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Abstract. Code translation is a staple component of program analysis.
A lifter is a code translation unit that translates low-level code to a
higher-level intermediate representation (IR). Lifters thus enable a host
of static and dynamic analyses for such low-level code. However, writing
a lifter is a tedious manual process which must be repeated for every
architecture an analysis aims to support. We introduce cross-architecture
lifter synthesis, a novel approach that automatically synthesizes lifters for
previously unsupported architectures. Our insight is that lifter synthesis
can be bootstrapped with existing IR sketches that exploit the shared
semantic properties of heterogeneous architecture instruction sets. We
show that our approach automates a significant amount of translation
effort for a previously unsupported instruction set, and that it enables
discovery of new bugs on new architecture targets through reuse of an
existing IR-based analysis.

1 Introduction

Intermediate representations (IRs) are a staple component of compilers [20,23]
and program analyses [5,8,11,18]. Code translation can generate programs in an
IR from high level source languages (e.g., compilers) or low level machine code
(e.g., decompilers). A lifter is a code translation unit that emits a higher level,
architecture-agnostic intermediate representation of architecture-specific lower-
level code. Lifters are central to low-level code analysis because they enable reuse
of architecture-agnostic analyses at the IR level (e.g., taint analysis, constraint
generation) [14,22], and provide essential high level abstractions for program
analysis (CFG and function recovery) [9].

However, writing the translation layer for an IR is onerous, requiring manual
translation of architecture-specific instructions (e.g., for x86, ARM, MIPS) to
the target IR while preserving the native semantics. Modeling the semantics
of a new instruction set requires an engineer to consult instruction manuals
numbering up to 1,000s of pages per architecture [14,15]. Recent work raises
the importance of automating the lifting process [14]. In our own past work, we
identify the potential to reuse existing analyses in the IR for new architectures,1

but are faced with the undesirable prospect of writing new lifters from scratch.

1 e.g., https://opam.ocaml.org/packages/bap-warn-unused/bap-warn-unused.1.3.0.
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We propose a novel synthesis technique to automate the lifting translation
process, with a goal of producing an IR program usable for further program anal-
ysis (e.g., to find bugs). At a high level, our technique uses inductive synthesis
over finite input-output pairs of native instructions to infer semantically equiva-
lent instructions in the IR. We verify the correctness of synthesized instructions
by executing the IR (under associated operational semantics) and comparing
computational events with that of native execution. Our approach learns sketches
(templates) from existing IR instructions, that then drive synthesis. Two key
insights enable our synthesis approach. First, software exhibits a “natural” prop-
erty: code structure is repetitive and predictable [16]. Instruction architectures
are inherently heterogeneous, but they share similar semantic operations (e.g.,
move instructions, arithmetic operations). Our approach mines sketches from
existing IR programs which preserve this underlying shared semantics. More-
over, because instructions are not distributed uniformly (e.g., move instructions
are more common) [6,16], our approach (1) extends across heterogeneous archi-
tectures and (2) achieves high translation coverage. Second, we parameterize
synthesis by exploiting statement structure to produce an efficient search.

Prior work only partially addresses the challenge of automatic lifting.
Hasabnis et al. [13,14] observe the forward translation of compiler IR (GCC’s
RTL) to assembly code and produce an inverse mapping from assembly back
to the original RTL IR. However, this approach requires a forward translation
from the IR to assembly for each architecture. This approach is impossible if
no such translation exists (typical for low-level IRs, which lift directly from
assembly [8,22]). Related synthesis approaches automate discovery of symbolic
instruction encodings from input-output pairs [10,15]. By contrast, we address
the unique challenge of cross-translating the semantics of instructions to another
target language (IR) that supports additional program analysis abstractions
(e.g., taint analysis, control flow recovery, function recovery). Recent work in
program synthesis has proposed the notion of exploiting existing code for scal-
ing synthesis [6]. To the best of our knowledge, we are the first to demonstrate
these ideas toward practical, real-world application by enabling automatic lifter
synthesis. Our contributions are as follows:

– Automatic Lifter Synthesis. We introduce a technique for automatically
synthesizing language translation components that lifts low-level code to an
IR. We demonstrate that lifter synthesis enables cross-language translation,
allowing analysis reuse on previously unsupported architectures.

