
FOCUS: GUEST EDITORS’ INTRODUCTION

Automatic
Program Repair
Claire Le Goues , Carnegie Mellon University

Michael Pradel , University of Stuttgart

Abhik Roychoudhury , National University of Singapore

Satish Chandra , Facebook

Digital Object Identifier 10.1109/MS.2021.3072577
Date of current version: 18 June 2021

22 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E

	 JULY/AUGUST 2021 | IEEE SOFTWARE� 23

PROGRAMMING MISTAKES OF all
kinds—in source code, configura-
tions, tests, or other artifacts—are
a wide-ranging and expensive prob-
lem. Developers dedicate a signifi-
cant proportion of engineering time
and effort to finding and fixing bugs
in their code, businesses lose mar-
ket share when vulnerabilities in the
software they sell impact customers,
and overall productivity is impacted
by software that does not work as in-
tended or is prone to vulnerabilities.1
Rapidly finding and fixing bugs and
vulnerabilities only grows in impor-
tance as software is continuously
evolving and deployed and as soci-
ety becomes increasingly dependent
on software systems in all aspects of
modern life. Speaking to this general
problem, this special issue of IEEE
Software addresses recent advances
in research and practice in automatic
software repair.

Prologue
Automated program repair2 is an
emerging suite of technologies for
automatically fixing errors or vulner-
abilities—bugs, colloquially—in soft-
ware systems. Automatic program
repair as a research field focuses on
a class of techniques that produces
source code-level patches for such
bugs, of the same variety that pro-
grammers produce in addressing a de-
fect they find in their own programs
or in response to a bug report. Thus,
at a high level, an automatic repair ap-
proach takes as input a program and
some evidence that the program has
a bug (commonly, a failing test) and
produces a patch for that program’s
source to fix that bug, ideally with-
out negatively influencing other cor-
rect functionality.

Overall, automated tooling, analy-
sis, and bots that automatically patch
programs are a growing phenomenon

in both research and practice. The
research community has dedicated
increasing attention to this prob-
lem, especially over the past decade.
This has resulted in a diversity of
techniques that seek to fix bugs as
identified by failing tests or program
crashes, address statically detected
violations from automatic bug-finding
tools, or repair compilation errors.
No matter which bug-identifying
method is used, the goal is to find a
patch that changes the program ap-
propriately, e.g., by making the tests
pass or the crashes go away or en-
abling the static analyzer pass with-
out complaint. Under the hood, such
techniques use technologies ranging
from symbolic execution and pro-
gram synthesis, to machine learning, to
evolutionary computation, or increas-
ingly some combination thereof. In
engineering practice, recently devel-
oped repair tools range from simple
“quick-fix” suggestions to address
linter checks performed at commit time
and vulnerability-suggesting bots
on GitHub to, recently at Facebook,
more robust automated patching run
in production against automatically
generated tests.3

The goal of this special issue is to
provide a checkpoint on the state of
research and practice in automatic
program repair. The three articles
presented are summarized in “New
Repair Architectures, Techniques,
and Practices.”

In this introduction, we introduce
key ideas underlying the general field
of automatic program repair and
provide a brief overview of the struc-
ture of the problem and various so-
lutions to provide context for the
subsequent material.

What Is a Bug?
Practically, a significant percentage
of a software project’s cost today is

not spent in the creative activity of
software construction but rather
in the corrective activity of debugging
and fixing errors. However, the task
of debugging is inherently compli-
cated. Most systems lack formal speci-
fications describing intended program
behavior. Without a formal or sys-
tematic documentation of correct be-
havior, the definition of an “error” or
“bug” often resides in the program-
mer’s mind or in the user’s sometimes
nebulous expectations of program be-
havior. This can pose a challenge for
automatic bug-correction techniques,
which require a tangible mechanism
to identify the “fault” to be repaired.

