
A Human Study of Patch Maintainability

Zachary P. Fry Bryan Landau Westley Weimer
University of Virginia

{zpf5a,bal2ag,weimer}@virginia.edu

Abstract
Identifying and fixing defects is a crucial and expensive part of
the software lifecycle. Measuring the quality of bug-fixing patches
is a difficult task that affects both functional correctness and the
future maintainability of the code base. Recent research interest in
automatic patch generation makes a systematic understanding of
patch maintainability and understandability even more critical.

We present a human study involving over 150 participants, 32
real-world defects, and 40 distinct patches. In the study, humans
perform tasks that demonstrate their understanding of the control
flow, state, and maintainability aspects of code patches. As a base-
line we use both human-written patches that were later reverted and
also patches that have stood the test of time to ground our results.
To address any potential lack of readability with machine-generated
patches, we propose a system wherein such patches are augmented
with synthesized, human-readable documentation that summarizes
their effects and context. Our results show that machine-generated
patches are slightly less maintainable than human-written ones, but
that trend reverses when machine patches are augmented with our
synthesized documentation. Finally, we examine the relationship
between code features (such as the ratio of variable uses to assign-
ments) with participants’ abilities to complete the study tasks and
thus explain a portion of the broad concept of patch quality.

Categories and Subject Descriptors D.2.3 [Coding Tools and
Techniques]; D.2.7 [Distribution, Maintenance, and Enhance-
ment]: Documentation; D.2.8 [Software Engineering]: Metrics

General Terms Human Factors

Keywords Human study, documentation synthesis, patch quality

1. Introduction
Defect repair is an important component of software maintenance,
which dominates a system’s life cycle [4, 31]. A defect report typ-
ically passes through a number of stages, including triage, assign-
ment, and localization, before a developer produces a candidate
patch to fix the defect in question [15]. Such patches are typically
validated (e.g., through testing, inspections and walkthroughs, etc.)
before being committed to the code base. Subsequent maintenance,
including feature addition or additional bug fixing, requires that en-
gineers are able to reason about and understand the patched code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISSTA ’12, July 1520, 2012, Minneapolis, MN, USA
Copyright c© 12 ACM 978-1-4503-1454-1/12/07. . . $10.00

Reading and understanding code is recognized as a difficult and
time-consuming part of the maintenance cycle [27, 30].

The effect of a patch on later software evolution is of particu-
lar relevance given the flurry of recent research on automated pro-
gram repair. Recent work has shown that patches can be automat-
ically generated using evolutionary techniques [19, 20], dynamic
program behavior modification [26], enforcement of explicit pre-
and post-conditions [35], and program transformation guided by
static analysis [16]. While these patches may be functionally cor-
rect, little effort has been taken to date to evaluate the understand-
ability of the resulting code. Many developers express natural re-
luctance about incorporating machine-generated patches into their
code bases [19].

Regardless of the provenance of a given patch, the quality of
patched code critically affects software maintainability. There are
a number of factors that contribute to patch quality. Perhaps most
direct is a patch’s impact on functional correctness: a high qual-
ity patch should bring an implementation more in line with its
specification and requirements. Informally, a patch should fix the
bug while retaining all other required functionality. However, even
functionally correct patches can vary considerably in quality. Con-
sider two patches that fix the same defect. One patch touches
many lines, introduces several gotos and unstructured control flow,
and contains no comments; the other is short and succinctly com-
mented. Even if both have the same practical effect on program se-
mantics, the first produces code that is likely more difficult to read
and understand in the future as compared to the second. In this pa-
per, we focus on patch quality as it relates to code understandability
and, more broadly, software maintainability.

Software maintainability is a broad concept; it has been mea-
sured from many angles, using many different metrics [14, 38].
Despite ample effort in the area of software quality metrics, it has
been noted that there is no adequate a priori descriptive metric for
maintainability [18, 23, 28]. Sillito et al. study and categorize the
questions developers actually ask about a code base while perform-
ing maintenance tasks [32]. For example, when looking to modify a
piece of code, programmers often ask “What is the control flow that
leads to this program point?”, or “What variables are in scope at this
point?” We define maintainability by the ease and accuracy with
which these formalized maintenance questions can be answered
about a given piece of code. If developers answer such questions
less accurately or less rapidly, we say the associated maintainabil-
ity has decreased. We can ground such a metric by taking advan-
tage of a “natural experiment”: many human-written patches are
later reverted and undone (e.g., [39]), representing an explicit loss
of maintenance effort. By examining both a reverted patch and a
patch that stood the test of time — for the same bug — we perform
a controlled experiment and obtain a lens through which to study
patch quality.

