same variable is used
in different unit operations, messages abuses, and misuses
when there is a mismatch between ROS conventions and
the user intent. In contrast, the overall units are consistent
when interacting between the different parts of the system,
and geometry by hand when we detect that developers man-

ually perform geometry operations. Furthermore, different
unit mismatches may have different levels of importance.
While paradigmatic physical unit mismatches related to the
robotics domain (e.g., differential drive and controls) should
be ignored, unintentional mismatches should be immediately
fixed as they may impact the system execution, and unforced
mismatches can be presented as warnings for the developers
that these represent errors that impact code maintainability.
One can help developers focus on the next most important
task by prioritizing the physical unit mismatches. Error
messages are also critical for helping developers understand
and fix the errors in their systems. Providing helpful error
messages and warning them of the effects of their bad
practice creates awareness of the impact of these mismatches.

Verification techniques must consider the domain when
analyzing the source code to avoid raising irrelevant errors
for developers. Unforced physical unit mismatches represent
bad programming practices that hinder code maintainability.
These mismatches introduce implicit undocumented assump-
tions on how the system works. Developers do not know the
reasoning behind assigning different units to messages or
reusing the same constant for different units. Furthermore, as
the system grows and becomes more complex, introducing
more code can break the previous assumptions and lead the
system to an unknown behavior. Analysis techniques should
raise a warning and distinguish the different physical unit
mismatches. For instance, if one intends to distinguish be-
tween message abuses and unintended message assignments,
checking how different ROS components interact is critical.
To improve effectiveness in this detection, future tools should
consider multiple files and components during analysis and
verification. Techniques such as ROSDiscover [12] can help
obtain the system’s structure, such as the connections be-
tween nodes and topics, enabling the multi-file bug detection
of physical unit mismatches. The presented types of unit
mismatches define specific patterns that are helpful for future
techniques to categorize these errors automatically.

V. CONCLUSION.

In this work, we uncovered the types of physical mis-
matches and verified how intentional unit mismatches man-
ifest. We found that intentional unit errors occur due to the
performing operations of the robotics domain, such as differ-
ential drive and controls, and also through bad programming
practices by developers, through the abuse and misuse of
messages, or reusing constants. We also found that a minority
of the errors analyzed correspond to general programming
errors, such as typos, duplication, and incorrect assignments.
Given these insights, we promote the development that em-
beds the robots’ domain in their analysis. Our study provides
examples for each category of physical unit mismatch, along
with a description of the mismatch. These can be used as a
starting point for producing analysis to help developers detect
and fix physical unit mismatches effectively.

REFERENCES

[1] A. Fonseca and P. Canelas, “Resource-Aware Programming,” 2024.
[Online]. Available: http://doi.org/10.54499/EXPL/CCI-COM/1306/
2021

[2] P. Bridgman, Dimensional Analysis. Yale University Press, 1922.
[3] J. Ore, C. Detweiler, and S. G. Elbaum, “Phriky-units: a lightweight,

annotation-free physical unit inconsistency detection tool,” in Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, T. Bultan and K. Sen, Eds. ACM, 2017, pp.
352–355.

[4] S. Kate, J. Ore, X. Zhang, S. G. Elbaum, and Z. Xu, “Phys:
probabilistic physical unit assignment and inconsistency detection,” in
Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE. ACM, 2018, pp. 563–
573. [Online]. Available: https://doi.org/10.1145/3236024.3236035

[5] M. Taylor, J. Aurand, F. Qin, X. Wang, B. Henry, and X. Zhang,
“SA4U: practical static analysis for unit type error detection,” in
37th IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2022, pp. 87:1–87:11.

[6] M. Quigley, K. Conle, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
ICRA Workshop on Open Source Software, vol. 3, no. 3.2, pp. 1–6,
01 2009.

[7] M. Christakis and C. Bird, “What developers want and need from
program analysis: an empirical study,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engi-
neering, D. Lo, S. Apel, and S. Khurshid, Eds. ACM, 2016, pp.
332–343.

[8] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and
C. Jaspan, “Lessons from building static analysis tools at google,”
Communications of the ACM (CACM), vol. 61 Issue 4, pp. 58–66,
2018. [Online]. Available: https://dl.acm.org/citation.cfm?id=3188720

[9] J. Ore, S. G. Elbaum, and C. Detweiler, “Dimensional inconsistencies
in code and ROS messages: A study of 5.9m lines of code,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2017, pp. 712–718.

[10] O. Amidi and C. E. Thorpe, “Integrated mobile robot control,” in
Mobile Robots V, W. H. Chun and W. J. Wolfe, Eds., vol. 1388,
International Society for Optics and Photonics. SPIE, 1991, pp. 504
– 523. [Online]. Available: https://doi.org/10.1117/12.25494

[11] A. Santos, A. Cunha, N. Macedo, R. Arrais, and F. N. dos Santos,
“Mining the usage patterns of ROS primitives,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2017, pp. 3855–3860.

[12] C. S. Timperley, T. Dürschmid, B. R. Schmerl, D. Garlan, and
C. Le Goues, “Rosdiscover: Statically detecting run-time architecture
misconfigurations in robotics systems,” in 19th IEEE International
Conference on Software Architecture, ICSA. IEEE, 2022, pp. 112–
123.

http://doi.org/10.54499/EXPL/CCI-COM/1306/2021
http://doi.org/10.54499/EXPL/CCI-COM/1306/2021
https://doi.org/10.1145/3236024.3236035
https://dl.acm.org/citation.cfm?id=3188720
https://doi.org/10.1117/12.25494

	Introduction
	Methodology
	Taxonomy of Physical Unit Mismatches
	Unintentional Mismatches
	Unforced Mismatches
	Paradigmatic Mismatches
	Analysis Limitations

	Discussion
	Conclusion.
	References