Automated techniques for bug
detection, mitigation, or prevention
have a long history in computer sci-
ence research. Programming lan-
guages and their type systems and
compilers can warn programmers
when they make certain kinds of
mistakes or eliminate them entirely
by design. Static analyses, some-
times built into integrated develop-
ment environments or run at commit
time, can flag problematic patterns
or even, increasingly, find deep se-
mantic errors. Dynamic self-healing
techniques can enforce security or
other correctness policies by enforc-
ing control flow integrity, prevent-
ing code injection, or automatically
sanitizing inputs (see, e.g., the works
by Perkins et al.4 and Serebryany
et al.5). Such techniques can there-
fore catch and recover from errors at
runtime, without either user or de-
veloper intervention.

By contrast, the techniques for au-
tomatic software repair we address
in this special issue generally aim to
produce changes (patches) to the pro-
gram source code to address the bug
altogether (rather than find errors,
help programmers avoid errors, or
help systems dynamically recover

FOCUS: GUEST EDITORS’ INTRODUCTION

24	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

from them). Sometimes these goals
can go hand in hand. For example,
some static bug-finding tools increas-
ingly provide the developers with
pointers or suggestions to help them
understand and fix the underlying
problem; indeed, more quick-fix sug-
gestions by bug-finding tools can lead
to greater adoption.6 Similarly, lint-
ers or compilers increasingly make
suggestions to address flagged errors,
and research techniques are being

proposed to address more semanti-
cally complex bugs, as flagged by
static techniques. Such approaches
thus use a static bug-finding approach
to find a flaw and then can use the
static technique to automatically lo-
calize the bug and validate that a
proposed patch addresses it (i.e., by
determining that the static analyzer
no longer flags the defect in question).

However, a larger preponderance
of current techniques for automatic

program repair are dynamic in nature.
That is, these methods use failed tests
or demonstrated program crashes to
demonstrate the existence of a glitch;
the goal of the bug-repair process is
to modify the program source code
so that the test(s) now pass or the pro-
gram no longer crashes. Other exist-
ing program tests are typically used
to help the program-repair process
avoid unwittingly breaking other
desirable behavior, in the same way
that continuous integration (CI) test
suites help human programmers avoid
doing the same in manually modifying
their systems. Indeed, some proposed
and currently deployed techniques are
targeted at that use case exactly: re-
pairing a program with respect to a
failed CI test.

How and When
Is It Fixed?
Automatic bug repair is thus, fun-
damentally, a search problem: the
search goal is a set of changes to a
program that addresses a given er-
ror without introducing new bugs or
affecting previously correct behav-
ior. Typically, such techniques begin
with automated analysis to localize
the bug in question to a smaller set
of candidate program locations, one
or more of which may correspond to
a suitable repair site. This is one of
several ways in which automated re-
pair differs, conceptually, from man-
ual bug fixing. In our understanding
of manual bug fixing, the program-
mer first locates the “error” by im-
plicitly considering the intended
program behavior and then changes
the error location and/or relevant
locations to fix the errors there. In
automated repair, knowing exactly
where the error resides is, strictly
speaking, not always necessary. Even
if the precise error location—per hu-
man judgment—is not accurately

NEW REPAIR TOOL ARCHITECTURE
Baudry et al. present an automated repair bot that learns patch patterns
from failed builds across projects in their article “A Software-Repair Robot
Based on Continual Learning.” In terms of advances, this article presents
a tool architecture to learn patch patterns; this architecture can potentially
be assimilated into continuous integration systems of the future. In terms of
challenges, this method repairs an extremely small percentage of the failed
builds, meaning that the effectiveness of such an approach remains a work
in progress.

NEW REPAIR TECHNIQUE
The article “A Novel Approach for Search-Based Program Repair” by
Trujillo et al. takes a fresh look at the way search is guided in
genetic-programming-style program repair, often via an objective func-
tion representing the number of tests passed. This article posits that, for
automated repair, navigating a diverse set of patches is as important as
optimizing an objective function. Toward this goal, the article proposes
the use of novelty search to avoid local optima in the search spaces.