We use this framework to quantify patch quality as it relates to
maintainability, and to study the relative quality of automatically-
generated patches as compared to human patches. To date, we are

unaware of any human studies on the maintainability of patches
in particular, or any studies that examine the differences between
automatically-generated patches and those created by humans. We
hypothesize that participants will neither perceive nor expose a dif-
ference in maintainability between human-created and machine-
generated patches. We additionally propose to augment machine-
generated patches with synthesized, human-readable documenta-
tion that describes the effect and context of the change. We fur-
ther hypothesize that adding this supplemental documentation to
machine-generated patches increases maintainability on average.

To test these hypotheses, we conduct a human study in which
participants are presented with code and asked questions using Sil-
lito et al.’s forms. We measure both accuracy and effort as prox-
ies for maintainability; more maintainable code should admit more
correct answers in less time. We show that human patches that were
later reverted are generally less maintainable than those that were
not reverted to establish that the metrics are well-grounded. To test
the stated hypotheses, we measure the net changes in both accu-
racy and effort between the original faulty code and both human-
created and machine-generated patches, holding all other factors
constant. After establishing the relative maintainability effect of
different types of patches, we examine which characteristics of the
code relate to maintainability directly, and compare them with par-
ticipants’ opinions of what they thought affected patch quality.

We find that documentation-augmented machine-generated
patches are of equal or greater maintainability than human-created
patches. This work thus supports the long-term viability and cost-
effectiveness of automatic defect repair. Additionally, we identify
several code features that correlate with maintainability, which can
support better patch generation — both manual and automatic —
in the future. The main contributions of this paper are:

• A novel technique for augmenting machine-generated patches
with automatically synthesized documentation. We focus on
documenting both the context and the effect of a change, with
the goal of increased maintainability.

• A human study of patch quality in which over 150 participants
are shown patches to historical defects from large programs
and asked questions indicative of those posed during real-world
maintenance tasks.

• Statistically significant evidence that machine-generated patches,
when augmented with synthesized documentation, produce
code that can be maintained with equal accuracy and less effort
than the code produced by human-written patches. These re-
sults provide preliminary evidence that automatically-generated
patches may viably reduce long-term maintenance costs.

• A quantitative explanation of differences in patch maintainabil-
ity in terms of measured code features. We contrast features that
are predictive of actual human performance with features par-
ticipants report as relevant.

2. Motivating Example
This section uses real-world bug fixes as examples to show that the
effects of code patches on maintainability merit further study.

There are typically an infinite number of implementations ad-
hering to any consistent specification. As such, there are typically
a corresponding infinite number of functionally-correct patches for
a given defect. For example, different patches may use different al-
gorithms or data structures, reorder statements, include or remove
dead code, or feature different commenting or indenting. Function-
ally equivalent patches may therefore have different effects on the
code’s readability or maintainability.

We present two distinct patches for a bug in the php script-
ing language interpreter to illustrate this point concretely. The

1 if (offset >= s1_len) {
2 php_error_docref(NULL TSRMLS_CC ,
3 E_WARNING , "The start position
4 cannot exceed string length");
5 RETURN_FALSE;
6 }
7
8 - if (len > s1_len - offset) {
9 - len = s1_len - offset;

10 - }
11
12 cmp_len = (uint) (len ? len :
13 MAX(s2_len , (s1_len - offset)));

Figure 1. Patch #1 for php bug #54454 and surrounding code con-
text. The patch modifies the substr_compare function, removing
lines 8, 9, and 10.

substr_compare function compares two string parameters, main_str
and str, for equality. The length of the comparison is con-
trolled by a variable len — strings are trimmed to len charac-
ters before being compared. Bug report #54454 describes a de-
fect in substr_compare where “if main_str is shorter than str,
substr_compare [mistakenly] checks only up to the length of
main_str.” That is, if main_str="abc" and str="abcde", substr
_compare would erroneously return “true”.1 Informally, the bug is
that len is set too low: checking only up to len=3 does not reveal
the differences between "abc" and "abcde".

1 + len --; /* Do set len = len - 1 */
2 if (mode & 2) {
3 for (i = len - 1; i >= 0; i--) {
4 - if (mask[(unsigned char)c[i]]) {
5 - len --;
6 - } else
7 break;
8 }
9 }

Figure 2. Patch #2 for php bug #54454 and surrounding code
context. The patch modifies function php_trim, removing lines 4,
5, and 6 while adding line 1.

