
Quality of Automated Program Repair on
Real-World Defects

Manish Motwani , Mauricio Soto, Yuriy Brun , Senior Member, IEEE,
Ren!e Just , and Claire Le Goues ,Member, IEEE

Abstract—Automated program repair is a promising approach to reducing the costs of manual debugging and increasing software
quality. However, recent studies have shown that automated program repair techniques can be prone to producing patches of low
quality, overfitting to the set of tests provided to the repair technique, and failing to generalize to the intended specification. This paper
rigorously explores this phenomenon on real-world Java programs, analyzing the effectiveness of four well-known repair techniques,
GenProg, Par, SimFix, and TrpAutoRepair, on defects made by the projects’ developers during their regular development process. We
find that: (1) When applied to real-world Java code, automated program repair techniques produce patches for between 10.6 and
19.0 percent of the defects, which is less frequent than when applied to C code. (2) The produced patches often overfit to the provided
test suite, with only between 13.8 and 46.1 percent of the patches passing an independent set of tests. (3) Test suite size has an
extremely small but significant effect on the quality of the patches, with larger test suites producing higher-quality patches, though,
surprisingly, higher-coverage test suites correlate with lower-quality patches. (4) The number of tests that a buggy program fails has a
small but statistically significant positive effect on the quality of the produced patches. (5) Test suite provenance, whether the test suite
is written by a human or automatically generated, has a significant effect on the quality of the patches, with developer-written tests
typically producing higher-quality patches. And (6) the patches exhibit insufficient diversity to improve quality through some method of
combining multiple patches. We develop JaRFly, an open-source framework for implementing techniques for automatic search-based
improvement of Java programs. Our study uses JaRFly to faithfully reimplement GenProg and TrpAutoRepair to work on Java code,
and makes the first public release of an implementation of Par. Unlike prior work, our study carefully controls for confounding factors
and produces a methodology, as well as a dataset of automatically-generated test suites, for objectively evaluating the quality of Java
repair techniques on real-world defects.

Index Terms—Automated program repair, patch quality, objective quality measure, Java, GenProg, Par, TrpAutoRepair, Defects4J
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1 INTRODUCTION

AUTOMATED program repair holds the potential to improve
software quality while simultaneously reducing the reli-

27 ance on costly manual effort. For example, Facebook uses two
28 automated program repair tools, SapFix and Getafix, on their
29 production code to suggest defect patches [9], [89]. However,
30 recent work examining the quality of automated program
31 repair has found that patches produced by many automated
32 program repair techniques are often of low quality [122] and
33 not semantically equivalent to developer-written patches [114].
34 In particular, our earlier work [122] found that patches pro-
35 duced by GenProg [77], TrpAutoRepair [111], and AE [132]
36 typically pass only 68.7, 72.1, and 64.2 percent of independent
37 tests not used to create the patch, respectively. This both raises

38an important concern about the practical usability of modern
39automated repair techniques, and drives research toward
40building techniques that produce higher-quality patches [68],
41[86], [88], [94].
42Automated program repair techniques typically start with
43a program version and a set of passing and failing tests, and
44thenmodify the program version until finding a set of modifi-
45cations (a patch) that makes all the tests pass. The underlying
46issue is that the set of tests provides a partial specification of
47the desired behavior, and thus the produced patches may
48overfit to those tests. For example, while, typically, many
49patches in a technique’s search space pass the supplied tests,
50relatively few are equivalent to the developer-written patch
51[88], [114]; the automated repair technique has no way of
52knowingwhich is the better patch to return.
53Our prior work introduced an objective methodology for
54evaluating the quality of a patch and had successfully applied
55it to a set of very small programswritten by novice developers
56in an introductory programming course [122]. While that
57work identified important shortcomings of automated pro-
58gram repair techniques, its results may not generalize beyond
59the very small and simple programs. That study only consid-
60ered two generate-and-validate (G&V) repair techniques, did
61not control for confounding factors, and used test suite size as
62a proxy for coverage. By contrast, this work performs a
63detailed studywith fourG&V repair techniques on real-world
64defects in real-world, large, complex projects employing
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65 rigorous statistical analyses, properly measuring coverage,
66 and controlling for confounding factors. We use 5 programs
67 with 357 defects created during real-world development from
68 the Defects4J benchmark [66].We selected four representative
69 repair techniques and a diverse benchmark of defects to
70 increase the likelihood that our results generalize. We answer
71 six research questions:

72 RQ1 Do G&V techniques produce patches for real-world
73 Java defects?
74 Answer: Yes, although less often than for C defects.
75 RQ2 How often and how much do the patches produced by

G&V techniques overfit to the developer-written test
suite and fail to generalize to the evaluation test suite,
and thus ultimately to the program specification?

     Answer: Often. For the four techniques we evaluated, only
between 13.8 and 41.6 percent of the patches pass
100 percent of an independent test suite. Patches typi-
cally break more functionality than they repair.

     RQ3 How do the coverage and size of the test suite used to
     produce the patch affect patch quality?
     Answer: Larger test suites produce slightly higher-quality

patches, though, surprisingly, the effect is extremely
small. Also surprisingly, higher-coverage test suites
correlate with lower quality, but, again, the effect size is
extremely small.

RQ4 How does the number of tests that a buggy program
    fails affect the degree to which the generated patches  

overfit?
 Answer: The number of failing tests correlates with 
slightly  higher quality patches.
 RQ5 How does the test suite provenance (whether it is 
writ-96 ten by developers or generated automatically) 
influence 97 patch quality?
 Answer: Test suite provenance has a significant effect on

repair quality, although the effect may differ for differ-
ent techniques. In most cases, human-written tests lead
to higher-quality patches.

RQ6 Can overfitting be mitigated by exploiting randomness
in the repair process? Do different random seeds overfit
in different ways?

Answer: The patches exhibit insufficient diversity to
improve quality through some method of combining
multiple patches.

Our methodology for measuring patch quality relies on an
independent test suite that is not given to the repair technique
to produce a patch. The independent test suite captures
(again, partially) some of the specifications not captured by
the original test suite given to the repair technique, and thus
its passing rate independently evaluates the quality of the
patch. The alternative to thismethodology is amanual inspec-
tion of the patch, (e.g., [114]), but two independent recent
studies [72], [140] have empirically demonstrated that our
independent-test-suite-based methodology is more reliable
andmore objective thanmanual inspection.

Prior studies of quality of automated program repair
have either used manual inspection for quality assess-
ment [107], [122], [131], or have focused on small programs
and relatively-easy-to-fix defects [122], [140]. Some studies
did use a 224-defect subset of the same benchmark of real-
world programs we use, but used manual inspection for

125quality assessment and, unlike our work, assessed tools’
126ability to produce patches and efficiency of patch produc-
127tion, but did not identify the factors that affect patch quality
128(RQs 3–6) [42], [90].
129Our work overcomes two consider-
130able newengineering challenges. First,
131employing the objective, independent-
132test-suite-based evaluation of patch
133quality, requires the creation of high-
134quality, automatically-generated test
135suites for real-world Java projects. We
136develop a methodology for using
137today’s state-of-the-art test-suite gen-
138eration techniques and overcoming
139their shortcomings to produce high-
140quality suites, and we release both the methodology and the
141generated test suites. Second, many automated program
142repair techniques are designed and implemented for C (e.g.,
143GenProg and TrpAutoRepair) and Par [69], designed and
144implemented for Java, was never released. We build JaRFly,
145the Java Repair Framework, which simplifies the implementa-
146tion of Java techniques for genetic improvement (including
147but not limited to genetic improvement techniques for pro-
148gram repair), and release Java-based implementations of Gen-
149Prog, Par, and TrpAutoRepair. Our implementations of
150GenProg andTrpAutoRepair are the first that faithfully follow
151the original techniques’ designs, improving prior attempts at
152replicating these techniques for Java. Our release of the Par
153implementation is the first ever public release of Par. JaRFly is
154the first framework of its kind that can handle the entire
155Defects4J dataset, including the Closure compiler subject
156program.
157The main contributions of our work are:

158! An empirical evaluation of quality of program repair
159on real-world Java defects, which outlines shortcom-
160ings and establishes a methodology and dataset for
161evaluating quality of new repair techniques’ patches
162on real-world defects to promote research on high-
163quality repair.
164! A methodology for evaluating patch quality that
165fixes numerous shortcomings in prior work, prop-
166erly controlling for potential confounding factors.
167! A dataset of independent evaluation test suites for
168Defects4J defects, and a methodology for generating
169such test suites. Augmenting existingDefects4J defects
170with two, independently created test suites can aid not
171only program repair, but other test-based technology.
172! Java Repair Framework (JaRFly), a publicly released,
173open-source framework for building Java G&V repair
174techniques, including our reimplementations of Gen-
175Prog, Par, and TrpAutoRepair. JaRFly is designed to
176allow for easy combinations and modifications to
177existing techniques, and to simplify experimental
178design for automated program repair on Java pro-
179grams. http://JaRFly.cs.umass.edu/
180The rest of this paper is structured as follows. Section 2
181describes the background of automated program repair.
182Section 3 introduces JaRFly. Section 4 details the dataset of
183real-world defects used in our study and our methodology
184for creating high-quality test suites. Section 5 empirically
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evaluates four automated program repair techniques with
respect to the quality of the patches they produce on real-
world defects. Section 6 discusses the implications of our
results, suggests future directions for research, and describes
the limitations of our choices of subject repair tools and
defects. Finally, Section 7 places our work in the context of
related research, and Section 8 summarizes our contributions.

2 AUTOMATED PROGRAM REPAIR

Automated program repair techniques’ goal is to convert an
existing program that nearly satisfies a specification into
one that fully satisfies it. This can be done for many types of
specifications, e.g., contracts [107], [131], a reference imple-
mentation [92], or, by far most commonly, tests. This paper
focuses on test-based program repair.

Unfortunately, tests provide only a partial specification
of the desired behavior, and, as such, producing a patch
that passes all the tests might break other untested or under-
tested functionality. Patches that pass all supplied tests but
do not generalize to the intended specification are said to be
of low quality and to overfit to the test suite used to produce
them. Section 2.1 will provide background on automated
program repair, and Section 2.2 will explain methods for
evaluating patch quality.

2.1 G&V and Synthesis-Based Repair
Automatic program repair techniques can be classified
broadly into two classes: (1) Generate-and-validate (G&V) tech-
niques create candidate patches (often via search-based soft-
ware engineering [57]) and then validate them, typically
through testing (e.g., [5], [29], [36], [39], [68], [69], [83], [93],
[101], [114], [120], [125], [132], [133]. (2) Synthesis-based techni-
ques use constraints to build patches via formal verification,
inferred or programmer-provided contracts, or specifications
(e.g., [64], [107], [131]).Runtime program repair techniques (e.g.,
[23], [24], [37], [38], [108] self-heal the execution at runtime
and typically do not produce source-code patches, and are
orthogonal to the above classification. This paper focuses on
G&V techniques, and neither synthesis-based nor runtime-
repair techniques. Prior work has considered overfitting in
synthesis-based repair techniques [76], albeit only on small
programs. While both synthesis-based and G&V techniques
share high-level goals, they work best in different settings,
and have different limitations and challenges.