– Learning Synthesis Templates. We show that mining sketches is effec-
tive for translating across heterogeneous instruction architectures. Mining
sketches (a) preserves shared semantic properties across architectures and
(b) scales synthesis by efficiently constraining the candidate sketch search
space.

– Experimental Evaluation. We validate our approach by synthesizing a
lifter for MIPS, a previously unsupported architecture in the Binary Anal-
ysis Platform.2 On average, the synthesized lifter successfully translates

2 Available at https://github.com/BinaryAnalysisPlatform/bap.

https://github.com/BinaryAnalysisPlatform/bap
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84.4% of instructions to IR, across 28 binaries. Our technique complements
additional strategies for lifting the remainder of unlifted instructions (e.g.,
manually, or with more aggressive synthesis exploration). The synthesized
lifter allows a previous IR-based analysis to discover 29 new bugs in binaries
for the previously-unsupported architecture.

– Implementation. We release our tool and results at https://github.com/
squaresLab/SynthLift.

2 Overview and Problem Definition

We formulate IR translation as a syntax-guided synthesis problem [4]. We boot-
strap the approach by obtaining an initial set of programs in the IR translated
by some existing lifter targeting some other architecture/instruction set (e.g.,
x86 or ARM).3 We mine these IR programs to turn concrete program frag-
ments into sketches for use in synthesis. Given an unsupported architecture (for
which we do not yet have IR translation rules), we (A) collect input-output pairs
observed during native execution, and then (B) apply inductive inference over
those sketches to discover IR program fragments that satisfy those pairs. We
use the oracle-guided inductive synthesis [4] principle to invalidate candidate
program fragments using ground-truth input-output pairs.

Fig. 1. Synthesizing IR from sketches and I/O pairs.

Overview. Our goal is to use existing IR terms translated from instructions in
a source architecture S (like ARM) to synthesize satisfying IR translation rules
for instructions of a new target architecture T (like MIPS). The first step of
lifter synthesis deconstructs concrete IR terms (Fig. 1b) from previously lifted
code in source architecture S (Fig. 1a). Program sketches are syntactic templates
that define the search space for synthesis. A sketch is a partial implementation
3 Note that this is not a limiting assumption on generalizing the technique: an existing,

functional IR implies at least one existing translation layer implementation, as is the
case with, e.g., REIL [8] LLVM [19], VEX IR [21].

https://github.com/squaresLab/SynthLift
https://github.com/squaresLab/SynthLift
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of a program with missing expressions called holes [7]; we denote holes by ?? in
Fig. 1b. There are two types of holes in our IR sketches: variables, denoted by
??r, and immediate bit vector values, denoted by ??i (respectively corresponding
to registers and immediate values in the machine architecture).

The second step of synthesis (Fig. 1c) collects concrete input-output pairs,
instruction operands, and instruction opcodes from the target architecture T

that we want to lift. In the example, the target architecture is MIPS.4 We gen-
erate traces of input-output pairs by dynamically executing one or more native
MIPS instructions. We use the LLVM disassembler to obtain static instruction
information:: their opcodes, syntactic register names, and immediate values.5

Static values denoting operands are converted to symbolic IR variables, which
we denote in the example by rx and ix respectively (x is fresh).

The LifterSynthesisT procedure then enumerates candidate IR sketches
and fills operand holes with the target T’s register and immediate values operand,
respectively. The procedure seeks an IR instruction and operand assignment that
satisfies all dynamic I/O observations for the native instruction in T when exe-
cuted according to the IR’s operational semantics. When successful, synthesis
produces a lifter rule that translates native instructions to the IR for the tar-
get T.