Figure 1 shows one candidate patch that changes the substr

_compare function directly. Lines added as part of the patch are
preceded by a + while removed lines are denoted by a -. This patch
removes the conditional on lines 8–10, which allowed len to be
set too low; any extra letters are thus accounted for, and the bug in
question is fixed.

By contrast, the patch in Figure 2 alters code in a local helper
function related to string trimming. This patch causes len to always
be decremented once before the loop, instead of once for every iter-
ation of the loop in which a valid letter was found (since the strings
are null-terminated, the single decrement is always allowed). len is
thus, again, left sufficiently high to enable appropriate string com-
parison.

In terms of functional correctness, the two patches are equiv-
alent: both produce code that passes the test case associated with
the bug as well as the other 8,471 regression tests for the php in-
terpreter. However, the resulting code may not be equally easy to
reason about or maintain. What are the meaningful differences be-
tween the two patches, and how do these differences affect future
maintenance tasks?

First, the patch contexts differ. The first patch applies directly to
the 38-line substr_compare function; the second to a local helper
function of comparable size (39 lines). In practice, this distinction

1 https://bugs.php.net/bug.php?id=54454 as of Feb 2012

means that the first patch changes len closer to its definition; the
second changes it closer to its use. Both the size and granularity
level of the enclosing code may contribute to maintainability. For
instance, developers may find shorter functions easier to reason
about and thus have no preference between the two patches based
on function length. However, they may struggle with low-level,
detail-oriented code and thus find the first patch more ultimately
maintainable.

With respect to language constructs, the first patch strictly re-
moves control flow and an assignment statement, while the second
patch moves a statement outside of two conditionals and a loop,
altering rather than removing control flow. While removing control
flow often makes reading and understanding code easier, the effect
is not universal (e.g., a loop with a constant number of iterations
may be easier to grasp than its unrolling, even though the unrolling
has fewer tests and branches).

Additionally, the second patch includes a very simple comment
describing the effect of the change, which is typically viewed as a
benefit [10, 24], but it also leaves in dead code (the loop on lines
3–9 now has no effect), which may confuse later maintainers.

Finally, the patches have different origins. The patch in Figure 1
was created by a developer and has remained untouched since April
3rd, 2011 (we thus deem it “accepted”). The patch in Figure 2
was evolved by the GENPROG tool [19, 20] and augmented with
machine-generated documentation.

These two patches were both subjects in our human study of
patch quality, and clearly differ in several potentially important
ways. However, it is not immediately clear how these differences
affect maintainability. Perhaps surprisingly, in our study, partici-
pants were 0.25% less accurate when reasoning about the human-
written patch (Figure 1) than about the original, while participants
were 6.05% more accurate when reasoning about the machine-
generated patch with documentation (Figure 2) than about the orig-
inal (questions asked were common to both patches).

This example demonstrates that multiple patches fixing the
same defect can be functionally correct, but result in differently
maintainable code. We desire a more formal description of the re-
lationship between various features (e.g., comments, patch context,
control flow, etc.) and maintainability. We thus detail our human
study and the resulting data in Section 3 and Section 4, designed to
directly measure one notion of patch quality.

3. Approach
In this section we describe our proposal to augment machine-
generated patches with synthesized documentation, as well as our
human study to measure aspects of patch maintainability.

3.1 Synthesizing Documentation for Patches
A number of approaches to automated program repair operate at the
source level and produce human-readable patches for defects [16,
19, 20, 35]. Automated program repair approaches hold out the
promise of reducing some software maintenance costs, freeing up
developers to focus on more important bugs, or allowing develop-
ers to address more issues in the same amount of time, since adapt-
ing a candidate patch takes less effort than constructing one from
nothing [36]. Since bugs are reported faster than they can be ad-
dressed [3, p. 363] and commercial developers often take an aver-
age of 28 days to address even security-critical repairs [34], auto-
mated techniques that take mere hours represent a tempting eco-
nomic option. However, if machine-generated patches are of poor
quality and are harder to maintain than human-generated patches,
their economic advantage disappears.