Test-driven G&V techniques are a particularly interesting
subject of exploration, as they (e.g., Clearview [108], GenProg,
Par, and Debroy and Wong [36]) have been shown to repair
defects in large, real-world legacy software. Meanwhile, for-
mal specifications and contracts are relatively rare in practice.
Although new projects appear to be increasingly adopting
contracts [46], their penetration into existing systems and lan-
guages remains limited. Few maintained contract implemen-
tations exist for widely-used languages such as C. For
example, in the Debian main repository, only 43 packages
depended on Zope.Interfaces (by far the most popular
Python, contract-specific library in Debian) out of a total of
4,685 Python-related packages. For Ubuntu, 144 out of 5,594
Python-related packages depended on Zope.Interfaces.
Synthesis-based techniques show great promise for new or
safety-critical systems written in suitable languages, and

243adequately enrichedwith specifications. However, the signifi-
244cance of defects in existing software demands that research
245attention be paid at least in part to techniques that address
246software quality in existing systems written in legacy lan-
247guages. Since legacy codebases are often idiosyncratic to the
248point of not adhering to the specifications of their host lan-
249guage [15], it might not be possible even to add contracts to
250such projects.
251G&V repair works by generating multiple candidate
252patches that might address a particular bug and then vali-
253dating the candidates to determine if they constitute a repair.
254In practice, the most common form of validation is testing.
255A G&V approach’s input is therefore a program and a set of
256test cases. The passing tests validate the correct, required
257behavior, and the failing tests identify the buggy behavior
258to be repaired. G&V approaches differ in how they choose
259which locations to modify, which modifications are permit-
260ted, and how the candidates are evaluated, among others.
261We chose four representative G&V repair techniques for
262our analysis. There are many existing G&V repair techni-
263ques, often with similar performance. However, an underly-
264ing theory of G&V repair suggests that analysis of a set of
265these techniques should generalize to others [132]. Section 6
266discusses the generalizability of our results.
267GenProg [77], [133] uses a genetic programming heuris-
268tic [71] to search the space of candidate repairs. Given a
269buggy program and a set of tests, GenProg generates a pop-
270ulation of random patches by using statistical fault localiza-
271tion to identify which program elements to change (those
272that execute only on failing test cases or on both failing and
273passing text cases), and selecting elements from elsewhere
274in the program to use as candidate patch code. The fitness
275of each patch is computed by applying it to the input pro-
276gram and running the result on the input test cases; a
277weighted sum of the count of passed tests informs a random
278selection of a subset of the population to propagate into the
279next iteration. These patch candidates are recombined and
280mutated to form new candidates until either a candidate
281causes the input program to pass all tests, or a preset time
282or resource limit is reached. Because genetic programming
283is a random search technique, GenProg is typically run mul-
284tiple times on different random seeds to repair a bug.
285Par [69] performs search by applying 12 fix templates —
286automatic program editing scripts created based on the fix
287patterns identified from developer fixes — in the locations
288they can be applied that are also identified as likely faulty
289by statistical fault localization.
290SimFix [63], a more recent technique, mines code pat-
291terns (similar to Par templates) from frequently occurring
292code changes from developer-written patches. Then, in the
293project with the defect SimFix is attempting to repair, Sim-
294Fix identifies code snippets that are similar to the code Sim-
295Fix has localized the defect to. SimFix defines similarity
296using structural properties, variable names, and method
297names. SimFix ranks the code snippets by the number of
298times the mined patterns have to be applied to the snippet
299to replace the buggy code. SimFix then selects the snippets
300(one at a time) from the ranked list of top 100 snippets,
301applies the pattern-based modifications to produce a candi-
302date patch, and validates the patch against tests created
303using a test purification technique [139]. While the original
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paper describes SimFix stopping once a patch that passes
the test suite is found [63], the implementation [62] gener-
ates multiple patches that pass at least one of the purified
originally-failing tests. In this paper, we use all the found
patches for our analyses.

TrpAutoRepair [111] uses random search instead of
genetic programming to traverse the search space of candi-
date solutions. Instead of running an entire test suite for
every patch, TrpAutoRepair uses heuristics to select the
most informative test cases first, and stops running the suite
once a test fails. TrpAutoRepair limits its patches to a single
edit. It is more efficient than GenProg in terms of time and
test case evaluations [111]. The same approach is also called
RSRepair [112], and we refer to the original algorithm name
in this paper.

There are four key challenges that G&V must overcome
to find patches [132]. First, there are many places in the
buggy program that may be changed. The set of program
locations that may be changed and the probability that any
one of them is changed at a given time describes the fault
space of a particular program repair problem. GenProg, Par,
SimFix, and TrpAutoRepair tackle this challenge by using
existing fault localization techniques to identify good repair
candidates. SimFix increases the accuracy of GZoltar [22],
an existing fault localization technique, by using a test puri-
fication technique [139] that removes assertions unrelated to
the bug from the failing tests, as well as source code state-
ments related to those unrelated assertions. Second, there
are many ways to change potentially faulty code in an
attempt to fix it. This describes the fix space of a particular
program repair problem. GenProg and TrpAutoRepair
tackle this challenge using the observation that programs
are often repetitive [10], [51] and logic implemented with a
bug in one place is likely to be implemented correctly else-
where in the same program. GenProg and TrpAutoRepair
therefore limit the code changes to deleting and copying
constructs from elsewhere in the same program. Par instan-
tiates a set of repair templates constructed based on a manual
inspection of a large set of developer edits to open source
projects. SimFix similarly uses templates mined from devel-
oper-written patches, also limiting code changes to snippets
from the same program which are similar structurally, or
through variable or method names, to the code being
replaced. Third, there are many ways to edit the code snip-
pets identified by the fix space so as to patch the bug. These
edits, called mutation operators, define the repair strategy.
GenProg and TrpAutoRepair use three mutation operators,
selected uniformly at random, append candidate snippet,
replace the buggy region with the candidate snippet, and
delete the buggy region. GenProg also allows for a crossover
operator that combines parts of two candidate snippets. Par
uses 12 mutation operators, chosen uniformly at random,
each one corresponding to its 12 fix templates. SimFix uses
the code patterns mined from the existing developer-
written patches and selects the candidate snippets that
requires fewer modifications using the mined code patterns.
Fourth, selecting the tests to be executed to evaluate a candi-
date patch defines a repair technique’s test strategy. GenProg
and Par sample 10 percent of the tests using random sam-
pling for internal computations, and only the full test suite
for promising candidates. TrpAutoRepair uses heuristics to

365select the most informative test cases first, and stops run-
366ning the suite once a test fails. SimFix executes all the failing
367tests first and, only if all those pass, continues to execute the
368passing tests.
369GenProg, Par, SimFix, and TrpAutoRepair share suffi-
370cient common features to allow consistent empirical and
371theoretical comparisons. This allows us to focus on particu-
372lar experimental concerns and mitigates the threat that
373unrelated differences between the algorithms confound the
374results.

3752.2 Evaluating Repair Quality
376In 2013, Brun et al. [20] demonstrated that automated pro-
377gram repair is prone to producing patches that overfit to the
378test suites it has access to. Within the space of possible pro-
379gram modifications, many programs (and, thus, patches)
380exist that pass all the supplied tests. While some of these
381programs encode the desired behavior for all possible
382inputs, many fail to encode desired behavior on at least
383some inputs not represented by the tests. Those other pro-
384grams fail to generalize to the unwritten, intended specifica-
385tion and result in low-quality patches. This phenomenon of
386automated program repair producing patches that satisfy
387the partial specification of the supplied test suite, but failing
388to generalize is called overfitting [122].
389Since then, research has measured the degree to which
390G&V patches overfit and what factors affect that overfitting
391on small C programs [122], how often G&V patches disagree
392with developer-written patches [114], how often overfitting
393happens in Java repair [42], [90], the space of possible
394patches and the concentration of correct ones [87], and so
395on. Further, research has attempted to improve on the qual-
396ity of the patches produced by using semantic search to
397increase the granularity of repair [68], condition synthe-
398sis [86], learning patch generation patterns from human-
399written code [88], and automated test case generation [135].
400Other research has found that overfitting is not unique to
401G&V C repair, with synthesis-based repair also overfitting
402to the supplied partial specification [76]. Even when repair
403uses manually-written contracts as the desired behavior
404specification, which are more complete than tests, it still
405overfits, producing correct patches for only 59 percent of
406the defects [107].
407There are two established methods for evaluating quality
408of program repair, using an independent test suite not used
409during the construction of the repair [20], [122], and manual
410inspection [90], [114], typically for equivalence with a devel-
411oper-written patch (though manual inspection has been
412used to measure how maintainable the patches are [50] and
413how likely developers are to accept them [69]). The two
414methodologies are complementary. Intuitively, the method-
415ology that uses an independent test suite is more objective,
416whereas manual inspection is more subjective and can be
417subject to subconscious bias, especially if the inspectors are
418authors of one of the techniques being evaluated. A recent
419study found that manual-inspection-based quality evalua-
420tion can be imprecise [72], while independent-test-suite-
421based quality evaluation is inherently partial, as the inde-
422pendent test is a partial specification. As a result, manual
423evaluation of quality can imprecisely label patches as
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correct and incorrect. The test-suite-based evaluation cannot
be imprecise, but may be incomplete, potentially mislabel-
ing some patches as correct but never labeling a correct
patch as incorrect.

In this paper, we select to use the test-suite-based quality
evaluationmethod because (1) it is objective and reproducible
in a fully automated manner, (2) can scale to complex, real-
world defects in real-world systems, which are the focus of
our work (whereas manual inspection would require using
the projects’ developers with intricate project knowledge).
Since this methodology necessarily underestimates overfit-
ting (it never labels a correct patch as incorrect) [72], our find-
ings of overfitting are, atworst, conservative.

3 JARFLY: THE JAVA REPAIR FRAMEWORK

This section describes JaRFly, our open-source framework for
implementing techniques for automatic search-based improve-
ment (or genetic improvement) of Java programs. Genetic
improvement approaches reuse existing software as input to
metaheuristic search. The search goal is to identify variants of
that input software that improve on the software according to
some criterion (e.g., functionality, performance) [109].
JaRFly is publicly available at http://JaRFly.cs.
umass.edu/ to facilitate researchers and practitioners
building search-based improvement approaches for Java
programs. The implementation includes reimplementations
of GenProg [77] and TrpAutoRepair [111] for Java (original
releases of these tools were for C programs), and releases
the first public reimplementation of Par [69].

JaRFly’s novelty and utility lie in the way it decouples the
fundamental components of metaheuristic search and
allows developers to specify just those fundamental compo-
nents, taking care of the rest of the approach implementa- 

tion. These components are problem representation, fitness 

function, mutation operators, and search strategy [58]. JaR- 

Fly provides high-level extension points for each of these 

fundamental components, which differentiates it from prior 

frameworks that support implementing Java-based repair  
techniques [91].
 JaRFly simplifies the process of implementing genetic 

improvement approaches for Java programs. JaRFly han- 

dles parsing Java programs into a specified representation,  
and metaheuristic search over variants within that represen-
tation using specified mutation operators, search strategy,
and fitness function. JaRFly allows the user to specify these
representations, mutation operators, search strategies, and
fitness functions by selecting from a set of already imple-
mented options, or by extending with new versions via
explicit extension points.

JaRFly improves on prior frameworks that support imple-
menting Java-based repair techniques [91] by making these
fundamental components explicit and supporting their exten-
sions explicitly, while also handling awider range of Java pro-
grams. For example, JaRFly can operate over the Closure
compiler subject program from the Defects4J dataset, whereas
prior frameworks cannot [91]. We next detail JaRFly’s four
fundamental components ofmetaheuristic search.

Problem Representation. The first and perhaps most funda-
mental design choice in applying metaheuristic search to a
software engineering problem is deciding how to represent

483the problem such that it is amenable to symbolic manipula-
484tion. The most common representation choice in genetic
485improvement applications is the patch representation, in which
486an individual candidate solution is represented as a variable-
487length sequence of edits to the original program [77], [78]. In
488addition to Java, variations of and improvements on this
489representation choice can target Python [2] and C [103], [104]
490programs. Prior to the development of the patch representa-
491tion, genetic-programming-based program repair operated
492over problems represented as a fixed-length weighted path
493through the program represented as an abstract syntax
494tree [48], [133]; as is typical in metaheuristic search, represen-
495tation choice influences search success and efficiency [78]. By
496making this representation an explicit choice, and extension
497point, JaRFly enables developers to both pay proper attention
498to the choice of representation and to evaluate multiple repre-
499sentation choices.
500JaRFly’s Representation interface exports functional-
501ity for manipulating and evaluating a candidate solution in
502the context of a search-based program improvement
503approach. This includes support for

1) querying variant-specific localization information,
5052) evaluating fitness, such as serializing a variant to
506disk and compiling it, or running one or more test
507cases against a given variant, tasks common to most
508genetic improvement approaches, depending on fit-
509ness function, and
5103) assessing the validity of and applying mutation
511operators to the particular variant.
512To that end, JaRFly’s Representation is parameter-
513ized by a mutation interface that provides functionality for
514editing arbitrary Java programs.
515JaRFly provides prebuilt implementations of (1) an abstract
516superclass that supports caching and serialization of common
517representation-independent intermediate data, such as a fit-
518ness cache, and (2) a classic patch representation for program
519repair problems in Java. The currently-implemented patch
520representation is a variable-length list of indivisible mutation
521operators, such as “Insert statement S at location L”; mutating
522this representation adds a new edit to the end of the current
523variant. It is straightforward to implement other choiceswith-
524out requiring major refactoring of the framework. For exam-
525ple, Oliveira et al. [103], [104] propose a novel patch-based
526representation that decouples the fault, operator, and fix
527spaces, with implications for crossover (but no other compo-
528nents of the search strategy); this could be achieved for Java in
529our framework by specializing the present patch-based repre-
530sentation (specifically the getGenome method) and imple-
531menting the new crossover operators in dedicatedmethods in
532the Populationmodule.
533Fitness Function. Applying metaheuristic search to a soft-
534ware engineering problem requires a fitness function to
535determine the fitness of a variant. Thus, this function must
536operate on the representation. JaRFly makes the choice of
537the fitness function explicit.
538The most typical fitness function in modern repair
539approaches is a weighted sum of the number of test cases
540passed by a program variant. Sampling can reduce the
541computational cost of this fitness function [47]. Alternative fit-
542ness functions for program repair typically combine test cases
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with another objective, such as in a multi-objective search
strategy. These alternative objectives can include a variant’s
similarity to patches in a dataset of previous developer-
written patches [75], or its intermediate semantic distance
according to a set of learned invariants over intermediate pro-
gram state [40], [47] or according to memory values [34] from
either the original program or the rest of the population.