Translation Substitution. The synthesis procedure in Fig. 1 identifies IR
statements whose semantics (specified in Sect. 3) match the input-output pairs of
native execution translation rules. For example, an addiuT operand with opcodes
〈r1, r2, i1〉 map to an IR statement r1 := r2 + i1:s32 (note that syntactic register
and immediate values are both converted into proper typed values when trans-
lated into the IR). Translation binds concrete values to IR operand variables
rx, ix positionally (Fig. 2).

Fig. 2. Lifting to a target T (MIPS)

In general, we do not know the correct order for applying operands obtained from
disassembly; we consider permutation of operands during synthesis in Sect. 4.

Restricting the Synthesis Search Space. The syntactic structure of instruc-
tions from native execution allows us to prune the search space of sketches. Fig. 1c
gives an intuition: the IR sketch ??r := ??r & ??r won’t be considered for the
addiuT 〈r1,r2,i1〉 MIPS instruction because the IR does not use an immedi-
ate value. In practice, we find that pruning reduces the set of valid candidate
sketches to 83% per native instruction, on average.
4 https://www.mips.com/products/architectures/mips32/.
5 We use LLVM for convenience–dynamic binary instrumentation techniques can sim-

ilarly provide instruction operands and opcodes.

https://www.mips.com/products/architectures/mips32/
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Problem Scope. Our approach synthesizes instructions including arithmetic
operations, bitwise operations, and conditional jumps. We do not consider the
details of CPU-specific memory models and modes (e.g., concurrency, mem-
ory segments, or privileged instructions). While important, these aspects do not
directly support the goal of modeling the essential dataflow properties of instruc-
tion semantics in the IR. Extension of the IR to additional architecture-specific
memory or permission models is possible, but we leave this consideration for
future work. For simplicity, we have demonstrated a one-to-one translation of
native instruction to IR instruction, whereas IRs are typically designed to rep-
resent a single native instruction in one or more IR instructions. We discuss
one-to-many translation in Sect. 4.

3 Synthesis Model

We perform oracle-guided synthesis of IR translation using dynamic execution
traces of native instructions for a target architecture T. For simplicity of intro-
ducing the model, we consider only one iteration of verifying instruction correct-
ness. In one iteration, our goal is to check whether a sequence of events produced
during a single step of execution of a native instruction is syntactically equal
to the sequence of events produced by a executing a translation of the native
instruction to the IR. Our model assumes a sequential running process, i.e.,
executing a native instruction is uninterruptible, and memory cannot be modi-
fied by concurrent processes. Further, we assume instruction output is invariant
under the same inputs. Our assumptions are consistent with the goal of track-
ing dataflow properties of instruction semantics (e.g., taint analysis, constraint
generation), as well as those underlying previous work [10,15]. In this section
we introduce the program model and operational semantics for comparing IR
and native execution. We use the BAP IR [1,3], which performs competitively
relative to other IRs [17]. However, the approach generalizes under the synthesis
model and assumptions presented in this section.

3.1 Comparing Executions

Program Model. The execution context of a program is modeled by state σ.
Both native and IR instructions operate on a state σ that comprises a memory
μ and variable bindings Δ. Memory μ is modeled by a partial function from
addresses to values nat → int. Variable bindings Δ is modeled by a partial
function from variable names to values var → int.

Events. A sequence of events reify the effect of executing an instruction.
Events generated during native execution serve as the ground truth oracle
for synthesis. We denote events on registers (including flags) by a 4-tuple
〈action, REG, reg, value〉. An action may be either a read operation R or a write
operation W. We use a syntactic value REG to disambiguate events on registers
from those on memory. A register reg may be any syntactic term corresponding
to a register for a given architecture (e.g., EAX for the x86 architecture). The
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value is a bitvector with a word size for a given architecture. We denote events
on memory by a 4-tuple 〈action, MEM, addr, value〉. Actions on memory are the
same as for registers. A read action on memory reads a bitvector value from a
nonnegative address addr. A write action on memory writes a bitvector value
to a nonnegative address addr. All events are syntactic elements; we say e1 = e2
if an event e1 is syntactically equal to e2.