Automated repair techniques typically validate candidate patches
against test suites (e.g., [19, 20]), implicit specifications (e.g., [16])
or explicit specifications (e.g,. [35]). The quality of such patches

with respect to functional correctness only has been evaluated else-
where and found to be human-competitive (e.g., against large held
out test suites [20] or even against DARPA Red Teams [26]). Re-
call that human developers are not perfect. For example, a recent
study of twelve years of patches to multiple free and commercial
operating systems found that 15%–24% of human-written fixes for
post-release bugs were “incorrect and have made impacts to end
users.” [39] As seen in Section 2, however, equally-correct patches
may be more or less maintainable. In this paper we do not fur-
ther address the issue of functional correctness and instead restrict
attention to aspects of maintainability. All patches we consider,
whether human-written or machine-generated, pass all available
test cases.

We hypothesize that the maintainability of machine-generated
patches can be improved by augmenting them with synthesized,
human-readable documentation explicating their effects and con-
texts. Based on Sillito et al.’s set of maintenance questions, we
identify state and control flow as critical for many types of mainte-
nance. We hypothesize that developers will find maintenance easier
if they understand how a patch changes program state (e.g., alters
the values of variables) or alters program control flow (e.g., the
conditions under which statements may be executed) at run-time.
To that end we desire human-readable documentation that summa-
rizes what a patch does, as opposed to why it was made.

We adapt the DELTADOC algorithm of Buse et al. [6] which
synthesizes human-readable version control commit messages for
object-oriented programs. Their algorithm is based on a combina-
tion of symbolic execution and code summarization. In essence,
each symbolically-executed statement is associated with its corre-
sponding path predicate, and differences between the statements
and predicates before and after applying a patch are summarized
into human-readable documentation. Typical output is of the form
“When calling A(), If X, do Y Instead of Z”, where X is a path pred-
icate and Y and Z are symbolic statement effects. We do not mod-
ify this basic output format, but instead widen the scope of pro-
gram statements for which DELTADOC generates documentation.
The existing approach performs several optimizations with the goal
of limiting the size of the output documentation. We make several
changes to the technique as published to favor completeness over
concision. The following changes were made:

• We alter the algorithm to report changes to all program state-
ments, regardless of the length of the output to favor com-
prehensive understandability in lieu of brevity. Automatically-
generated patches are often short [37]; we claim it is more im-
portant in this context to capture and describe all details. In par-
ticular, we remove all Summarizing Transformations in DELTA-
DOC’s Statement Filters category [6, Sec. 4.3.1]. As a result,
documentation is generated for statements, such as assignments
to local variables, that are neither method invocations nor field
accesses nor return or throw statements.

• We do not use single-predicate transformations that result in
loss of information due to duplication or suspected lack of re-
latedness to the changed statements. For example, we output “If
a=5 and b=true, return a” instead of “If a=5, return a”. Formally,
this is a removal of DELTADOC’s third Summarizing Transfor-
mation in the Single Predicate category: “drop conditions that
do not have at least one operand in documented statements” [6,
Sec. 4.3.2].

• We do not “simplify” output by removing elements such as
function call arguments. For example, we output “Always
call str_compare(main_str, str).” instead of “Always call
str_compare().” Formally, this corresponds to removing the
Simplification category of DELTADOC’s Summarizing Trans-
formations [6, Sec. 4.3.4].

• We avoid high-level simplification contingent on the length
of the output, to favor a complete explanation over a concise
one. The stated motivation of such simplification was that “this
information often is sufficient to convey which components
of the system were affected by the change when it would be
impractical to describe the change precisely” [6, Sec. 4.3.4]
— for the purposes of software maintenance we attempt to
describe such changes precisely, even at the cost of verbosity.

We do not claim any novel results in the domain of documentation
synthesis algorithms. Instead, we focus on the novel application
of documentation synthesis to the problem of patch maintainabil-
ity, and particularly to improve the quality of machine-generated
patches.

3.2 Human Study Protocol
Our goal is to measure the maintainability of patched code and un-
derstand why some types of patches may be more or less main-
tainable than others. At a high level, we present human participants
with segments of patched code and asking them maintenance ques-
tions about those snippets. We measure participant accuracy and ef-
fort in answering those questions. The remainder of this subsection
formalizes our human study protocol, the procedure for selecting
and presenting patches, the formulation and selection of questions,
and finally participant selection.