JaRFly provides an extensible, representation-agnostic
Fitnessmodule that, by default, implements and provides
configuration options for multiple common fitness strategies
from the genetic improvement literature. These strategies
include test execution at different levels of JUnit granularity
(individual JUnit method, or entire JUnit class), and configu-
ration options for test sampling (including generational ver-
sus individual sampling, and a configurable sample rate),
and test selection (sampled, heuristically modeled [111],
[132], or test to first failure). JaRFly’s Fitness interface is
agnostic to the underlying testing methodology, so it is not
limited to using JUnit for fitness calculation. Fitness pro-
vides, by default, the idea of a (potentially dynamically-
updated) test model, supporting experiments and extensions
focused on more intelligent test selection and prioritization.
JaRFly, moreover, extends (in a non-default branch) Fit-
ness to evaluate and provide additional values, such as an
experimental diversity-based metric [40], in the context of a
multi-objective search strategy (NSGA-II [35]) extended
from the Searchmodule. Other measures of fitness, such as
via comparison to a historical dataset of patches [75], can
similarly extend Fitness.testFitness for more special-
ized, non-test-drivenmetrics.

Mutation Operators. Metaheuristic search requires a set of
manipulation operators applicable to the selected represen-
tation. JaRFly provides the EditOperationabstraction,
parameterized by a rewriter engine that can modify arbi-
trary Java programs. JaRFly’s default implementation uses
the Eclipse JDT API to perform rewriting. An EditOpera-

tion is instantiated at a particular (abstract) Location,
and may contain one or more abstract Holes that need to be
filled in with suitable code. For example, an Appendopera-
tion can be instantiated at any statement in a Java location;
it has a single Hole that must be filled in by a piece of code
that may be appended there.

JaRFly implements all statement-level edit operations
used by GenProg and TrpAutoRepair and all Par fix tem-
plates, including the optional ones from https://sites.

google.com/site/autofixhkust/home/, not included
in the original paper [69]. Both GenProg and TrpAutoRepair
construct modifications by reusing code from elsewhere in
the program under repair. The Representation enforces
this type of modification, providing information on legal
Locations and code bank code that can be used to fill in
Holes for a particular variant. Meanwhile Par uses 12 fix
templates — automatic program editing scripts created
based on the fix patterns identified from developer-written
patches. As with the coarser-grained operations used by
GenProg and TrpAutoRepair, the Representation pro-
vides the possible values to fill in Holes in Par’s fix tem-
plates, such as which variable should be checked for null
in the null-check-insertion template.

Some EditOperations cannot be applied at all Loca-
tions. For example, an Append operation cannot insert

604code that references out-of-scope variables, or the result
605will not compile. JaRFly creates EditOperations via a
606helper JavaEditFactory, which queries a variant via its
607Representation interface for information to determine
608the edit’s legality. JaRFly implements a set of static semantic
609checks that can identify edits that will be rejected by the
610compiler. Previous work demonstrated that static semantic
611checks improve efficiency in genetic programming repair
612for C programs [78]. Java’s compiler is substantially stricter
613than most C compilers, requiring commensurately more
614complex static checks to avoid invalid mutations.
615Although we use the released SimFix implementation for
616our experiments, the mutation operators considered by Sim-
617Fix could be implemented further as abstractions or exten-
618sions of this paradigm. Mutation operators are typically
619associated with weights that inform their selection and
620application. In the default implemented algorithms, these
621weights are fixed throughout the search strategy. However,
622they are customizable by design, such as via a machine-
623learned model of edit frequency drawn from historical,
624developer-written patches [88], [123].
625Search Strategy. The choices of representation and muta-
626tion operators represent the space of possible variants meta-
627heuristic search can explore, and the choice of fitness
628function represents the objective shape of that search space.
629The search strategy defines the path through the space the
630metaheuristic search uses to optimize the objective.
631Common search strategies include local search, random
632search, and genetic programming. JaRFly’s Search inter-
633face provides a representation-agnostic extension point for
634implementing search strategies, and implements five strate-
635gies, to facilitate comparison and customization. The imple-
636mented strategies are a random search, a weighted brute
637force single-edit search, an oracle search, a genetic program-
638ming heuristic, and NGSA-II [35], a multi-objective evolu-
639tionary search strategy.
640In addition to these four fundamental components of the
641metaheuristic search, JaRFly includes implementation and
642support for other common and important interfaces and
643utilities for search-based program modification:
644Population Manipulation. JaRFly implements crossover and
645selection strategies common in source-level evolutionary pro-
646gram manipulation. The implemented crossover strategies
647include one-point crossover, uniform crossover [133], and
648crossback crossover (crossover with the original unmodified
649representation) [133]. The one implemented selection strategy
650is tournament selection with configurable tournament sizes.
651JaRFly contains extension points to make adding new cross-
652over and selection operators straightforward and indepen-
653dent of representation. Additionally, JaRFly allows setting the
654proportionalmutation rate as a top-level configuration option.
655Localization and Code Bank Management. Fault and fix locali-
656zation are common concerns in search-based program repair
657or improvement. JaRFly implements common weighted path
658localizationwith configurable pathweights, facilities for read-
659ing in arbitrary localization data from a file, and an abstract
660class for implementing alternative localization strategies [113].
661JaRFly uses the JaCoCo coverage library to compute coverage
662for the purposes of fault localization [44].
663These facilities support significant (but straightforward)
664customization and investigation of all elements of a meta-
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heuristic search technique for program transformation.
Implementing different metaheuristic search strategies
(regardless of the search goal) requires specialization of a
single Search class; investigating or isolating the effect of
particular search features (such as selection, crossover or
mutation rate, or the numerous other parameters influenc-
ing the traversal strategy in a genetic algorithm) requires
the specialization of single methods, or the modification of
existing top-level configuration options. These choices
enable significant ongoing experimentation and specializa-
tion of the search component of a search-based or genetic
improvement program modification strategy, without
requiring reimplementation or modification of how pro-
grams under modification are represented, manipulated, or
evaluated.

4 REAL-WORLD DEFECTS AND TEST SUITES

Our study requires real-world defects in real-world proj-
ects. Further, our study requires that each of these projects
have not one but two high-quality test suites. Section 4.1
describes the Defects4J [66] dataset we use in our study, and
Section 4.2 describes the methodology we followed to create
test suites.

A replication package, with all data, code, and instruc-
tions necessary to replicate our results is available at
http://github.com/LASER-UMASS/JavaRepair-

replication-package/.

4.1 Real-World Defects
We used Defects4J version 1.1.0, which consists of 357
defects made by developers during the development of five
real-world open-source Java projects. Fig. 1 describes the
Defects4J defects and the projects they come from. Each
defect comes with (1) one defective and one developer-
repaired version of the project code; (2) a set of developer-
written tests, all of which pass on the developer-repaired
version and at least one of which evidences the defect by
failing on the defective version; and (3) the infrastructure to
generate tests using modern automated test generation
tools. Each defective version is a real-world version of the
code. This version, submitted to the project’s version-
control repository by the developers of the subject project,
fails on at least one test. The developer-repaired version is a
subsequent version of that code submitted by the project’s
developers to the project’s version-control repository that
passes all the tests, minimized to only include changes rele-
vant to repairing the defect.

710Defects4J has been used to evaluate program repair in
711terms of how often techniques produce patches [41], what
712types of defects the techniques are able to patch [98], and
713the quality of the produced patches [72], [90], [136], [137].
714These existing evaluations that measure patch quality
715use manual inspection [72], [90], [136] or automatically-
716generated evaluation test suites [72], [135], [137]. While
717manual inspection is subjective and could be biased, low-
718quality evaluation test suites could inaccurately measure
719quality [72]. In this paper, we develop a methodology for
720producing high-quality evaluation test suites, allowing us
721to measure patch quality more accurately; we also go
722beyond simply measuring quality and study what factors
723influence patch quality of automated program repair.

7244.2 Quality-Evaluating Test Suites
725To objectively measure the quality of a generated repair, we
726need two independent test suites that specify the desired
727behavior of the program being repaired. One test suite can be
728used by the automated program repair techniques to produce
729a patch for a defect. The second, independent test suite is
730called the evaluation test suite; this test suite is used to mea-
731sure the patch’s quality. As alreadymentioned, eachDefects4J
732defect comes with a developer-written test suite that eviden-
733ces the defect. To create the second test suite, for each defect,
734we generated test inputs using an off-the-shelf automated test
735input generator, and using the developer-repaired code as an
736oracle of correct behavior. We generated the second test suites
737only for the 106 defects for which at least one of the four auto-
738mated repair techniques we evaluate produced a patch.
739(Fig. 3 in Section 5.1will describe these patch results.)
740This repair-quality methodology is only effective if the
741evaluation test suite is of high-quality. Coverage is widely-
742used in industry to estimate test-suite quality [61]. Using
743statement-level code coverage as a proxy for test suite quality,
744our goal was to generate, for each defect, a high-coverage test
745suite, thus implying that a big portion of the functionality of
746the inspected class is being evaluated. Specifically, we focused
747on the statement coverage of the methods and classes modi-
748fied by the developer-written patch and designed a test gener-
749ation methodology aimed to maximize that coverage. Ideally,
750wewant the evaluation test suite to have perfect coverage, but
751modern automated test generation tools cannot achieve per-
752fect coverage on all large real-world programs, in part because
753of limitations of such tools such as possible infinite recursion
754in the creation process or impreciseness of method signatures
755such as Java generics [49]. Thus, we set as our goal to generate,
756for each defect, a test suite that achieves 100 percent coverage

Fig. 1. The 357 defect dataset created from five real-world projects in the Defects4J version 1.1.0 benchmark. We used SLOCCount to measure the
lines of code (KLoC) counts (https://www.dwheeler.com/sloccount/). The tests and test KLoC columns refer to the developer-written tests.
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on all developer-modified methods, and at least 80 percent
coverage on all developer-modified classes. The choice of cov-
erage criteria is a compromise between a reasonable measure
of covering all the developer changes and the modern auto-
mated test generation tools’ ability to generate high-coverage
test suites.

We used the patched version of the code to generate
the evaluation test suite because it guarantees that this test
suite covers at least one way of repairing the defect. An alter-
native to using the defective version of the code would not
provide such a guarantee. Our choice might cause the evalua-
tion test suites to more accurately measure the quality of
patches that are structurally similar to the human-written
patches, and would bias that measurement more favorably
toward patches whose behavior agrees with the human-
written patches. Future work could attempt to mitigate these
concerns by combining test suites generated using multiple
versions of the code, and by using alternate information for
oracles, such as natural language specifications [17], [53], [97],
[124], other implementations of the same specification [92], or
even the unpatched version [135], [141], though each of those
approacheswould introduce its own limitations.

We compared the effectiveness of two modern off-the-
shelf automated test generators Defects4J supports, Ran-
doop [105] and EvoSuite [49], in a controlled fashion, and
found that EvoSuite consistently produced test suites with
higher coverage on Defects4J defects’ code. This finding is
consistent with prior analyses [118]. Accordingly, we
elected to use EvoSuite as our test suite generator.

EvoSuite uses randomness in its test generation and contin-
ues to generate tests up to a given time budget, so we experi-
mented with different ways to run EvoSuite to maximize
coverage.We ran EvoSuite using branch coverage as its target
maximization search criterion (the default option) twenty
times per defect, with different seeds, ten times for 3 minutes
and ten times for 30 minutes. We found low variance in the
coverage produced by the generated test suites: the 3-minute
test suites had a variance in statement coverage of 0.6 percent
and the 30-minute test suites of 0.8 percent. We also found
that the improvement between the mean statement coverage
of the 3-minute test suites and themean statement coverage of
the 30-minute test suites was low (from 68 to 72 percent),
suggesting that longer time budgets would not signifi-
cantly improve coverage. Merging ten 3-minute test suites
resulted in higher statement coverage than a single average
30-minute test suite (77 versus 72 percent). Finally, merg-
ing ten 30-minute test suites resulted in 81 percent state-
ment coverage, on average, the highest we observed. We
thus used the ten merged 30-minute test suites as preferred
combination mechanism to optimize test suite coverage.