Comparing Events. For every instruction executed in the trace of the native
Architecture T, a single native instruction IT in state σT produces a sequence
of events ET. We denote the execution step by 〈σT, IT, ∅〉 T� 〈σ′

T
,−, ET〉. For

convenience, we define a function step
T

that returns the sequence of events
after executing the instructions: ET = step

T
(σT, IT).

Next, consider execution for IR in an architecture-agnostic language IR. Our
goal is to generate a sequence of events EIR which is equivalent to ET by executing
a logical instruction (comprising one or more IR statements) denoted by IIR.
We denote an execution step in the IR by 〈σIR, IIR, ∅〉 IR∗� 〈σ′

IR,−, EIR〉 and
define a convenience function stepIR that returns the sequence of events after
execution EIR = stepIR(σIR, IIR).

Executing an IR instruction requires an initial state σIR that simulates the
native architecture state σT. We introduce a function αIR that resolves register
and memory values from the trace, and maps these values to the initial IR
execution state, i.e., σIR = αIR(σT).

We now define an equivalence relation of execution ∼ as equal event sequences
generated from in-tandem single step execution of source and target languages.
Let liftIR be the function that translates a native instruction to target IR
instructions, where IIR = liftIR(IT). Then synthesis requires:

step
T
(σT, IT) ∼ stepIR(αIR(σT), liftIR(IT))

which simplifies to checking ET ∼ EIR. If ET ∼ EIR holds, a synthesis iteration is
complete and IT lifts to IIR. We perform multiple such iterations to refine the
accuracy of translation, invalidating IR statements that do not satisfy all input-
output equivalence constraints. We defer details of the approach and algorithm
to Sect. 4.

3.2 Operational Semantics

Native Execution. The semantics of native execution is treated as a black
box, allowing us to observe input-output pairs of an instruction execution. We
use dynamic instrumentation to record sequences of events during an execution
trace. We support tracing with popular instrumentation frameworks QEMU6

and Pin.7 Dynamic events on registers, flags, and memory are recorded in the

6 https://www.qemu.org/.
7

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

https://www.qemu.org/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
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trace and processed to produce ET, accepted as ground truth. For purposes of syn-
thesis, we synchronize byte ordering (endianness) for T and IR at the dynamic
instrumentation level, if needed.

IR Execution. We use an analysis-based IR to execute synthesized state-
ments according to an operational semantics.8 The BAP interpreter performs
architecture-agnostic execution of IR statements. Figure 3 is a simplified version
of the IR grammar. Our work extends the operational semantics and interpreter
to generate events during IR execution. For brevity, we elide the rules. The
essential changes entail event recording for each rule: variable assignments on
registers and reads produce Write and Read events, respectively. The same follows
for memory accesses; the sequence rule appends events for two instructions, and
so on. The full IR grammar and operational semantics is available online [1]. As
a concrete example, executing the IR statement R2 := R0 results in the event
sequence EIR = [(R,REG,R0,0x1), (W,REG,R2,0x1)] (where R0 initially stores
the value 0x1). The production of ground truth ET by native execution and EIR

is compared during synthesis iterations to discover IR statements that satisfy the
observed input-output pairs. Note that since we perform a synthesis iteration for
one native instruction at a time, execution of the IR code is synchronized with
native execution. Our operational semantics therefore does not continue execu-
tion by advancing a program counter: instead, it iterates through the sequence
of IR statements and executes them until the sequence is empty.9

4 Synthesis Approach

We now explain how our synthesis approach generates translation rules that lift
native instructions to a sequence of IR statements as a function of the following
inputs: (A) A unique identifier for the instruction (i.e., opcode); (B) the set of
instruction operands (as purely syntactic values, i.e., register names and imme-
diate values); (C) a set of input-output pairs on register and memory; and (D)
a set of candidate sketches in the IR.