Maintainability is difficult to evaluate a priori [18, 23, 28]. In
this paper, we avoid predicting maintainability based on indirect
correlations with auxiliary code features (cf. [38]) and strive instead
to measure it directly. We propose a study to measure both objec-
tive measurements and subjective notions related to patch quality.
Our general approach was to measure human effort and accuracy
when performing various maintenance-related tasks (i.e., answer
questions such as those proposed by Sillito et al. [32]). We also
measure subjective judgments such as participant evaluations of
quality and confidence. Whenever possible, we control for accu-
racy (e.g., by giving participants unlimited time and/or restricting
attention to equally-accurate answers). If participants are equally
accurate when reasoning about Patch X and Patch Y (typically two
functionally correct patches that both address the same defect), but
reasoning about Patch X takes twice as long, then Patch X imposes
a higher maintenance burden (i.e., is less easily maintainable).

In our IRB-approved human study protocol, participants were
initially presented with a detailed list of instructions and a tutorial
detailing the required format for all answers in addition to example
questions and answers. This training helps ensure that delays or
mistakes can be attributed to the patches and not to initial confusion
or training effects (we address such threats explicitly in Section 5).
Participants were instructed not to attempt to run the code or use
any external resources during the study. The heart of the study
consisted of sequentially presenting each participant with 23 partial
C code files (sampled from among a total set of 114 files), each with
a length of 50 lines. The number 23 was chosen based on initial
timing estimates to keep the total task duration manageable. Each
code segment had a corresponding code understanding question
that focused the user on a single line of code. Participants were
asked to complete three tasks for each code segment:

• Answer the code understanding question (in free form text).
• Give a subjective judgment of how confident they were in their

answer (using a 1–5 Likert scale).
• Give a subjective judgment of how maintainable they felt the

code in question was (using a 1–5 Likert scale). Note that
“maintainability” was not defined for participants; they were
forced to use their own intuitions.

We recorded participants’ accuracy when answering questions
as well as the time it took them to reach an answer. As accuracy and
effort represent the two major costs of the software maintenance
cycle, together they can serve as measurable proxies for some
aspects of “maintainability”.

Finally, participants were presented with an exit survey contain-
ing questions about their computer science experience and personal
opinions on the concept of maintainability.

3.3 Code Selection
To allow for a direct, controlled comparison between human-
written patches and machine-generates patches, we used the bench-
mark suite presented by Le Goues et al. [19, Tab. 1]. The subject
programs used thus come from several large open-source projects
under ongoing development that include over 4 million lines of
code and 9,000 test cases. Individual statistics for each program
are presented in Table 1. We randomly selected 32 defects for
which both human-written and machine-generated patches were
available. Each defect had a priority/severity rating (where avail-
able) of at least three out of five, was sufficiently important for
developers to fix manually, and was important enough to merit a
checked-in test case. In addition, for each such defect we obtained
the original code (i.e., the code for the first version just before the
bug appeared) and, if possible, any human-written patches that had
previously attempted to fix that bug but were reverted.

There are thus five distinct types of code collected and consid-
ered in this study:

• Original — defective, un-patched code used as a baseline for
measuring relative changes in maintainability.

• Human-Reverted — human-created patches that were later
reverted during the normal course of software maintenance.

• Human-Accepted — human patches that have not been re-
verted to date (at least six months).

• Machine — minimized, machine-generated patches produced
by the GENPROG tool, taken directly from the dataset of Le
Goues et al. [19].

• Machine+Doc — machine-generated patches as above, but
augmented with synthesized, human-readable documentation
describing the effect and context of the change (see Sec-
tion 3.1).

For patches affecting multiple changes, we centered the 50-line
context window around the change affecting the largest number of
lines, breaking ties randomly. We explicitly include both undocu-
mented and automatically documented machine generated patches
to test the effects of synthesized documentation on automatically
generated patches. However, we specifically do not test the effect
of synthesized documentation on human generated patches, as the
goal of this work is to compare fully automatic approaches with
a completely manual one. For both Human-Reverted and Human-
Accepted patches we add any relevant software versioning commit
messages as comments so as to use all available human-created in-
formation associated with a given patch.

The types listed have natural overlap with respect to an indi-
vidual bugs. For instance, a given defect might have correspond-
ing code for the Original, Human-Accepted, Machine, and Ma-
chine+Doc categories. Participants were shown a randomly chosen
sequence of code types. We ensured that no two code segments
from a single bug would ever be presented to a single user to avoid
any training bias for the code and bug in question.