NEW REPAIR PRACTICES
Finally, the article “On the Introduction of Automatic Program Repair in
Bloomberg” by Kirbas et al., shares experiences in integrating automatic re-
pair into industrial practice. It represents an academic–industrial collabora-
tion, where researchers from four universities have worked with Bloomberg
engineers to allow for integrating high-quality automatic fixing of the Bloom-
berg code base. The article also discusses real-life lessons in bridging the
academia–industry divide via shared practices derived from research—in this
case, research on automated program repair.

NEW REPAIR ARCHITECTURES,
TECHNIQUES, AND PRACTICES

	 JULY/AUGUST 2021 | IEEE SOFTWARE� 25

known, there may be various fix lo-
cations in the program that can be
changed to make the manifestation
of the error disappear. Virtually all
program-repair techniques thus be-
gin by narrowing down the program
source to a typically imperfect set of
such likely locations.

Beyond that, program-repair tech-
niques vary widely in how they
modify the program source code to
address the defect in question. Some
approaches target particular bug
classes and thus make use of a small
set of candidate templates or trans-
formations that may address bugs
in that class (such as early work ad-
dressing buffer overflows). This ap-
proach is broadly generalized by
work on search-based program re-
pair (see, e.g., Le Goues et al.’s
article in 20127), which views au-
tomated patch construction explic-
itly as a search-space representation
and navigation problem. Repairing a
program thus amounts to navigating
a search space of templated edits via
a biased heuristic or random search.
Such an explicit search approach
must be guided by an objective func-
tion, often constructed in whole or
part by the existing tests: a repair is
found when a patch causes all tests
to pass, including those that initially
failed (indicating the bug).

A parallel line of work has focused
on using semantic analysis to con-
struct patches, by turning over the
problem of bug repair to constraint
solving and program synthesis, as de-
scribed in the work of Nguyen et al.8
This type of work infers a repair con-
straint that a patched program should
satisfy to meet the given correctness
specification, such as passing a given
set of tests. Solving the constraint,
typically via program synthesis, con-
structs a piece of replacement code
that satisfies that specification. The

replacement code can then be used
as a patch. Constraint solving can
encode other questions in the patch-
construction process as well, like
“What is the ‘smallest’ change in the
program that will allow it to pass the
given tests?” or even make sugges-
tions on what the patch code might
look like based on the code that is
being repaired.

Alongside both of these families
of techniques, it is important to note
the growing, and perhaps unsurpris-
ing, role of machine learning tech-
niques in automated repair. To date,
learning-based techniques have been
demonstrated to be usefully comple-
mentary to the other approaches. For
example, models can effectively pri-
oritize candidate patches that are
generated by an enumerative search
method.9 However, this area of inquiry
for program repair is rapidly grow-
ing, with researchers in both machine
learning and software engineering/
programming languages bringing their
expertise to bear on the problem.

Regardless of how the patches are
constructed, all automatic program-
repair techniques are subject to a con-
cern about “overfitting patches,”10 or
patches that address only the symp-
tom represented by a failing test, rather
than the true underlying cause of the
error. Put plainly, just because a pre-
viously failing test now passes does
not always mean the bug in question
is truly fixed—and telling the differ-
ence, automatically, is an unsolved
problem. Even human programmers
sometimes commit incomplete or in-
accurate bug fixes, by accident! Au-
tomatically fixed programs can be
correct with respect to an incomplete
program specification, such as a test
set, but still be considered incorrect
globally or as judged by a human
maintainer. Much of the research in
automated repair thus studies this

aspect, with an attempt to generate
correct patches despite operating
over extremely partial specifica-
tions of program behavior (e.g., see
the work of Shariffdeen et al.11). In
the meantime, however, some prac-
tical deployment scenarios benefit
from existing workflows in which
patches or pull requests are reviewed
by a developer before deployment,
regardless of the source of the patch.
Moving forward, we posit that patch
quality will be a key issue in pro-
gram repair, with manual or auto-
mated techniques used to enhance
patch quality.