4.1 Sketches from Term Deconstruction

Our first key insight is that concrete IR terms (generated from existing lifters)
preserve semantic properties to correctly synthesize translation rules for new
architectures. Our technique deconstructs concrete IR terms to automatically
generate the set of sketch candidates for synthesis. The second key insight is
that the syntactic values of native instruction operands (register names and
immediate values) reduce the set of possible sketch candidates, making synthesis
efficient.
8 Note that IRs may lack a specified operational semantics. Our work emphasizes the

importance of using a formally specified IR to enable translation synthesis.
9 Note that PC-relative instructions, such as jumps, still need access to a program

counter variable to enable synthesis. For this, an internal PC is kept in the execution
environment.
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We deconstruct concrete IR terms to generate sketches. Formally, a sketch
is a partial function λh.S that accepts a vector of arguments h, or holes, and
generates a concrete term S. The arity of S depends on the number of leaf
nodes in the AST of the IR term. The input domain consists of two kinds of
terms: free variables (e.g., corresponding to registers), and immediate values (i.e.,
constants). Note that these two kinds of terms correspond to the leaf nodes var
and imm in the IR grammar, respectively (see Fig. 3).

As an example, suppose we encounter the concrete IR statement R1 := R0+5.
We recursively visit each term in the statement and generate holes for terminal
nodes, thereby deconstructing the statement to yield a sketch as follows:

�λh.S�
def
= var := var + imm

Three holes are created: the first two operands refer to variables, and the
third operand refers to an immediate bitvector value. Given a vector of operands
o = 〈R5, R6, 2〉, we can perform a substitution in S:

�(λh.S) o� = R5 := R6 + 2
To apply a vector of operators, it must match the arity in S over the number

of variables |vs| and immediate values |is|. In our example, S has arity 3, par-
titioned as an arity pair 〈2, 1〉 since |vs|= 2 and |is|= 1. We use Algorithm 1 to
generate a set of candidate sketches from a program in the IR by visiting each
statement in the program. The function ToSketch in line 4 takes a concrete
term IIR and turns it into a sketch containing holes (all concrete values in leaf
nodes are converted to holes). Line 5 obtains the operands of IIR and partitions
them to obtain the arity pair 〈|vs|, |is|〉. The result of Algorithm 1 produces
a partial function Lookup mapping unique arity pairs to a set of candidate
sketches.

Fig. 3. Simplified IR grammar
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4.2 Synthesis

We perform syntax-guided inductive synthesis over sketches. The program syn-
thesis problem stipulates that the formula ∀x.φ(x, �P �(x)) be valid for all inputs
x for a synthesized program �P � [7]. The formula φ relates an input and output
specification against a synthesized program �P �. For an oracle-based, syntax-
guided synthesis the general formula is

∀x.φ(x, �P �(x)) ≡ ∀x. oracle(x) = �P �(x)

for some equivalence relation =. In Sect. 3 we defined the equivalence relation
for IR and native execution as equivalence of event sequences. In terms of inputs
〈σT, IT〉 from source language T (as in Sect. 3) and sketches �S�, we define the
translation synthesis problem as finding �S� subject to:

∀〈σT, IT〉.φ(〈σT, IT〉, �S�(〈σT, IT〉)) ≡
step

T
(σT, IT) ∼ stepIR(αIR(σT), �(λh.S) Ops(IT)�) (1)

for each unique IT. The synthesis algorithm goal is to discover a sketch �S�
applied to the operands of native instruction Ops(IT) such that (1) holds.

Algorithm 2 describes the synthesis process. Input consists of the lookup func-
tion produced by MineSketches and trace information T containing a set
of triples 〈σT, IT, ET〉 generated from dynamic executions ET = step

T
(σT, IT).

Functions Code and Ops in line 2 of Algorithm 2 extracts a unique identifier
code associated with IT, and its operands as a vector o, respectively. In line 4,
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instruction operands o, initial execution state σT, and computed events ET are
associated with unique instruction codes in the map Ψ . Candidate sketches S
are obtained from a partition of the instruction’s operands (lines 5 and 6).