We followed the following automated process for generat-
ing the test suites: For each defect, we ran EvoSuite (v1.0.3)
ten times (on different seeds) with a 30-minute time budget
and merged the ten resulting test suites, removing duplicate
tests. We then checked if the resulting test suite covered
100 percent of the statements in the developer-modifiedmeth-
ods, and at least 80 percent of the statements in each of the
developer-modified classes. For 34 out of the 106 defects, this
algorithm generated test suites that satisfied the coverage cri-
terion. In the course of our study, a new version of EvoSuite
was released. We attempted to augment the test suites by

818using this later version of EvoSuite (v1.0.6), but this new ver-
819sion did not produce better-coverage test suites than v1.0.3 on
820its own. However, using statement-coverage as the target
821maximization search criterion (instead of the default branch
822coverage) did produce test suites that, when combined with
823the previous v1.0.3-generated test suites, improved coverage.
824This process resulted in test suites that satisfied the coverage
825criterion for a total of 62 defects (11 Chart, 6 Closure, 11 Lang,
82630Math, and 4 Timedefects).
827We then examined the generated test suites that met one,
828but not both of the coverage criteria and attempted to manu-
829ally augment them to fully meet the other criterion. Examin-
830ing these cases, we found that EvoSuite often was unable to
831cover statements that required the use of specific hard-to-
832generate literals present in the code. For example, covering
833some portions of code from the Closure project (a JavaScript
834compiler) required tests that take as input specific strings of
835JavaScript source code, such as an inline comment. Mean-
836while covering some exceptional Lang code required spe-
837cific strings to trigger the exceptions. The probability of the
838random strings generated and selected by EvoSuite to
839match the necessary strings to cover these portions of the
840code is negligibly small. We, therefore, manually examined
841the source code and created test cases using the necessary
842literals. Augmenting the EvoSuite-generated test suites with
843these manually-written tests resulted in high quality test
844suites for 9 more defects (1 Chart, 3 Closure, 4 Lang, and
8452 Math, defects) that satisfied the coverage criteria.
846In total, this process produced test suites that satisfied the
847coverage criterion for 71 of the 106 defects (12Chart, 9 Closure,
84814 Lang, 32Math, and 4 Timedefects). The test suites varied in
849size from 59 to 7,164 tests, with the mean test suite containing
8501,194 tests and themedian test suite 648 tests.
851We restrict our study to these 71 defects. An additional 5
852defects had 80 percent or higher coverage on the developer-
853modified classes, but did not have 100 percent coverage on
854the developer-modified methods. The mean statement cov-
855erage for the developer-modified classes for these 71 defects
856is 96.7 percent and the median is 98.7 percent (with means
857and medians for the modified methods both 100 percent, as
858required by the coverage criterion). Fig. 2 summarizes these
859statistics for the 71 defects used in our study and the 106
860defects patched by at least one repair technique.
861We examined the 35 defects for which our process failed
862to generate adequate test suites to understand why this hap-
863pened. We found that the uncovered code was either
864unreachable, the default code at the end of a switch

Fig. 2. Statement coverage of the EvoSuite-generated test suites for the
106 Defects4J defects patched by at least one repair technique in our
study, and for the 71-defect subset for which our generated test suites
covered 100 percent of all developer-modified methods and at least 80
percent of all developer-modified classes.
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statement, a branch of a complex set of nested if statements,
exception declarations or catch clauses for exceptions not
thrown by local code (but possibly thrown elsewhere).
Unfortunately, because significant domain knowledge and
project-specific understanding are necessary to determine
whether such code is reachable and to construct an input
that would execute this code, we could not definitively
eliminate it as unreachable, and elected to omit these defects
from our study.

5 EMPIRICAL MEASUREMENTS OF REPAIR

QUALITY

WeevaluateG&V repair via a series of controlled experiments
using the Defects4J dataset described in Section 4.1 and test
suites described in Section 4.2. Section 5.1 outlines our experi-
mental procedure for repairing defects using GenProg, Par,
SimFix, and TrpAutoRepair and reports how successful the
techniques are at producing patches on real-world defects.
Section 5.2 examines the quality of those patches and meas-
ures which factors affect patch quality. Finally, Section 5.3
exploresmethods for improving patch quality.

5.1 Ability to Produce a Patch

Research Question 1: Do G&V techniques produce patches
for real-world Java defects?

We used each repair technique to attempt to repair each of
the 357 defects in the Defects4J benchmark providing the
developer-written test suite to all the techniques to guide
repair. For GenProg, Par, and TrpAutoRepair, which select
random mutation operators to generate a patch, we attempt
to repair each defect 20 times with a timeout of 4 hours each
time, using a different seed each time, for a total of
357 " 20 ¼ 7;140 attempted repairs, per repair technique.
For SimFix, which is deterministic, we attempt the repair
once for each defect using the default timeout of 5 hours, for
a total of 357 attempted repairs. This results in a grand total
of 7;140 " 3 þ 357 ¼ 21;777 repair attempts. We ran these
techniques using a cluster of 50 compute nodes, each with a
Xeon E5-2680 v4 CPU with 28 cores (2 processors, 14 cores
each) running at 2.40 GHz. Each node had 128 GB of RAM
and 200 GB of local SSD disk. We launched multiple repair
attempts in parallel, each requesting 2 cores on one compute
node. The 20 repair attempts provided a compromise
between the likely ability to make statistically significant
findings, and the computational resources necessary to run
our experiments. The computational requirements are sig-
nificant: Repairing a single defect 20 times with a 4-hour
timeout can take 80 hours per defect per repair technique,
and 10 CPU-years for 357 defects and 3 repair techniques.

The repair techniques’ parameters affect how they attempt
to repair defects. For GenProg, Par, and TrpAutoRepair
(implemented in JaRFly), we used the parameters from prior
work that evaluates these techniques on C programs [69], [77],
[111].We set the population size (PopSize) to 40 and themax-
imumnumber of generations to 10 for all three techniques. For
GenProg and TrpAutoRepair, we uniformly equally weighted
the mutation operators append, replace, and delete. For

920Par, we uniformly equally weighted the mutation operators
921FUNREP, PARREP, PARADD, PARREM, EXPREP, EXPADD,
922EXPREM, NULLCHECK, OBJINIT, RANGECHECK, SIZECHECK,
923and CASTCHECK. For GenProg and Par, we set SampleFit to
92410 percent of the test suite. For fault localization, all three tech-
925niques apply a simple weighting scheme to assign values to
926statements based on their execution by passing and failing
927tests. For Par and TrpAutoRepair, we set negativePath-
928Weight to 1.0 and positivePathWeight to 0.1, based on
929prior work [69], [111]. For GenProg, we set negativePath-
930Weight to 0.35 and positivePathWeight to 0.65 [78]. For
931all remaining parameters, we use their default values from
932prior work [69], [77], [111]. For SimFix, we use its open-source
933implementationwith its default configuration [62].
934We describe the complete set of parameters at https://
935github.com/LASER-UMASS/JavaRepair-replication-

936package/wiki/Configuration-parameter-details/.
937Fig. 3a reports the results of the repair attempts. GenProg
938patches 49 out of 357 defects (6 Chart, 15 Closure, 9 Lang,
93918 Math, and 1 Time) and produces a total of 585 patches,
940out of which 255 are unique. Par patches 38 out of 357
941defects (3 Chart, 12 Closure, 7 Lang, 15 Math, and 1 Time),
942and produces a total of 288 patches, out of which 107 are
943unique. SimFix patches 68 out of 357 defects (8 Chart, 15 Clo-
944sure, 13 Lang, 27 Math, and 5 Time) and produces a total of
94576 patches, out of which 73 are unique. TrpAutoRepair
946patches 44 out of 357 defects (7 Chart, 12 Closure, 8 Lang,
94716 Math, and 1 Time) and produces a total of 513 patches,
948out of which 199 are unique. Overall, at least one technique
949produced at least one patch for 106 out of the 357 defects.
950All techniques produced at least one patch for 12 defects.
951SimFix most often produced patches (21.3 percent of the
952attempts) and produced patches for the most defects
953(19.0 percent). Fig. 3b shows the distributions of unique
954patches, per project, generated by each of the four techniques.
955Compared to prior studies onCdefects [122], [79], [111], the
956Java repair mechanisms produce patches on fewer repair

Fig. 3. (a) GenProg, Par, SimFix, and TrpAutoRepair produce patches
1,462 times (6.7 percent) out of the 21,777 attempts. At least one tech-
nique can produce a patch for 106 (29.7 percent) of the 357 real-world
defects. (b) The distributions of unique patches produced by the four
techniques are similarly shaped.
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attempts and for fewer defects. On C defects, GenProg pro-
duced patches for between 47 percent (ManyBugs defect data-
set) and 60 percent (IntroClass defect dataset) and
TrpAutoRepair produced patches for between 52 percent
(ManyBugs) and 57 percent (IntroClass) defects. It is not sur-
prising that on real-world defects, the rate is lower. Our find-
ings are also consistent with prior work applying G&V repair
to Java defects, which found techniques to produce patches for
9.8–15.6 percent of the defects [90]. In a prior study on Java
defects, Par produced patches for 22.7 percent of the
defects [69]. While that study’s defects also came from real-
world software projects, it is possible that the complexity of
Defects4J defects results in the lower patch rates for Par. Some
of the prior study’s defects came fromLang andMath, projects
that are also part of Defects4J (though adifferent set of defects),
and our results on those projects are similar to those in the
prior study [69]. Even though SimFix patches more defects
(19.0 percent) than other techniques, the fraction of defects
patched by SimFix is still much lower (19.0 versus 47 percent)
than that those obtained using repair techniques for C defects.

Answer to Research Question 1:We conclude thatG&V tech-
niques do produce patches on real-world Java defects,
though the rate of patch production is lower than on C
defects.

5.2 Patch Quality

Section 5.1 showed that G&V techniques are able to patch
29.7 percent of the real-world defects inDefects4J. This section
explores the quality of the produced patches and measures
the factors that affect it. These experiments are based on the
71 defects for which we are able to generate high-quality eval-
uation test suites (recall Section 4.2). These 71 defects are a
subset of the 106 defects for which at least one repair tech-
nique produced at least one patch (recall Fig. 2).

5.2.1 Patch Overfitting

Research Question 2: How often and how much do the
patches produced by G&V techniques overfit to the
developer-written test suite and fail to generalize to the
evaluation test suite, and thus ultimately to the program
specification?

Methodology. To measure the quality of a produced patch,
we start with the defective code version, apply the patch to
that code, and execute the generated evaluation test suite.
We call the total number of tests executed in the evaluation
test suite Ttotal and the number of tests the patched version
passes Tpass. The quality of a patch is Tpass

Ttotal
, as defined by

prior work [122]. A patch that passes all the tests in the eval-
uation test suite has 100 percent patch quality.

We also measure the quality of the defective code version
by executing the evaluation test suite prior to applying the
patch. This allows us to identify the quality improvement
due to the patch.

Results. First, we consider the quality of the patches auto-
mated program repair techniques produce. Fig. 4 shows the
distributions of the quality of the patches produced by each
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10291030technique. Due to the nature of the space of possible patches,
1031all four techniques produce the same patch for some defects,
1032which, for example, caused the minimum exhibited quality
1033patch to be identical for all four techniques. Overall,
103474.1 percent of the patches (GenProg: 75.7 percent, Par:
103586.2 percent, SimFix: 53.9 percent, and TrpAutoRepair:
103680.5 percent), on average, failed at least one test, thus overfit-
1037ting to the specification and failing to fully repair the defect.
1038The mean quality of the patches varied from 95.7 to
103996.4 percent. The relatively high fraction is not necessarily a
1040proportional indication of the quality of repair: Defective code
1041versions already pass 98.3 percent of the tests, on average, so a
1042patch that passes 96.0 percent of the tests may not even be an
1043improvement over the defective version.
1044Accordingly, next, we consider whether patches improve
1045program quality. Fig. 5 shows, for each of the patched defects,
1046the change in the quality between the defective version and
1047the patched version.A negative value implies that the patched
1048version failed more evaluation tests than the defective ver-
1049sion. When a technique produced multiple distinct patches
1050for a defect, for this comparison, we used the highest-quality
1051patch. For GenProg, 33.3 percent of the defects’ patches
1052improved the quality, 42.5 percent showed no improvement,
1053and the remaining 24.2 percent decreased quality. For Par,
105420.0 percent improved, 40.0 percent showed no improvement,
1055and 40.0 percent decreased quality. For SimFix, 45.8 percent
1056improved, 35.5 percent showed no improvement, and
105716.7 percent decreased quality. For TrpAutoRepair,
105832.3 percent improved, 25.8 percent showed no improvement,
1059and 41.9 percent decreased quality. For Par and TrpAutoRe-
1060pair, more patches broke behavior than repaired it, and the
1061decrease in quality was, on average, larger than the improve-
1062ment. For all the techniques, the majority (89 out of 137,
106365.0 percent) of the patches decrease or fail to improve quality,
1064and more than a quarter (39 out of 137, 28.5 percent) of the
1065patches break evenmore tests than they fix.
1066These results are consistent with the previous findings
1067obtained using C repair techniques on small programs,
1068where the median GenProg patch passed only 75 percent
1069(mean 68.7 percent) of the evaluation test suite and the
1070median TrpAutoRepair patch passed 75.0 percent of the
1071evaluation test suite (mean 72.1 percent) [122].