Program Repair:
A Snapshot
The successes of automated program
repair, as the field stands today, have
been significant. Successful tech-
niques vary in terms of whether they
address particular defect types or
whether they aim to be more general
to a wider variety of program prop-
erties that can be captured in a fail-
ing test. There has been tremendous
progress in terms of enhancing gener-
ality of the techniques and scalability
with respect to programs and search
spaces. Modern research techniques
of all stripes have reported successful
results on programs of hundreds of
thousands to millions of lines of code.
Scalability to large search spaces (be-
yond simply to large programs) is
important to allow the repair of com-
plex, multipart bugs or programs that
are significantly incorrect. Increas-
ingly, such techniques begin to pene-
trate engineering practice.12

These results demonstrate that
there exist pockets of opportunity
where current approaches work
well. However, significant room for
improvement still remains, beyond
the question of measuring and as-
suring patch quality. One challenge

FOCUS: GUEST EDITORS’ INTRODUCTION

26 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

lies in expressive power or the vari-
ety of bug types that general tech-
niques can handle off the shelf. In
particular, most techniques struggle

to construct or reason about changes
that require multiple or significant
changes to the program source. Al-
though techniques can handle large

programs, effective fault localiza-
tion—the task of identifying the
source locations to try to change—
continues to challenge scalability for
certain kinds of bugs and programs.
Similarly, there exist continued
challenges in effective engineer-
ing to apply these techniques to
large systems since most repair ap-
proaches require expensive and com-
plex recompile-test-and-check loops.

The three articles chosen in this
special issue capture a snapshot of
the current state of the field of pro-
gram repair and point out possible
future directions. See “New Repair
Architectures, Techniques, and Prac-
tices” for summaries of the advances
that it states as well as the chal-
lenges that remain. This will allow
the reader to gain a critical appraisal
of the repair technologies, as they
stand today.

Acknowledgment
This work was partially supported
by the European Research Council
under grant 851895 and by the Ger-
man Research Foundation within
the ConcSys and Perf4JS projects.

References
1. R. C. Seacord, D. Plakosh, and G. A.

Lewis, Modernizing Legacy Systems:

Software Technologies, Engineering

Processes, and Business Practices.

Reading, MA: Addison-Wesley, 2003.

2. C. Le Goues, M. Pradel, and A.

Roychoudhury, “Automated pro-

gram repair,” Commun. ACM, vol.

62, no. 12, pp. 56–65, 2019. doi:

10.1145/3318162.

3. A. Marginean et al., “SapFix: Auto-

mated end-to-end repair at scale,” in

Proc. Int. Conf. Softw. Eng., Softw.

Eng. Pract. Track (ICSE-SEIP’19),

2019, pp. 269–278.

4. J. H. Perkins et al., “Automati-

cally patching errors in deployed

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CLAIRE LE GOUES is an associate professor of computer sci-

ence at Carnegie Mellon University, Pittsburgh, Pennsylvania,

15213, USA, where she is primarily affiliated with the Institute

for Software Research. Her research lies at the intersection of

software engineering and programming languages and focuses

on the construction of high-quality software systems in the

face of continuous software evolution, with a particular interest

in automatic defect repair. Further information about her can

be found at https://www.cs.cmu.edu/~clegoues for more

information. Contact her at clegoues@cs.cmu.edu.

MICHAEL PRADEL is a full professor at the University of

Stuttgart, Stuttgart, 70569, Germany. His research interests

span software engineering, programming languages, security,

and machine learning, with a focus on tools and techniques

for building reliable, efficient, and secure software. Further

information about him can be found at http://software-lab.org.

Contact him at michael@binaervarianz.de.