SynthInsn enumerates through all candidate sketches to find a satisfying
assignment of operands that satisfy events. As mentioned in Sect. 2, we can-
not assume that the operand order returned by the disassembler guarantees the
desired semantics. In Algorithm 3, line 4, Perm generates sketches that per-
mute the order of input operands in λh.S. We discuss permutation strategies in
Sect. 4.3. Each permuting sketch λh.Sp applies o and generates a concrete IR
term CIR and executes it to produce EIR. Lines 7 and 8 verify the concrete term
satisfies all events for the instruction IT observed so far. The check ET ∼ EIR

short circuits the more expensive Verify check (line 12) as an optimization.
Each satisfying sketch is added to the result set R. Valid sketches in the result
set are updated in the map LiftT. Algorithm 4 synthesizes liftIR (introduced
in Sect. 3) by transforming the LiftIR map into a lookup function.

In summary, using Algorithms 1–4 we fully derive the desired translation
IIR = liftT(IT) from initial inputs PIR and TT:

LiftT = Synthesize(MineSketches(PIR), TT)
liftT = λ IT.(LiftHelper LiftIR)

4.3 Operand Permutations and One-To-Many Translation

The disassembler may return instruction operands in any order to Ops(IT). We
observed that operand order tends to correspond roughly with a left-to-right
reading of assembly instruction semantics. For example, an instruction add R0, 8
corresponding to a semantic expression R0 = R0 + 8 would disassemble with
the operands in the order 〈R0, R0, 8〉 However, we also observed small discrepan-
cies. For example, memory store instructions in the IR grammar may swap the
source and destination operands compared to the disassembled order. Function
Perm thus implements a customizable permutation transformation on operands.
Though exhaustive enumeration is feasible for small numbers of operands, we
have found that only permuting adjacent operands proved effective in practice.
When we experimented with an exhaustive permutations approach, we observed
no increase in successful synthesis. Complexity of trying all adjacency swapping
permutations is fast: linear in arity (order O(|vs|+|is|)).

Our current implementation synthesizes one-to-many translation by preserv-
ing existing one-to-many mappings implemented in current ARM and x86 lifters.
This allows synthesis to discover, e.g., conditional branch statements. On the
other hand, relying on a rigid mapping may miss sketches such as multiple con-
secutive assign statements. We leave sketch composition for synthesis to future
work.
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5 Evaluation

The goal of SynthLift is pragmatic: to synthesize lifter rules for new archi-
tectures, alleviating the need to manually translate the majority of instructions.
The focus application is to enable existing analyses for unsupported architec-
tures. We target a previously unsupported architecture, MIPS, and show that
the synthesized lifter discovers new bugs in commercial off-the-shelf MIPS bina-
ries. Accordingly, we evaluate SynthLift as follows:

– Is SynthLift effective at enabling existing analyses for previously unsup-
ported architectures (Sect. 5.1)?

– What is the speed and accuracy of SynthLift, and what percentage of
instructions can SynthLift recover in widely used programs (Sect. 5.2)?

– How well does SynthLift generalize across architectures (Sect. 5.3)?

5.1 Analysis Reuse

We applied an existing taint-based analysis to find new bugs in COTS binaries
for MIPS [2]. The analysis checks for cases where results of C library functions are
unused. For example, some C POSIX functions are declared with a “warn unused
result” attribute that flags warnings at compile time. Our analysis follows taint
flows for function return values to detect such bugs in binaries, where source
code is not typically available. The analysis looks for cases where the return
value is overwritten without being read. We ran the analysis on 30 binaries in
the sbin directory of a COTS D-Link router. In total, we discovered 29 bugs
in 30 binaries; for brevity, we summarize 8 binaries comprising 17 bugs that
span a variety of functions handled by the analysis (Fig. 4a). Not shown, we
discovered 12 additional bugs across 12 additional binaries for similar functions
as in Fig. 4a. 11 binaries did not generate bug reports. We manually inspected
analysis results using a decompiler to confirm true positives; where possible, we
were able to confirm unchecked values for binaries that have source code (such
as ntpclient). We encountered two false positives. This happened when return
values of two consecutive malloc calls are inaccurately tracked in our ABI model
(note: the inaccuracy is not due to the synthesized instruction semantics). To
consider a large real-world example, we also lifted OpenSSL to recover 86% of
instructions, and confirmed that the analysis did not find any bugs.