Fig. 4. The quality of the patches the repair techniques generated when
using the developer-written test suite varied from 64.8 to 100.0 percent.
The distributions of patch quality is skewed toward the 100 percent end. On
average, 74.1 percent (GenProg: 75.7 percent, Par: 86.2 percent, SimFix:
53.9 percent and Trp: 80.5 percent) of the patches failed at least one test.
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Answer to Research Question 2: We conclude that tool-gen-
erated patches on real-world Java defects often overfit to
the test suite used in constructing the patch, often break-
ing more functionality than they repair.

5.2.2 Test Suite Coverage and Size

Research Question 3: How do the coverage and size of the
test suite used to produce the patch affect patch quality?

Intuition suggests that higher coverage test suites used to pro-
duce patches should lead to better-quality patches. Prior
work empirically supports this intuition for G&V program
repair [122]; however, that work approximated the test suite
coverage using test suite size and was not on real-world
defects. In this study, we use real-world defects, measure the
actual statement-level code coverage instead of an estimate or
proxy, and control for confounding factors, such as test suite
size, defects’ project, and the number of failing tests. In fact,

1088prior studies of test suites have identified test suite size as
1089often a confounding factor [67]. For our dataset, we found sta-
1090tistically significant weak positive correlation (r ¼ 0:14)
1091between test suite size and statement-level coverage of the
1092developer-written test suite on the defective code version.
1093This is consistentwith the prior studies [67].
1094Methodology. To measure the relationship between test
1095suite coverage and repair quality, we attempted to create
1096subsets of the developer-written test suite of varying cover-
1097age while controlling for test suite size, number of failing
1098tests, and the defects themselves. However, we found that
1099there is very low variability in the coverage of the individ-
1100ual tests and so we could not control for the test suite size
1101while varying coverage. Hence, we generate the subsets
1102while controlling for the number of failing tests and defects.
1103Since test suite coverage and test suite size are positively
1104correlated, analyzing their association with repair quality
1105individually would not be appropriate. Thus, we use multi-
1106ple linear regression to identify the relationship between
1107two explanatory variables (test suite coverage and test suite
1108size) and a response variable (repair quality). Unlike prior
1109work [122], our methodology does not need to control for

Fig. 5. Patch overfitting. Change in quality between the defective version and the patched version of the code. The median patch neither improves
nor decreases quality. While more GenProg patches improve the quality than decrease it, the opposite is true for Par and TrpAutoRepair patches,
and, on average, patches break more functionality than they repair. The data presented are for the 45 defects with high-quality evaluation test suites,
of which GenProg produced patches for 33, Par for 25, and TrpAutoRepair for 31.
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the ratio of passing to failing tests because most of the
Defects4J defects have only a single failing test. (Section 5.2.3
will discuss the lack of variability in the number of failing
tests further.)

For this analysis, we considered the 71 defects for which
we created high-quality evaluation test suites. For each of
the defects, we created subsets of the developer-written test
suite of varying coverage. Each subset contains all the tests
that evidence the defect, and randomly selected subsets of
the rest of the tests. We then used the repair techniques to
produce patches using these test suite subsets (using
the methodology from Section 5.1), and then computed the
quality of the patches produced for each defect using the
automatically-generated evaluation test suites. We excluded
defects for which we could not generate test suites with suf-
ficient variability in coverage, and, as before, for which we
did not have sufficiently high-quality evaluation test suites.
We describe the details of our methodology next.

To generate the test suite subsets for each defect, we first
compute the minimum and the maximum code coverage
ratio of the developer-written test suite of that defect. The
minimum code coverage ratio (covmin) of a developer-written
test suite is the statement coverage on the defective code
version of just those tests that fail on the defective code ver-
sion and pass on the developer-repaired code version. We
include all of these tests in every subset we generate, so
their coverage is the minimum possible coverage. The maxi-
mum code coverage ratio (covmax) is the statement coverage on
the defective code version of the entire developer-written
test suite (the largest possible subset). For example, for
Chart 1, there is 1 failing test and 245 passing tests that exe-
cute the developer-modified class AbstractCategoryI-

temRenderer. The minimum coverage, (covmin), for Chart
1 is the statement coverage of the single failing test on the
developer-modified class. This test covers 18 out of the
519 lines, (3.5 percent). The maximum coverage, (covmax),
for Chart 1 is the statement coverage of the full test suite
(246 tests) on the developer-modified class. This test suite
covers 300 out of the 519 lines, (57.8 percent).

We then compute the potential test suite coverage vari-
ability as the difference between the minimum and the max-
imum: Dcov ¼ covmax % covmin. Defects whose Dcov < 25%
lack sufficient variability in statement coverage to be used
in this study, and we discard them. In our study, we dis-
carded 15 defects for this reason (2 Chart, 1 Closure, 1 Lang
and 11 Math) out of the 71 defects that had at least one
repair technique produce at least one patch and had a high-
quality evaluation test suite (recall Section 4.2).

For each of the 56 remaining defects, we chose five target
coverage ratios evenly spaced between the minimum and
the maximum: covmin þ 1

5Dcov, covmin þ 2
5Dcov, covmin þ 3

5Dcov,
covmin þ 4

5Dcov, and covmin þ Dcov ¼ covmax.
We used these target ratios to create 25 distinct test

suites, 5 for each of the targets. For each target ratio c, we
attempted to create five distinct test suite subsets within a 5
percent margin of c. (Note that there are typically multiple
ways to achieve even covmax coverage.) Each of the five test
suite subsets started with all tests that fail on the defective
code version and pass on the developer-repaired code ver-
sion. We then iteratively attempted to add a uniformly ran-
domly selected passing test case, without replacement, one

1171at a time, as long as it did not make the subset’s coverage
1172exceed the target by more than 5 percent, stopping if the
1173subset’s coverage was within 5 percent of the target. If we
1174attempted to add a test 500 times and failed to reach the tar-
1175get, we stopped. For 11 of the 56 defects (2 Chart, 3 Closure,
11761 Lang, and 5 Math), the sampling algorithm was unable to
1177generate five distinct test suite subsets for all of the targets,
1178so we discard these 11 defects. We consider the remaining
117945 defects for the analysis.
1180Finally, for each technique, we computed a multiple lin-
1181ear regression considering patch quality as the dependent
1182variable and test suite coverage and size as independent
1183variables.
1184Results. For each of the 45 defects, we had 25 test suite sub-
1185sets, and we attempted each repair 20 times using GenProg,
1186Par, and TrpAutoRepair on different seeds, and one time
1187using SimFix. In total, these 23,625 repair attempts produced
11889,144 patches. Fig. 6a shows the distribution of these patches.
1189GenProg produced at least one patch for 29 out of the
119045 defects, Par 25, SimFix 34, and TrpAutoRepair 29. (Gen-
1191Prog: 6 Chart, 2 Closure, 10 Lang, 10 Math, and, 1 Time; Par:
11925 Chart, 1 Closure, 8 Lang, 10 Math, and, 1 Time; SimFix:
11936 Chart, 3 Closure, 8 Lang, 13 Math, and 4 Time; and TrpAu-
1194toRepair 6 Chart, 2 Closure, 10 Lang, 10Math, and, 1 Time.)
1195Fig. 6b shows the statistics of the quality of the patches
1196for those defects, created using the varying-coverage test
1197suites. The quality varied, with GenProg even producing
1198some patches that failed all evaluation test cases. Overall,

Fig. 6. Test suite coverage and size. (a) Distribution of the number of
patches produced using developer-written test suite subsets of varying
code coverage on the defective code version. (b) The quality of the
patches generated using varying-coverage test suites varied from 0.0 to
100.0 percent. On average, 75.2 percent (GenProg: 83.8 percent, Par:
86.7 percent, SimFix: 49.3 percent, and TrpAutoRepair: 81.0 percent) of
the patches failed at least one test. (c) A multiple linear regression
reports that test suite size and test suite coverage are strongly signifi-
cantly associated with patch quality (p < 0:001) except for coverage for
TrpAutoRepair).
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75.2 percent of the patches, on average, failed at least one
test in the evaluation test suite.

Next, for each technique, we created a multiple linear
regression model to predict the quality of the patches based
on the test suite coverage and size. Fig. 6c shows, for each
technique, the results of the regression model. All four fitted
regression models are strongly statistically significant
(p < 0:001) though with low R2 values. Test suite size was a
statistically significant predictor for patch quality for all four
techniques, with larger test suites leading to higher-quality
patches; however, with an extremely small effect size. Cover-
age was a less clear predictor: for TrpAutoRepair, the associ-
ation was not statistically significant (p > 0:1), and was
positive for GenProg and TrpAutoRepair, but negative for
SimFix and Par. We further detail each technique’s regres-
sion results next.

For GenProg, patch quality (on a 0–100 scale) is equal to
94:82 % 0:02ðcoverageÞ þ 0:02ðsizeÞ, where coverage is 100"
the fraction of code in the defective code version covered by
the test suite, and size is the normalized number of tests in the
test suite used to generate the patch. Thus, the quality of the
patch produced by GenProg decreases by 0.02 percent for
each 1 percent increase in the test suite coverage and increases
by 0.02 percent for each additional test in the test suite. While
both associations of test suite coverage and sizewith the patch
quality were statistically significant (p < 0:001), the magni-
tude is extremely small and the lowR2 value indicates little of
the variability is explained. We conclude that test suite cover-
age and test suite size are significant predictors of patch qual-
ity, but the magnitude of the effect is extremely small, for
GenProg.

For Par, the quality of the patch is equal to 91:18%
0:10ðcoverageÞ þ 0:03ðsizeÞ. Thus, the quality of the patch pro-
duced by Par decreases by 0.10 percent for each 1 percent
increase in the test suite coverage and increases by 0.03 percent
for each additional test in the test suite. Again, while both
associations of test suite coverage and test suite size with
patch quality are strongly statistically significant (p < 0:001),
the magnitude is extremely small and the low R2 value indi-
cates little of the variability is explained. We conclude that
both test suite coverage and test suite size are significant pre-
dictors of patch quality, but the magnitude of the effect is
extremely small, for Par.

For SimFix, the quality of the patch is equal to 98:43%
0:04ðcoverageÞ þ 0:002ðsizeÞ. Thus, the quality of the patch
produced by SimFix decreases by 0.04 percent for each 1
percent increase in the test suite coverage and increases by
0.002 percent for each additional test in the test suite. We
observe strongly statistically significant (p < 0:001) associa-
tions of test suite coverage and test suite size with patch
quality however, the magnitude is extremely small and the
low R2 value indicates little of the variability is explained.
We conclude that both test suite coverage and test suite size
are significant predictors of patch quality, but the magni-
tude of the effect is extremely small, for SimFix.

For TrpAutoRepair, the quality of the patch is equal to
95:80 þ 0:0003ðcoverageÞ þ 0:006ðsizeÞ. The equation implies
that the quality of the patch produced by TrpAutoRepair
increases by 0.0003 percent for 1 percent increase in the test
suite coverage and increases by 0.006 percent for each addi-
tional test in test suite. The association of test suite size with

1260patch quality is strongly statistically significant (p < 0:001),
1261but that is not the case for test suite coverage. And, again,
1262the magnitude of the association is extremely small and the
1263low R2 value indicates little of the variability is explained.
1264We conclude that test suite size is a significant predictor of
1265patch quality, but the magnitude of the effect is extremely
1266small, for TrpAutoRepair.

1267Answer to Research Question 3: We conclude that, surpris-
1268ingly, both test suite size and test suite coverage have
1269extremely small but statistically significant correlations
1270with patch quality (positive for test suite size and nega-
1271tive for test suite coverage) produced using automatic
1272program repair techniques.

1273Previous findings for C program repair techniques [122]
1274considered only test suite size and found that for both Gen-
1275Prog and TrpAutoRepair, larger test suites improved patch
1276quality.

12775.2.3 Defect Severity

1278Research Question 4: How does the number of tests that a
1279buggy program fails affect the degree to which the gen-
1280erated patches overfit?

1281The number of failing tests that trigger the defect are likely to
1282be proportional to the number constraints that repair techni-
1283ques need to satisfy to generate a repair. The goal of this
1284research question is tomeasure the effect of the number of fail-
1285ing tests in the test suite used for producing the patches on the
1286quality of patches generated usingG&V techniques.
1287Methodology. To measure the effect of the number of fail-
1288ing tests in the test suite used to guide repair, we selected
1289those defects that had at least 5 failing tests in the devel-
1290oper-written test suite and for which we are able to create
1291high-quality evaluation test suite (recall Section 4.2). Unfor-
1292tunately, there were only 5 such defects in the 71-defect sub-
1293set of Defects4J. For each of the five defects, we created 21
1294test suites subsets. We did this by first computing five
1295evenly distributed target sizes s: 15 f ,

2
5 f ,

3
5 f ,

4
5 f , and f , where

1296f is the number of failing tests in the developer-written test
1297suite (rounding to the nearest integer). Then, for each s
1298(except s ¼ f), we created 5 test suite subsets by including
1299every passing test from the developer-written test suite, and
1300uniformly randomly sampling, without replacement, s of
1301the failing tests. This created 20 test suite subsets. We also
1302included the entire developer test suite as a representative
1303of the s ¼ f target, for a total of 21 test suite subsets. We
1304then used the four automated repair techniques to attempt
1305to patch the defects using each of the test suite subsets, fol-
1306lowing the methodology described in Section 5.1. Our meth-
1307odology controls for the number of passing tests, unlike the
1308prior study [122].
1309Both patch quality and the number of failing tests in the
1310test suite used to guide repair are continuous variables, so
1311we measure the association between these two variables
1312using the Pearson correlation coefficient. This is typical for
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measuring the linear relationship between two continuous
random variables.