Because the Machine patches were created using a C front
end [22], they may not correspond exactly to the original code
(e.g., they may have different indentation). We manually removed
any non-original, unnecessary artifacts left by the tool. All patches

Human-Accepted Human-Reverted Machine- Generated
Program LOC Tests Defects Patches Patches Patches Description

gzip 491,083 12 1 1 0 1 Compression utility
libtiff 77,258 78 7 7 0 7 Image processing utility
lighttpd 61,528 21 3 1 2 1 Webserver
php 1,046,421 8471 9 8 1 8 Language interpreter
python 407,917 355 1 1 0 1 Language interpreter
wireshark 2,812,340 63 11 0 11 0 Packet analyzer
total 4,896,547 9,000 32 18 14 18

Table 1. A list of the subject programs we used as sources for patches in our human study, including the number of each type of patch used
for each code base.

presented to users were functionally identical to those produced by
the GENPROG tool, while syntactically matching the original code
as closely as possible. No changes were made that could not have
been applied mechanically.

As mentioned in Section 3.1, we hypothesize that the maintain-
ability of machine-generated patches will be improved by the ad-
dition of documentation summarizing effects and contexts. When
presenting Machine+Doc code to participants, we inline the de-
scriptive comments on (space permitting) or directly above the
first line in the patch. Similarly, for human-written code, we inline
the associated version control log message, if any. Thus, in terms
of functional correctness and program semantics the Machine and
Machine+Doc patches are identical: the only difference is the addi-
tion of documentation in the latter.

3.4 Code Understanding Question Selection and Formulation
To measure maintainability, we require subject questions that are
indicative of those developers would ask during the maintenance
process. Sillito et al. identify 44 different types of questions they
directly observed real developers asking when performing mainte-
nance tasks [32]. We used the five of these generic question types
that focused on line-level granularity, as this was the most appro-
priate for 50-line code segments we presented to participants. Ex-
amples of the question types we selected are as follows:

• What conditions must hold to always reach line X during nor-
mal execution?

• What is the value of the variable “y” on line X?
• What conditions must be true for the function “Z()” to always

be called on line X?
• At line X , which variables must be in scope?
• Given the following values for relevant variables, what lines are

executed by beginning at line X? Y=5 && Z=true.

Many of the questions observed by Sillito et al. were more general
in nature and would not have been applicable for gauging humans’
understanding of the code segments used in the study. An example
of a question Sillito et al. observed that did not apply is “Does this
type have any siblings in the type hierarchy?” [32, Question #9].
In the majority of cases, the code segments shown to participants
did not represent an entire class and, as such, there generally would
not have been enough context to answer such a question. Question
types were randomly selected for each code segment collected.
If a question type did not apply to the code in question (e.g. a
question about function calls when none appeared in the code), a
new question type was randomly selected until a viable option was
found. We call the line X in the examples above the focus line.

As all questions operated at a line-level granularity, we applied a
deterministic algorithm for choosing the focus line. Our goal when
selecting focus lines is to direct participant attention to the changes
made by the patch; directing them to unchanged statements across

different versions of similar code would fail to measure changes
in maintainability caused by the patches. The main stipulation for
choosing a line on which to focus was that it must occur in all
relevant code segments (i.e., it must be associated with all available
patches for that bug), to allow for controlled experimentation. For
example, if the human-created and machine-generated patch for a
given bug share the same context, then only lines that occur in both
patched versions of the code as well as the original source are valid
choices. We adopted the following process for choosing the focus
for a given patch’s relevant code segments:

1. Let S be the intersection of all lines for all relevant code seg-
ments. If S = ∅, discard the bug and restart, otherwise proceed
to step 2.

2. Let T be the subset lines in S that are dominated [2] by any
part of the largest change from each of the relevant patches.
If T = ∅, repeat with next largest change from the patch in
conflict. If no further changes exist, discard the bug and restart,
otherwise proceed to step 3.

3. Choose the line in T that is closest to a line changed by the
patch (as reported by diff) in question.

Once both a focus line and a question have been selected for a given
code segment, the remaining portions of the question were selected
uniformly at random, but with the stipulation that the code changed
for the patch be highlighted whenever possible. For instance, if the
question was “what is the value of variable Y on line X?”, variable Y
was chosen randomly out of all the variables with values that were
affected in the relevant patches. If no such variable existed or was
in scope at line X , a variable was selected at random from those
in scope. In the above example, the typical outcome of this process
was that X referred to a line dominated by code changed by all of
the patches (thus, if control flow were to reach line X , it must first
have passed through patched code) and the variable Y was one with
a value altered by code changed by the patch.