5.2 Synthesizing the MIPS Lifter

To synthesize the MIPS lifter, we used IR sketches generated from 28 ARM Core-
utils10 binaries, and used 5 programs from the Hacker’s Delight benchmarks [24]
(compiled to MIPS) to generate dynamic input-output pairs. Coreutils is a set
of highly popular command-line utilities and representative of typical programs;
Hacker’s Delight programs perform a variety of bit-manipulation operations that
generate input-output pairs for a diverse set of native instructions.
10 https://www.gnu.org/software/coreutils/coreutils.html.

https://www.gnu.org/software/coreutils/coreutils.html


166 R. van Tonder and C. L. Goues

Fig. 4. Analysis results and distribution of sketches mined from IR.

End-to-end synthesis (mining sketches, processing traces, and lifter synthesis)
takes 58 s. Each native MIPS instruction starts with a set of 29 initial sketches on
average (using Algorithm 2 Partition and instruction operands). On average,
successfully synthesized instructions complete with 2 satisfying sketches (due
to commutativity of binary operations). Synthesis converges quickly: Fig. 5, left
boxplot, shows that synthesis discovers the final set of satisfying sketches after
only two input-output pairs for most instructions. The final set of satisfying
sketches verify over thousands of input-output events for typical instructions
(Fig. 5). We observe that the distribution of input-output pairs by Hacker’s
Delight binaries mirror the intuition that common instructions like “load word”
(LW) represent a disproportionately large part of the programs.

Fig. 5. MIPS Lifter Synthesis. On the left, the number of iterations until synthesis
converges on the final set of satisfying sketches over all events. On the right, the number
of verified input-output pair events for successfully synthesized instructions.
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We ran the synthesized lifter on the 28 MIPS Coreutils binaries in the Debian
distribution. To count lifter coverage, we take the percentage of individual native
MIPS instructions that fire a translation rule in the lifter. On average, the lifter
recovers 84.8% of instructions. Thus, 15.2% of instructions in the binary could
not be lifted (in practice, we substitute NOP instructions in the IR). Synthesis
fails when a suitable sketch cannot satisfy the semantics of an instruction. One
such instruction is LUi, or load upper immediate. To lift this instruction, we
ideally want an IR candidate such as var := imm << imm2 , where imm2 is
16. However, such a candidate is never mined from the IR sourced from ARM.
In Sect. 5.4 we suggest further improvements to our technique to address such
cases.

5.3 Generalizing Across Architectures

BAP currently supports lifting for both the ARM and x86 architectures. To val-
idate our ability to synthesize across architectures, we targeted MIPS by mining
sketches lifted from the suite of x86 Coreutils programs. The x86-sourced MIPS
lifter synthesized six fewer instructions than the ARM version due to missing a
rotation sketch.11 Interestingly, the x86-sourced lifter recovered the same 84.8%
instructions when lifting the MIPS Coreutils test set. Figure 4b suggests why we
gain the same utility when synthesizing under different architectures: the eight
most frequent sketches for ARM and x86 are very similar, and account for the
majority of IR instructions.

5.4 Discussion

Mining versus Manually Specifying. Our approach demonstrates the appli-
cability and feasibility of mining sketches to enable a cross-architecture trans-
lation. Figure 4b also suggests that manually specifying a small set of sketches
is competitive to mining sketches. However, we observe that manual specifica-
tion poses additional challenges compared to mining: (a) it is difficult to antici-
pate exactly the set of sketches to specify; current approaches usually involve a
human-in-the-loop who must iteratively estimate or consult specification manu-
als [10]; (b) the set of effective sketches changed based on how the IR is designed
(i.e., different IRs will require different sketch templates); (c) manual specifica-
tion does not naturally consider similarities of multiple heterogeneous architec-
tures; our summary in Fig. 4b is a first result to show that sketches do translate
for IRs. Our approach sees manual specification as complementary: mining is an
effective approach for revealing initial common sketches (and how the IR-specific
design structure relates to sketches), and can automatically discern similarity in
e.g., architectures at the IR level. A human-in-the-loop can use this information
to make synthesis more effective.