ABHIK ROYCHOUDHURY is Provost’s Chair Professor of

Computer Science at the National University of Singapore,

Singapore, 117417, Singapore, and the director of the National

Satellite of Excellence in Trustworthy Software Systems,

Singapore. His research interests are in program analysis,

software security and trustworthy systems. Further informa-

tion about him can be found at https://www.comp.nus.edu

.sg/~abhik. Contact him at abhik@comp.nus.edu.sg.

SATISH CHANDRA is a software engineer at Facebook,

Menlo Park, California, 94025, USA. His research has spanned

many areas of programming languages and software engi-

neering, including program analysis, type systems, software

synthesis, bug finding and repair, software testing and test

automation, and most recently, applications of machine learn-

ing to developer tools. Chandra earned his Ph.D. in computer

science at the University of Wisconsin-Madison. He is an ACM

Distinguished Scientist. Further information about him can

be found at https://sites.google.com/site/schandraacmorg.

Contact him at schandra@acm.org.

	 JULY/AUGUST 2021 | IEEE SOFTWARE� 27

software,” in Proc. 22nd ACM

Symp. Oper. Syst. Principles

(SOSP’09), 2009, pp. 87–102. doi:

10.1145/1629575.1629585.

5.	K. Serebryany, D. Bruening, A. Po-

tapenko, and D. Vyukov, “AddressSan-

itizer: A fast address sanity checker,”

in Proc. USENIX Annu. Tech. Conf.

(ATC’12), 2012, pp. 309–318.

6.	B. Johnson, Y. Song, E. R. Murphy-

Hill, and R. W. Bowdidge, “Why

don’t software developers use static

analysis tools to find bugs?” in Proc.

Int. Conf. Softw. Eng. (ICSE’13),

2013, pp. 672–681. doi: 10.1109/

ICSE.2013.6606613.

7.	C. Le Goues, T. Nguyen, S. Forrest,

and W. Weimer, “Genprog: A generic

method for automatic software

repair,” IEEE Trans. Softw. Eng.,

vol. 38, no. 1, pp. 54–72, 2012. doi:

10.1109/TSE.2011.104.

8.	H. D. T. Nguyen, D. Qi, A.

Roychoudhury, and S. Chandra,

“SemFix: Program repair via

semantic analysis,” in Proc. Int.

Conf. Softw. Eng. (ICSE’13),

2013, pp. 772–781. doi: 10.1109/

ICSE.2013.6606623.

9.	F. Long and M. Rinard, “Auto-

matic patch generation by learning

correct code,” in Proc. 43rd Annu.

ACM SIGPLAN-SIGACT Symp.

Principles Programming Languages

(POPL’16), 2016, pp. 292–312.

doi: 10.1145/2837614.2837617.

10.	Z. Qi, F. Long, S. Achour, and

M. Rinard, “An analysis of patch

plausibility and correctness for

generate-and-validate patch gen-

eration systems,” in Proc. Int.

Symp. Softw. Testing Analysis

(ISSTA’15), 2015, pp. 24–36. doi:

10.1145/2771783.2771791.

11.	R. Shariffdeen, Y. Noller, L.

Grunske, and A. Roychoudhury,

“Concolic program repair,” in Proc.

42nd ACM SIGPLAN Symp. Pro-

gramming Language Des. Imple-

mentation (PLDI’21), 2021, to be

published.

12.	J. Bader, A. Scott, M. Pradel, and

S. Chandra, “Getafix: Learning to

fix bugs automatically,” in Proc.

ACM Programming Languages

(OOPSLA’19), 2019, pp. 1–27.

doi: 10.1145/3360585.

IEEE Computer Graphics and Applications bridges the theory
and practice of computer graphics. Subscribe to CG&A and

• stay current on the latest tools and applications and gain
invaluable practical and research knowledge,

• discover cutting-edge applications and learn more about
the latest techniques, and

• benefi t from CG&A’s active and connected editorial board.

AA&&GGCC
www.computer.org/cga

Digital Object Identifier 10.1109/MS.2021.3082586