Using this set of guidelines, we selected and crafted maintain-
ability questions for a total of 114 code segments including 40 se-
mantically distinct patches from the 32 unique bugs. When asked if
they thought the study questions mimicked the actual maintenance
process, the majority of participants responded affirmatively on a
Likert scale (1–5).

3.5 Participant Selection
We aim to measure the maintainability of real source code. We thus
require study participants with skills at least on par with novice
developers, who might perform maintenance tasks on the target
systems in the real world. We solicited responses from three groups
of people and imposed accuracy standards to ensure that our results
are more likely to generalize. All participants were required to have
at least some programming experience in the C language. While
participants were asked to self-report their experience, we used
only objective accuracy measurements as cutoffs.

Participants fell into three categories: 27 fourth-year undergrad-
uate students, 14 graduate students, and 116 Internet users partici-
pating via Amazon.com’s Mechanical Turk “crowdsourcing” web-
site. A fourth year computer science undergraduate student is in-
dicative of someone who will soon enter the target industry as a
novice. This is the lowest acceptable level of experience for our
study and would represent “new hires” or developers who may
not be familiar with the project — an especially important demo-
graphic to consider when studying the future maintainability of a
system. Graduate students have generally had more experience and
are more akin to a somewhat experienced developer from another
project. Finally, Mechanical Turk participants varied widely in both
industrial and academic experience. Participants were kept anony-
mous and were offered a chance to win one of two $50 Amazon
gift cards and either class extra credit (via a randomized comple-
tion code, for students) or $4.00 (for Mechanical Turk participants).

In all cases, we impose an accuracy cutoff (described below)
to ensure the quality and generalizability of the overall partici-
pant population. Amazon.com’s Mechanical Turk crowdsourcing
service deserves a detailed mention; it is effective as a means of
obtaining a diverse population, but requires special consideration to
ensure the overall quality of the data set. Previous work has shown
that the Mechanical Turk participants can be effective when large
populations are required [17, 33] — including for software engi-
neering studies [11]. However, when offered a reward for an anony-
mous service, people may attempt to receive compensation without
giving their best effort. We therefore set two criteria for all partici-
pants. First, participants were required to give answers for all ques-
tions and complete the exit survey fully. Second, participants who
scored more than one standard deviation below the average stu-
dent’s score were removed from consideration. This accuracy cut-
off was imposed because we cannot directly control for experience
levels (especially with Mechanical Turk participants) and desire a
level of competency consistent with someone who has completed at
least some portion of an undergraduate education. Participants were
aware of accuracy requirement and that their reward depended on
it; since there was no time limit, participants were thus encouraged
to take as long as necessary to get the correct answer, rather than
to rush through the questions. In practice participants did just that
(see details in Section 4), which often allowed us to measurably
hold accuracy constant and thus use time taken as a key proxy for
maintenance difficulty.

4. Experiments
This section presents statistical analyses of the results of the human
study to address the following research questions:

1. How do different types of patches affect maintainability?

2. Which source code characteristics are predictive of our main-
tainability measurements?

3. Do participants’ intuitions about maintainability and its causes
agree with measured maintainability?

Recall that we are focusing only on particular aspects of maintain-
ability (i.e., accuracy and effort when answering types of questions
observed in real-world maintenance [32]).

As mentioned in Section 3.5, we impose an experimental cutoff
to ensure only participants representative of the target “new devel-
oper” population are included in our analyses. Out of the 41 stu-
dents surveyed, the mean accuracy was 53.8%. We thus establish a
cutoff one standard deviation below that mean, at 34.7% accuracy.
Imposing this cutoff restricted the overall subject pool from 157 to
a total of 102 participants and over 2,100 individual data points.2

2 Collected data available at http://genprog.cs.virginia.edu/

-‐10	

-‐8	

-‐6	

-‐4	

-‐2	

0	

2	

4	

6	

Human	
Reverted	

Human	
Accepted	

Machine	 Machine+Doc	

Pe
rc
en

t	 C
ha

ng
e	
in
	 C
or
re
ct
	 A
ns
w
er
s	 	

W
he

n	
Co

m
pa

re
d	
w
ith

	 O
rig

in
al
	 C
od

e	

Patch	 Type	

Figure 3. Percent change in accuracy of participants’ answers as
a function of the type of patch. The percent change is measured
against the original, buggy code (i.e., before the patch was applied).
Of the four types of patches we investigated, the sole type that,
when applied, increases the maintainability of the original code
on average is Machine+Doc. However, the means of the percent
changes presented are not different in a statistically significant
manner.