Results. Fig. 7a shows the frequency distribution of failing
tests across the 71 defects for which at least one of the four
techniques produced at least one patch, and for which we
were able to create a high-quality evaluation test suite. Of
these 71 defects, only 5 defects, Chart 22, Chart 26, Closure
26, Closure 86, and Time 3, have at least five failing tests.

Fig. 7b shows, for each technique, the quality of the patches
produced, as a function of the fraction of the failing tests in the
test suite used to guide repair. For GenProg and TrpAutoRe-
pair, we observe statistically significant (p < 0:05) positive
correlations (GenProg: r ¼ 0:18, p ¼ 0:006; TrpAutoRepair:
r ¼ 0:19 p ¼ 0:008) between patch quality and the number of
failing tests in the test suite. The 95 percent confidence interval
for both techniqueswas ½0:05; 0:30).

Par did not produce any patches for any of the 5 defects
considered for this analysis. Simfix only produced three
patches and did not patch any of the 5 defects when using
partial failing tests. Analyzing the execution logs of SimFix
revealed that it was not able to localize the bug using partial
failing tests. This suggests that fault localization strategy
used by repair techniques could be a confounding factor
when measuring the effect of the number of failing tests on
patch quality. (Recall that SimFix and JaRFly use different
fault localization techniques.)

Answer to Research Question 4:We conclude that the num-
ber of tests that a buggy program fails has a small but
statistically significant positive effect on the quality of
the patches produced using automatic program repair
techniques and that this finding depends on the fault
localization strategy used by the repair techniques.

5.2.4 Test Suite Provenance

Research Question 5: How does the test suite provenance
(whether it is written by developers or generated auto-
matically) influence patch quality?

1349Prior work has suggested that using automatic test generation
1350might improve program repair quality by increasing the cover-
1351age of the test suite used to produce the repair [122], [135],
1352[141]. Augmenting a developer-written test suitewith automat-
1353ically-generated tests requires an oracle that specifies the
1354expected test outputs. The unpatched program can be used as
1355that oracle [135], [141], but that enforces the assumption that
1356the patch should avoid changing any behavior not explicitly
1357exhibited by the failing tests. Other implementations of the
1358same specification could similarly be used as an oracle [92], but
1359this is only possible whenmultiple implementations exist (e.g.,
1360if repairing a browser and the expected behavior can be
1361observed in an independent browser implementation) and
1362requires defects in the implementations to be independent,
1363which is often not the case in practice [70]. Finally, oracles can
1364perhaps be extracted from comments or natural language spec-
1365ifications, for example with Swami [97], Toradacu [53], Jdoc-
1366tor [17], or @tComment [124].
1367However, our earlier study found that evenwhen a perfect
1368oracle exists, using automatically-generated tests for program
1369repair resulted in much lower quality patches than using
1370developer-written tests (about 50 percent versus about
137180 percent quality) on small, student-written programs [122].
1372Thus, this research question sets out to evaluate the effective-
1373ness of using tests generated using EvoSuite as described in
1374Section 4.2 to produce patches usingG&V repair.
1375Methodology. In this experiment, we compared the patches
1376generated using developer-written test suites from Section 5.1
1377to patches generated using the EvoSuite-generated test suites.
1378A technical challenge in executing repair techniques using
1379EvoSuite-generated tests is a potential incompatibility between
1380the bytecode instrumentation of EvoSuite-generated tests with
1381the bytecode instrumentation done by code-coverage-measur-
1382ing tools employed by repair techniques for fault localization.
1383JaRFly uses JaCoCo [59] for fault localization and resolves
1384instrumentation conflicts by updating the runtime settings of
1385EvoSuite-generated tests (following official EvoSuite docu-
1386mentation).1 The EvoSuite-generated tests are compatible with

Fig. 7. Defect severity. (a) The distribution of the number of failing tests in the 71 defects for which at least one repair technique produces at least one
patch and has a high-quality evaluation test suite. (b) Linear regression between patch quality and the number of failing tests and Pearson’s correla-
tion show statistically significant positive correlations for GenProg and TrpAutoRepair.

1. http://www.evosuite.org/documentation/measuring-code-
coverage/
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JaCoCo, Cobertura [27], Clover [8], and PIT [30] code coverage
tools, but not with GZoltar [22]. Unfortunately, SimFix uses
GZoltar, and so could not be included in this experiment. For
GenProg, Par, and TrpAutoRepair, as before, we used the
developer-written patches as the oracle of expected behavior.

To control for the differences in the defects, properly
measuring the association between test suite provenance
and patch quality should be done using defects that can be
patched using both kinds of test suites. If the set of defects
patched using developer-written test suites differs from the
set of defects patched using the automatically-generated
test suites (as was the case in the earlier study [122]), then
the defects can be a confounding factor in the experiment.
For example, it is possible that more of the defects patched
using one of the types of test suites are easier to produce
high-quality patches for, unfairly biasing the results.

We thus started with the 68 defects for which at least one
of the three repair techniques (GenProg, Par, and TrpAu-
toRepair) was able to produce a patch when using the
developer-written test suites to guide repair, and first dis-
carded those defects for which the EvoSuite-generated test
suites did not evidence the defect. To evidence the defect, at
least one test in the test suite has to fail on the defective
code version. (By definition, all automatically-generated
tests pass on the developer-patched version, since that ver-
sion is the oracle for those tests.) For 31 out of the 68 defects,
automatically-generated test suites did not evidence the
defect. This left 37 defects (5 Chart, 4 Closure, 11 Lang,
16 Math, and 1 Time). We next executed each of the three
repair techniques on each of the 37 defects using the Evo-
Suite-generated test suites, using the methodology from
Section 5.1, thus executing 37 " 20 ¼ 740 repair attempts
per technique. Note that comparing repair techniques’
behavior with different test suites on these 37 defects is
unfair because one of the criteria they satisfied to be selected
is that at least one repair technique produced at least one
patch for the defect using the developer-written test suite.
Thus, for each technique, we identified the set of defects
that were patched both using developer-written and using
automatically-generated test suites. We call these the in-
common populations. Note that these populations are,
potentially, different for each technique.

To compare the quality of the patches on the in-common
patch populations, we use the nonparametric Mann-
Whitney U test. We choose this test because the two popula-
tions may not be from a normal distribution. This test meas-
ures the likelihood that the two populations came from the
same underlying distribution. We compute Cliff’s delta’s d
estimate to capture the magnitude and direction of the esti-
mated difference between the two populations. We also
compute the 95 percent confidence interval (CI) of the d
estimate.

Results. Fig. 8 summarizes our results. Fig. 8a reports data
for the 37 defects for which both test suites evidence the
defect. As expected, because of the aforementioned bias in the
selection of the 37 defects, using EvoSuite-generated test
suites produced fewer patches and patches for fewer defects
than using developer-written test suites. Using developer-
written test suites produced a patch on between 10.1 and
21.4 percent executions, while using EvoSuite-generated test
suites produced a patch on between 2.3 and 13.9 percent of

1448the executions. Using developer-written test suites produced
1449a patch for between 54.1 and 81.1 percent of the defects, while
1450using EvoSuite-generated test suites produced a patch for
1451between 5.4 and 45.9 percent of the defects.
1452In addition to the bias in defect selection, another possi-
1453ble reason that EvoSuite-generated test suites resulted in
1454fewer patches could be differences in the test suites. Fig. 8b
1455shows the distributions of the number of failing (defect-
1456evidencing) tests across the 37 defects for the two types of
1457test suites. EvoSuite-generated test suites typically had
1458more failing tests, perhaps contributing to it being more dif-
1459ficult to produce patches when using those test suites. Prior
1460work has shown that having a larger number of failing tests
1461correlated with lower patch production [98], [122].
1462We compared the quality of the patches produced using
1463the two types of test suites on the in-common populations.
1464Fig. 8c shows that for GenProg and TrpAutoRepair, the
1465mean and median quality of the patches produced using
1466the developer-written test suites are higher than of those
1467produced using EvoSuite-generated test suites. These differ-
1468ences are statistically significant (Mann-Whitney U test,
1469p ¼ 1:3 " 10% 11 for GenProg, and p ¼ 5:8 " 10% 11 for TrpAu-
1470toRepair). The d estimate computed using Cliff’s delta
1471shows a large effect size for the median patch quality of the
1472patches produced using EvoSuite-generated test suites
1473being lower for GenProg and TrpAutoRepair. The 95 percent
1474CI does not spans 0 for both techniques, indicating that,
1475with 95 percent probability, the two populations are likely
1476to have different distributions.
1477For GenProg, this comparison is on the 12 in-common
1478defects (Chart 5, Closure 22, Lang 43, Math 24, Math 40,
1479Math 49, Math 50, Math 53, Math 73, Math 80, Math 81,
1480and Time 19). On these defects, GenProg produced 73
1481patches using developer-written test suites and 93 patches
1482using EvoSuite-generated test suites (166 patches total). For
1483TrpAutoRepair, this comparison is on the 13 in-common
1484defects (Chart 5, Closure 22, Closure 86, Lang 43, Lang
148545, Math 24, Math 40, Math 49, Math 50, Math 73, Math
148680, Math 81, and Time 19). On these defects, TrpAutoRe-
1487pair produced 57 patches using developer-written test
1488suites and 96 patches using EvoSuite-generated test suites
1489(153 patches total).
1490Because the results for GenProg and TrpAutoRepair are
1491derived from 12 and 13 defects, respectively, there is hope
1492that these results will generalize to other defects. The same
1493cannot be said for Par. Par produced patches using both
1494types of test suites for only 2 out of the 37 defects (Closure
149522 and Math 50). Fig. 8c shows that the mean and median
1496quality of the patches produced using the developer-written
1497test suites are lower than those produced using EvoSuite-
1498generated test suites. This result is statistically significant
1499because Par produced 18 patches using developer-written
1500test suites and 17 patches using EvoSuite-generated test
1501suites, with p ¼ 5:3 " 10% 5 and the 95 percent CI interval
1502does not span 0. However, while significant for these
15032 defects, we cannot claim (nor do we believe that) this
1504result generalizes to all defects from this 2-defect sample.
1505Our finding is consistent with the earlier finding [122]
1506that provenance has a significant effect on repair quality,
1507and that for GenProg and TrpAutoRepair, developer-writ-
1508ten test suites lead to higher quality pathces. Surprisingly,
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the finding is opposite for Par (which was not part of the
earlier study), with automatically-generated tests leading to
higher-quality patches. Our study improves on the earlier
work in many ways: We control for the defects in the two
populations being compared, we use real-world defects,
and we use a state-of-the-art test suite generator with a rig-
orous test suite generation methodology. The earlier study
used a different generator (KLEE [21]) and aimed to achieve
100 percent code coverage on a reference implementation,
but the generated test suites were small.

Answer to Research Question 5: We conclude that test suite
provenance has a significant effect on repair quality,
though the effect may differ for different techniques. For
GenProg and TrpAutoRepair, patches created using
automatically-generated tests had lower quality than
those created using developer-written test suites. For a
small, perhaps non-representative number of defects,
Par-generated patches showed the opposite effect.

Fig. 8. Test suite provenance. (a) Using EvoSuite-generated test suites, automated program repair techniques were able to produce patches for 37 of
the the 68 defects. (b) The EvoSuite-generated test suites typically have more failing tests than the developer-written ones. (c) The box-and-whisker
plots compare patch quality on the in-common defect populations, showing the maximum, top quartile, median, bottom quartile, and minimum values,
with the mean as a red diamond. The quality of patches produced by GenProg and TrpAutoRepair using the EvoSuite-generated test suites is statisti-
cally significantly (Mann-Whitney U test) lower that those produced using developer-written test suites. For Par, the effect is reversed.
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5.3 Mitigating Overfitting

Research Question 6: Can overfitting be mitigated by
exploiting randomness in the repair process? Do differ-
ent random seeds overfit in different ways?

Because automated program repair aims to solve an under-
specified problem, there are often many possible patches.
This is the fundamental issue behind the repair quality prob-
lem. The partial specification — a test suite — fails to distin-
guish between patches that pass the tests and implement the
desired functionality and the patches that pass the tests but
fail to implement the desired functionality not encoded by the
partial specification. The search space of possible patches is
large [87] and navigating it in a way to improve the probabil-
ity of finding a high-quality patch [68], [87], [88], [135] is at the
heart of solving the repair quality problem.