11 The missing rotation operator is however found in subexpressions of IR statements,
but we fail to generate the desired statement var:= var << imm.
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Partial Instruction Set Recovery. We showed in Sect. 5.2 that the synthe-
sized lifter recovers a high percentage (roughly 85%) of instructions in typical
binaries. On the other hand, the lifter has a lower rate of coverage for the entire
MIPS instruction set, approximately 33 instructions of 45.12 While a greater
percentage of the instruction set is desirable, our goal is to (a) assess whether
translation can be synthesized “out-of-box” without specifically considering the
target architecture and (b) validate how well existing analyses can operate with
a partial lifter synthesized for a new architecture. Our evaluation reveals ample
opportunity for improving instruction set coverage (e.g., manually specifying
missing sketches) and existing work has shown nondeterminstic approaches, like
stochastic search [15] to be effective. At present, our goal is to demonstrate syn-
thesis effectiveness using a tractable method, i.e., using only the set of finite
sketches mined from existing rules. We leave the appeal of combining comple-
mentary approaches to future work.

6 Related Work

Bornholt et al. [6] propose mining sketches for structure to scale program synthe-
sis. Our work demonstrates the ability to fill this gap by mining IR sketches to
scale IR translation over heterogeneous architecture instruction sets. Our work
relates generally to syntax-guided synthesis over sketches [4,7]. Related work
in inductive synthesis uses I/O pairs to recover x86 semantics as SMT encod-
ings [10,15]. Our approach similarly uses I/O pairs to infer semantics, but targets
IR translation for multiple architectures and mines sketches automatically in lieu
of manual specification. Hasabnis et al. leverage forward source-to-compiler-IR
translation [14] and symbolic execution of compilers [13] to lift low level instruc-
tions to the compiler IR. These approaches rely on the existence of a forward
translation routine (i.e., compiler) for each architecture, which then reverse the
mapping to generate assembly-to-IR rules. In contrast, our approach general-
izes to cross-architecture translation using a bootstrapped set of initial candi-
date sketches and input-output pairs only—no existing translation is required
for each architecture target. Applications in static binary translation manually
translate dynamically executed QEMU instructions to static LLVM IR [9] for
multiple architectures; we believe our technique has the ability to automate the
translation process. Work on verifying correctness of low level IRs is complemen-
tary to the lifter synthesis problem; related techniques can assert correctness of
semantics with respect to observed I/O-pairs [10,12] or symbolic equivalence
checking [17].

7 Conclusion

We have presented cross-architecture lifter synthesis, a new way to automatically
synthesize IR translation rules for new architectures by leveraging existing IR
12 Using Fig. 5, (excluding instructions TEQ, SYSCALL, SYNC, and SDC1 which are modeled

differently in the trace than actual MIPS semantics), and compared to a simplified
MIPS ISA (goo.gl/YUEdiy).

https://goo.gl/YUEdiy
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programs. We demonstrated that our approach is effective at recovering a lifter
for a new architecture, and provides sufficient instruction coverage to enable
analysis reuse and discovery of new bugs. Synthesis could discover more rules by
generating candidates over the IR grammar (e.g., using stochastic search [4,15]),
or by manually supplying a small number of plausible sketches (rather than man-
ual, per-instruction translation). We further believe our work has further appli-
cation for discovering semantic relations between different languages: lifter syn-
thesis reveals similar semantic properties across heterogeneous architectures and
can distinguish differences when cross-translation synthesis fails. Lifter synthesis
opens up new methods for language translation, e.g., by complementing man-
ual processes, and is amenable to automation assistance where sketches can be
manually specified (e.g., [10]). Finally, we believe the approach has broad appli-
cation to IRs generally, including automatic discovery and synthesis of common
semantics for IR-to-IR translation.
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