An interesting observation is that the diversity of the
patches produced in such a way, even by a single technique,
may be used to improve the overall quality of a patch [122].
In essense, if each of the generated patches is wrong on the
unspecified part of the specification, but is wrong in a differ-
ent way, perhaps they can be combined in a way to produce
a higher-quality patch. Specifically, a super patch that simu-
lates the individual patches and then executes the plurality
behavior may avoid the pitfalls of individual patches.

This is a form of n-version programming, and it is subject
to the same constraints as n-version programming. Specifi-
cally, human program repair usually lacks the scale of diver-
sity required to effectively combine programs into n-versions
and meaningfully improve quality; correlations in faults of
human-written programs prevent a quality improvement
beyond some level [70]. Thus, testing if this approach works
for automatically generated patches is, in some sense, a mea-
sure of whether human-written and automatically-generated
patches differ in their diversity profiles.

Combining complex programs with side effects and
potential resource use and contention, including simulating
the execution of a set of patches in parallel, can be problem-
atic. For this study, we separate the question of how to com-
bine patches from the question of whether it might be
worthwhile to combine patches. We answer the latter ques-
tion. We simply say that if, given a set of patches for a
defect, the majority of the patches passes an evaluation test,
then it is possible that the n-version combination would
pass that test. If the overall quality of an n-version patch
across the entire evaluation test suite is higher than that of
the individual patches, then perhaps it is worthwhile to
attempt to combine them. Conversely, if the n-version patch
quality is no better than the individual patches, combining
is unlikely to improve quality.

Methodology. In Section 5.1, we described executing the
four repair techniques on all 357 Defects4J defects using the
developer-written test suites, with 20 different seeds per
defect for GenProg, Par, and TrpAutoRepair, and once for
SimFix. This produced 634 unique patches (255 by GenProg,
107 by Par, 73 by SimFix, and 199 by TrpAutoRepair, recall
Fig. 3). For each technique, we identified the defects for
which that technique produced at least 3 distinct patches.

1584For these defects, we then evaluated how the potential
1585n-version patch would perform by executing the evaluation
1586test suite on each patch and considering the n-version to
1587pass the test if the strict majority of the patches passed the
1588test. For GenProg, 30 defects qualified for this experiment, 9
1589for Par, and 25 for TrpAutoRepair. SimFix could not be
1590used for this analysis because it did not generate more than
1591two distinct patches for any defect.
1592To compare the quality of the n-version and individual
1593programs, we use the nonparametric Mann-Whitney U test.
1594We choose this test because our data may not be from a nor-
1595mal distribution. We compute Cliff’s delta’s delta estimate to
1596capture the magnitude and direction of the estimated differ-
1597ence between the two populations. We also compute the
159895 percent confidence interval (CI) of the d estimate.
1599Results. Fig. 9 compares the quality of the n-version
1600patches to the individual patches that make up those n-ver-
1601sion patches. The Mann-Whitney U test indicates the differ-
1602ences between the patch quality of the individual patches
1603and the n-version patches are not statistically significant
1604and the d estimate suggests the differences are negligible.

Answer to Research Question 6: We conclude that auto-
mated program repair techniques’ patches lack the
diversity necessary to employ an approach based on n-
versioning to improve patch quality.

1609Our finding is consistent with the prior study for rela-
1610tively high-quality patches [122]. However, the earlier study
1611found that when patch quality was low (e.g., because of a
1612low-quality test suite being used to repair the defect) the
1613patch diversity may have been sufficient to improve qual-
1614ity [122]. This study does not explore that part of the ques-
1615tion because the patches we observe for the Defects4J
1616defects tend to be of relatively-high quality.

6 DISCUSSION

1618Our main finding is that patches produced by Java G&V auto-
1619mated program repair techniques often overfit to the tests used
1620to produce those patches. The most important implication of
1621our work is that research is needed into improving program
1622repair techniques to produce higher-quality patches, or at least
1623identifying and discarding lower-quality ones. Researchers
1624can use the patch quality evaluation methodology and high-
1625quality test suites we have developed to evaluate their techni-
1626ques on real-world defects and demonstrate improvements
1627over the state-of-the-art within this important dimension.
1628We observed that test-suite size correlates with higher-
1629quality patches, and test-suite coverage correlates with lower-
1630quality patches, though both effects are extremely small.
1631These findings, surprisingly, suggest that improving test
1632suites used for repair is unlikely to lead to better patches.
1633Future research should explore if there exists other guidance
1634developers can use to improve their test suites to help pro-
1635gram repair produce higher-quality patches.
1636Controlling for fault localization strategy, the number of
1637tests a buggy program fails is positively correlated with
1638higher-quality patches. On its face, this is surprising because
1639fixing a larger number of failing tests usually requires fixing
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more behavior (although it is certainly possible for a small bug
to cause many tests to fail, and for a large bug to cause only
one test to fail). The key observation here is that fault localiza-
tion can be a confounding factor. A larger number of failing
tests can help fault localization identify the correct place to
repair a defect, improving the chances the technique can pro-
duce a patch. A recent study similarly found that fault locali-
zation can have a significant effect on repair quality [3]. In our
study, we observe cases in which SimFix failed to localize a
defect, and therefore failed to produce a patch when given
fewer failing tests, butwas able to do sowithmore failing tests
(recall Section 5.2.3).

We found that human-written tests are, usually, better
for program repair than automatically-generated ones. This
suggests that automatically generating tests to augment the
developer-written tests may not help program repair. How-
ever, the method of generating the tests likely matters, and
future research should study that relationship, in particular,
exploring whether new approaches that generate tests from
natural-language specifications [17], [97] are helpful.

Finally, we observed that Java G&V repair techniques pro-
duce patches for more defects than C G&V repair techniques.
Future research could target understanding the differences in
the languages that cause this and improving the fix space and
repair strategies used by the Java repair techniques.

6.1 Limitations
Research questions each impose specific requirements on the
benchmark that can be used effectively to evaluate them. It is

1668challenging for a single benchmark to satisfy these require-
1669ments for a diverse set of research questions, such as the ones
1670we have explored in this paper. For example, the majority of
1671the Defects4J defects have a single failing test, which makes it
1672hard to study the association between the number of failing
1673tests and patch quality. Similarly, a lack of variability in the
1674statement coverage of the developer-written tests makes it
1675hard to study the relationships that involve that coverage.
1676These shortcomings in the benchmark may reduce the
1677strength of the results. Nevertheless, this paper has developed
1678amethodology that can be applied to other benchmarks to fur-
1679ther study these questions.
1680JaRFly, our Java Repair framework, can help future
1681researchers build new Java repair techniques. Our method-
1682ology for creating high-quality evaluation test-suites can be
1683used to do so for new benchmarks, and the instances of
1684evaluation test suites we have created for Defects4J can be
1685used for future evaluations on that benchmark in a repro-
1686ducible manner.
1687A recent study identified the evaluation-test-suite-based
1688approach to be reproducible, if conservative [72]: Evaluation
1689test-suites may miss identifying some overfitting patches, but
1690every patch they identify as overfitting, does so. This
1691approach is complementary to manual inspection, which is
1692less reliable but can identify some instances of overfitting that
1693evaluation test suitesmiss [72]. Future research should pursue
1694improving automated test generationwith the goal of produc-
1695ing higher-quality evaluation test suites for program repair.
1696Perhaps complementary to this challenge is recent work on
1697automatically generating test-suites from natural-language

Fig. 9. The box-and-whisker plots compare the quality of the individual and n-version programs made up of those patches, with the mean as a red
diamond. The p values (Mann-Whitney U test) suggest that there is no statistically significant difference in the quality of n-version and individual pro-
grams. We measure the effect size using Cliff’s Delta test. For the given dataset, n-version programs perform negligibly worse (indicated by the d esti-
mate) than individual versions for all the three techniques however, the 95 percent confidence interval spans 0 for all techniques suggesting that, with
95 percent probability, the quality of n-version program is likely to be same as individual program.
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software artifacts (instead of human-patched version of
code) [17], [97].

The generalizability of our results relies on the generaliz-
ability of the four program repair techniques we use in our
evaluation. While the classification of G&V techniques [132]
makes the argument that evaluations on representative tech-
niques should generalize to other techniques in this class,
evaluations on a larger, more diverse set of techniques pro-
vide stronger evidence. In this paper, we have evaluated four
G&V techniques. Applying our methodology to other techni-
ques would constitute a valuable replication study. However,
technological challenges prevented us from adding more
techniques. Some projects do not release their tools’ imple-
mentations, making reuse difficult. Some projects release only
compiled binaries of their tools and do not make the source
code public, which preventsminormodifications to those tool
necessary for running experiments. For example, we were
unable to use CapGen [134] in our evaluation because only its
compiled binary is publicly available and we could not mod-
ify it to run using only a subset of the developer-written test-
suites (as is required in Sections 5.2.2 and 5.2.3) and EvoSuite-
generated test-suites (as is required in Section 5.2.4). Finally,
some tools cannot be used as envisioned by the original proj-
ect because of environmental changes. For example, we were
unable to use ACS [137] in our evaluation because it was
designed to work with a particular query style that directly
interacts with GitHub, and GitHub has since disabled such
queries. More generally, a recent empirical study on Java pro-
gram repair techniques found that 13 out of the 24 (54 percent)
techniques studied could not be used, including ACS and
CapGen. The techniques could not be used because theywere
not publicly available, did not function as expected, required
extraordinarymanual effort to run (e.g.,manual fault localiza-
tion), or had hard-coded information to work on specific
defect benchmarks and could not bemodifiedwith reasonable
effort to work on others [41]. When possible, future research
that produces automated program repair techniques should
 aim to make their tools public, releasing their source code, 
and avoid encoding specific benchmarks or experimental 
set- ups into the tools themselves.

6.2 Threats to Validity
Our study uses Defects4J, a well-established benchmark of
defects in five real-world, open source Java projects. The
diversity, and real-world nature of Defects4J mitigates the
threat that our study will not generalize to other defects.
Defects4J is evolving and growing with new projects, and
our methodology can be applied to subsequently added
projects, and to other benchmarks, to further demonstrate
generalizability.

Our objective methodology for measuring patch quality
requires independently generated test suites and the quality
of those test suites affects our quality measurement. We use
state-of-the-art automated test generation techniques, Evo-
Suite [49] and Randoop [105], but even state-of-the-art tools
struggle to perform well on real-world programs. To miti-
gate this threat, we experimented with two test generation
tools and their configuration parameters, developed a meth-
odology for generating and merging multiple test suites,
and only perform our study on the 71 out of 106 defects (67

1757percent) whose evaluation test suites met strict coverage cri-
1758teria on the code affected by developer-written patches for
1759the defects.
1760Our test-suite-based methodology for measuring patch
1761quality inherently overestimates the quality of patches because
1762the evaluation test suites are necessarily partial specifications.
1763If our methodology identifies a test that fails on a patch, the
1764patch is necessarily incorrect; however, if our methodology
1765deems a patch of 100 percent quality, there could still exist a
1766hypothetical evaluation test the patch would fail. As a result,
1767our conclusions are conservative.We find that automated pro-
1768gram repair often overfits on real-world Java defects, but the
1769reality could be evenmore dire.
1770GenProg, Par, SimFix, and TrpAutoRepair are four repre-
1771sentative G&V automated program repair techniques. Prior
1772work has explored similarity unifying G&V repair and
1773developed an underlying theory, suggesting that results
1774from analysis of these four techniques should generalize to
1775other G&V techniques [132].
1776Our methodology follows the guidelines for evaluating
1777randomized algorithms [7] and uses repair techniques’ con-
1778figuration parameters from prior evaluations that explored
1779the effectiveness of those parameter settings [69], [77], [111].
1780We carefully control for a variety of potential confounding
1781factors in our experiments, and use statistical tests that are
1782appropriate for their context. We make all our code, test
1783suites, and data public to increase researchers being able to
1784replicate our results, explore variations of our experiments,
1785and extend the work to other repair techniques, test suite
1786generation tools, and defect datasets. JaRFly repair frame-
1787work is available from http://JaRFly.cs.umass.edu/

1788and our generated test suites and experimental results from
1789http://github.com/LASER-UMASS/JavaRepair-

1790replication-package/.

7 RELATED WORK

1792This section places our research in the context of prior work
1793on automated program repair (Section 7.1), studies of qual-
1794ity and other properties of automated program repair
1795(Section 7.2), and benchmarks of defects for use to evaluate
1796automated program repair (Section 7.3).

17977.1 Automatic Program Repair Techniques
1798There are two classes of approaches to repairing defects using
1799failing tests to identify faulty behavior and passing tests to
1800encode desirable behavior: G&V and semantic-based repair.
1801The G&V techniques use search-based software engineer-
1802ing [57] to generate many candidate patches and then validate
1803them against tests. GenProg [77], [80], [133] uses a genetic pro-
1804gramming heuristic [71] to search the space of candidate
1805repairs. TrpAutoRepair [111] limits its patches to a single edit,
1806uses random search insteadof genetic programming, and heu-
1807ristics to select which tests to run first, improving efficiency.
1808Prophet [88] and HDRepair [75] automatically learn bug-fix-
1809ing patterns from prior developer-written patches and use
1810them to produce candidate patches for new defects. AE [132]
1811is a deterministic technique that uses heuristic computation of
1812program equivalence to prune the space of possible repairs,
1813selectively choosingwhich tests to use to validate intermediate
1814patch candidates. ErrDoc [128] uses insights obtained from a
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comprehensive study of error handling bugs in real-world C
programs to automatically detect, diagnose, and repair the
potential error handling bugs in C programs. JAID [26] uses
automatically derived state abstractions from regular Java
code without requiring any special annotations and employs
them, similar to the contract-based techniques to generate
candidate repairs for Java programs. Qlose [32] optimizes a
program distance, a function of syntactic and semantic differ-
ences between the original buggy and the patched programs,
while generating candidate patches. DeepFix [56] and
ELIXIR [116] use learned models to predict erroneous pro-
gram locations along with patches. ssFix [135] uses existing
code that is syntactically related to the context of a bug to pro-
duce patches. CapGen [134] works at the AST node level and
uses context and dependency similarity (instead of semantic
similarity) between the suspicious code fragment and the can-
didate code snippets to produce patches. SapFix [89] and
Getafix [9], two tools deployed on production code at Face-
book, efficiently produce correct repairs for large real-world
programs. SapFix [89] uses prioritized repair strategies,
including pre-defined fix templates, mutation operators, and
bug-triggering change reverting, to produce repairs in real-
time. Getafix [9] learns fix patterns from past code changes to
suggest repairs for bugs that are found by Infer, Facebook’s
in-house static analysis tool. SimFix [63] considers the variable
name and method name similarity, as well as structural simi-
larity between the suspicious code and candidate code snip-
pets. Similar to CapGen, it prioritizes the candidate
modifications by removing the ones that are found less fre-
quently in existing patches. SketchFix [60] optimizes the can-
didate patch generation and evaluation by translating faulty
programs to sketches (partial programs with holes) and lazily
initializing the candidates of the sketches while validating
them against the test execution. Par [69] and SOFix [84] use
predefined repair templates to generate candidate patches.
These repair templates are created based on the repair pat-
terns mined from StackOverflow posts by comparing code
samples in questions and answers for fine-grained modifica-
tions. Synthesis techniques can also construct new features
from examples [28], [54], rather than address existing bugs.

The semantic-based techniques use semantic reasoning
to synthesize patches to satisfy an inferred specification.
Nopol [138], Semfix [101], DirectFix [93], and Angelix [94]
use SMT or SAT constraints to encode test-based specifica-
tions. S3 [74] extends the semantics-based family to incorpo-
rate a set of ranking criteria such as the variation of the
execution traces similar to Qlose [32]. JFIX [73] extends
Angelix [94] to target Java programs. SemGraft [92] infers
specifications by symbolically analyzing a correct reference
implementation instead of using test cases. Genesis [85],
Refazer [115], NoFAQ [33], Sarfgen [130], and Clara [55]
process correct patches to automatically infer code transfor-
mations to generate patches. SearchRepair [68] blurs the
line between G&V and semantic-based techniques by using
constraint-based encoding of the desired behavior to replace
suspicious code with semantically-similar human-written
code from elsewhere.

Our work does not introduce new repair techniques but
aims to help techniques properly evaluate their ability to pro-
duce high-quality patches for real-world defects. Our work
enables properly comparing techniques with respect to patch

1876quality, and encourages the creation of new techniqueswhose
1877focus is producing high-quality patches on real-world defects.
1878Empirical studies of fixes of real bugs in open-source projects
1879can also improve repair techniques by helping designers
1880select change operators and search strategies [66], [142].
1881Understanding how repair techniques handle particular clas-
1882ses of errors, such as security vulnerabilities [80], [108] can
1883guide tool design. For this reason, some automated repair
1884techniques focus on a particular defect class, such as buffer
1885overruns [119], [121], unsafe integer use in C programs [29],
1886single-variable atomicity violations [64], deadlock and live-
1887lock defects [82], concurrency errors [83], and data input
1888errors [5] while other techniques tackle generic bugs. Our
1889evaluation has focused on tools that fix generic bugs, but our
1890methodology can be applied to focused repair aswell.
1891In addition to repair, search-based software engineering
1892has been used for developing test suites [95], [129], finding
1893safety violations [4], refactoring [117], and project manage-
1894ment and effort estimation [11]. Good fitness functions are
1895critical to search-based software engineering. Our findings
1896indicate that using test cases alone as the fitness function
1897leads to patches that may not generalize to the program
1898requirements, and more sophisticated fitness functions may
1899be required for search-based program repair.

7.2 Empirical Studies Evaluating Automatic
Program Repair

1902Prior work has argued the importance of evaluating the
1903types of defects automated repair techniques can repair [98],
1904and evaluating the generated patches for understandability,
1905correctness, and completeness [96]. Yet many of the prior
1906evaluations of repair techniques have focused on what frac-
1907tion of a set of defects the technique can produce patches for
1908(e.g., [23], [31], [42], [64], [80], [90], [132], [133]), how quickly
1909they produce patches (e.g., [77], [132]), how maintainable
1910the patches are (e.g., [50]), and how likely developers are to
1911accept them (e.g., [1], [69]).
1912However, some recent studies have focused on evaluat-
1913ing the quality of repair and developing approaches to miti-
1914gate patch overfitting. For example, on 204 Eiffel defects,
1915manual patch inspection showed that AutoFix produced
1916high-quality patches for 51 (25 percent) of the defects, which
1917corresponded to 59 percent of the patches it produced [107].
1918While AutoFix uses contracts to specify desired behavior,
1919by contrast, the patch quality produced by techniques that
1920use tests has been found to be much lower. Manual inspec-
1921tion of the patches produced by GenProg, TrpAutoRepair
1922(referred to as RSRepair in that paper), and AE on a 105-
1923defect subset of ManyBugs [114], and by GenProg, Nopol,
1924and Kali on a 224-defect subset of Defects4J showed that
1925patch quality is often lacking in automatically produced
1926patches [90]. An automated evaluation approach that uses a
1927second, independent test suite not used to produce the
1928patch to evaluate the quality of the patch similarly showed
1929that GenProg, TrpAutoRepair, and AE all produce patches
1930that overfit to the supplied specification and fail to general-
1931ize to the intended specification [20], [122]. This work has
1932led to new techniques that improve the quality of the
1933patches [68], [86], [88], [135], [136], [141]. For example,
1934DiffTGen generates tests that exercise behavior differences
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between the defective version and a candidate patch, and
uses a human oracle to rule out incorrect patches. This
approach can filter out 49.4 percent of the overfitting
patches [135]. Using heuristics to approximate oracles can
generate more tests to filter out 56.3 percent of the overfit-
ting patches [136]. UnsatGuided uses held-out tests to filter
out overfitting patches for synthesis-based repair, and is
effective for patches that introduce regressions but not for
patches that only partially fix defects [141]. Automated test
generation techniques that generate test inputs along with
oracles [17], [53], [97], [124] or use behavioral domain con-
straints [6], [52], [65], [127], data constraints [45], [99], [100],
or temporal constraints [12], [13], [14], [43], [102] as oracles
could potentially address the limitations of the above-
described approaches.

Using independent test suites to measure patch quality is
imperfect, as test suites are partial and may identify some
incorrect patches as correct. On a dataset of 189 patches pro-
duced by 8 repair techniques applied to 13 real-world Java
projects, independent tests identify fewer than one fifth of
the incorrect patches, underestimating the overfitting prob-
lem [72]. However, on other benchmarks, the results are
much more positive. For example, on the QuixBugs bench-
mark, combining test-based and manual-inspection-based
quality evaluation could identify 33 overfitting patches,
while test-based evaluation alone identified 29 of the 33
(87.9 percent) [140]. While the human judgment is a crite-
rion not used by the repair tools for patch construction, it is
fundamentally different from the correctness criterion we
use in our evaluation, as it is often difficult for humans to
spot bugs even when told exactly where to look for
them [106]. Further, using independently generated test
suites instead of using the subset of the original test suite to
evaluate patch quality ensures that we do not ignore regres-
sions a patch is most likely to introduce. Poor-quality test
suites result in patches that overfit to those suites [114]. Our
evaluation goes further, demonstrating that high-quality,
high-coverage test suites still lead to overfitting, and identi-
fying other relationships between test suite properties and
patch quality.

Our work has focused on understanding the effective-
ness of repair techniques to patch large real-world Java pro-
grams correctly and to identify what factors affect the
generation of high-quality patches. Studying the effects of
test suite size, coverage, number of failing tests, and test
provenance on the quality of the patches generated by
Angelix on the IntroClass [79] and Codeflaws [126] bench-
marks of defects in small programs finds results consistent
with ours. By contrast, our work focuses on real-world
defects in real-world projects and G&V repair. Further,
prior work has shown that the selection of test subjects
(defects) can introduce evaluation bias [16], [110]. Our eval-
uation focuses precisely on the limits and potential of repair
techniques on a large dataset of defects, and controls for a
variety of potential confounds, addressing some of Mon-
perrus’ concerns [96].

Our answer to RQ6 considers combining multiple
patches in a form of n-version programming [25]. N-version
programming works poorly with human-written systems
because the errors humans make do not appear to be inde-
pendent [70]. Our evaluation has shown that the n-version

1996of automatically-generated patches also fails to provide a
1997benefit.

19987.3 Defect Benchmarks
1999Several benchmarks of defects have evolved specifically for
2000evaluating automated repair. TheManyBugs benchmark [79]
2001consists of 185 C defects in real-world software. The Intro-
2002Class benchmark [79] consists of 998 C defects in very small,
2003student-written programs, although not all 998 are unique.
2004The Codeflaws benchmark [126] consists of 3,902 defects
2005from 7,436 C programs mined from programming contests
2006and automatically classified across 39 defect classes. The
2007DBGBench benchmark [19] (based on the CoREBench bench-
2008mark [18]) contains a collection of 70 real regression errors in
2009four open-source C projects. The QuixBugs benchmark [81]
2010consists of 40 programs from the Quixey Challenge, where
2011programmers were given a short buggy program and one
2012minute to fix the bug. The programs are translated to Python
2013and Java, and each bug is contained on a single line. The
2014Defects4J benchmark [66], originally designed for testing
2015and fault-localization studies, consists of 357 Java defects in
2016real-world software, and has become a popular benchmark
2017for evaluating automated program repair [42], [90], [98],
2018[138]. We elected to use Defects4J because it contains real-
2019world defects in large, complex projects, it supports repro-
2020ducibility and test suite generation, and is increasingly a
2021testbed for evaluating automated program repair.

8 CONTRIBUTIONS

2023While automated program repair shows promise for improv-
2024ing software quality and reducing the costs of software main-
2025tenance, several studies have raised concerns that program
2026repair may do more harm than good in terms of software
2027quality. This paper has systematically and rigorously
2028explored the effect of fourG&V program repair techniques on
2029real-world defects in real-world Java projects, and found that
2030while program repair techniques do sometimes produce
2031patches, those patches often (between 53.9 and 86.2 percent of
2032the time) break untested or undertested functionality. In fact,
2033the median patch breaks more functionality than it repairs.
2034Increasing the size of the test suite used to guide the repair
2035process can help slightly improve patch quality. Inmost cases,
2036test suites written by humans lead to higher-quality patches
2037than automatically-generated test suites. Finally, the patches
2038the techniques generate lack sufficient diversity to be com-
2039bined in away to improve patch quality.
2040This work is the first to explore the relationships between
2041these aspects of patch generation and patch quality on real-
2042world defects, building on prior studies on toy pro-
2043grams [20], [76], [122]. Our study rigorously controls for
2044possible confounding factors and uses an objective, repeat-
2045able quality-evaluation methodology.
2046To enable our study, we create JaRFly, a framework for
2047Java G&V program repair techniques. We use JaRFly to faith-
2048fully reimplement GenProg [77] and TrpAutoRepair [111] for
2049Java, improving on prior attempts to do so. We further use
2050JaRFly to reimplement Par [69] and make the first public
2051release of a Par implementation. JaRFly is open-source and
2052available at http://JaRFly.cs.umass.edu/. We further
2053use state-of-the-art automated test generation to generate
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high-quality test suites for real-world defects in Defects4J
used in our study, and create a methodology for generating
more such test suites for other defects. Our data, test suites,
and scripts are all available at http://github.com/

LASER-UMASS/JavaRepair-replication-package/.
Overall, our work has identified the shortcomings of

today’s program repair techniques when applied to real-
world defects, and will drive research toward improving

 the quality of program repair.
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