4.1 How do patch types affect maintainability?
We use two metrics to measure patch maintainability, correspond-
ing to major costs throughout the maintenance process: accuracy
and effort. Accuracy is calculated by manually verifying all col-
lected responses and measuring the percentage of correct answers
for all questions of a given patch type. At least two annotators ver-
ified each participant’s answers to mitigate grading errors or am-
biguities due to the use of free-form text. Effort is a calculated by
averaging the number of minutes it took participants to submit a
correct answer for all questions related to a given patch type. We
omit incorrect answers as part of this statistic because incorrect an-
swers often required only a few seconds if a participant decided to
skip a question or simply guess.

Figure 3 shows the average percent change in accuracy for a
given patch type. We measure the change in accuracy for a patch
type t as follows:

change in accuracy(t) =

P
i∈t acc(patchi)− acc(orig i)

|t|
where i ranges over all patches of type t, patchi is a particu-
lar patch, and origi is the corresponding original code. The acc
function calculates the average accuracy for maintenance questions
about a particular piece of code over all participants.

If all other variables are held equal (i.e., the code it modi-
fies, any documentation it may include, etc.), any change in accu-
racy is explained only by the patch. A one-sided Student’s t-test
shows that none of the means of the percent changes presented
can be considered different in a statistically significant manner
(p = 0.066 6≤ 0.05). Therefore, we cannot conclude that humans
are more or less capable of correctly answering questions typical
of those that arise during the maintenance process when examining
different types of patches. However, we can conclude that accu-
racy on machine-generated patches is not worse than accuracy on
human-written patches (i.e., mean accuracy for machine-generated

-‐25	

-‐20	

-‐15	

-‐10	

-‐5	

0	

5	

10	

15	

Human	
Accepted	

Machine	 Human	
Reverted	

Machine+Doc	

Pe
rc
en

t	 T
im

e	
Sa
ve
d	
fo
r	 C

or
re
ct
	 A
ns
w
er
s	 	

W
he

n	
Co

m
pa

re
d	
w
ith

	 O
rig

in
al
	 C
od

e	

Patch	 Type	

Figure 4. Percent effort saved for correct answers as a function
of patch type. The percent change is measured against the origi-
nal, buggy code (i.e., before the patch was applied). Of the four
types of patches we investiaged, the only type that, on average,
saved humans effort was Machine+Doc. With statistical signifi-
cance, the mean effort saved when applying Machine+Doc patches
is strictly greater than the effort saved when applying Human Ac-
cepted patches. In fact, we find that Human Accepted patches actu-
ally cause an increase in effort over the original code.

patches is either greater than or equal to that for human-written
patches).

Figure 4 shows the percentage of time saved for each patch type
when compared with the corresponding original code. The time
saved is calculated as follows:

time saved(t) =

P
i∈t time(orig i)− time(patchi)

|t|
where i ranges over patches of type t, patchi is a particular patch
shown to participants, orig i is the corresponding original code,
and the time function returns the average time taken by all par-
ticipants who answered the question correctly. In this measure-
ment, the mean time required to correctly answer questions of Ma-
chine+Doc patches is lower than the mean time required to an-
swer Human-Accepted patches in a statistically significant manner
(p < 0.048). Specifically, Human-Accepted patches resulted in a
20.9% increase in time-to-correct-answer, compared to the original
code. However, Machine+Doc patches actually reduced the average
time-to-correct-answer by 10.6%.

As mentioned in Section 3.3, we do not explicitly measure
the effect of machine-generated documentation on human patches.
In Section 1, we hypothesized that we could create and present
machine-generated patches so that they would be at least as main-
tainable as comparable human-generated patches. As such, investi-
gating the independent effect of synthesized documentation is out-
side of the scope of this work. We instead aim to provide evidence
that fully machine-generated patches may be viable compared to
human-generated patches.

To summarize, participants are at least as accurate when an-
swering maintenance questions about machine-generated patches
augmented with documentation then when they are answering
questions about human-written patches. In addition, when accu-
racy is held constant, participants take less time to correctly an-
swer maintenance questions about machine-generated patches aug-

mented with documentation than they do to correctly answer ques-
tions about human-written patches (by 31.5%, p < 0.048). Perhaps
surprisingly, for this aspect of maintainability (i.e., quickly and
correctly answering questions that are indicative of the real-world
maintenance process), Machine+Doc patches are more maintain-
able than Human-Accepted patches based on the results of this
study: they admit at least as much accuracy and require less main-
tenance time on average with statistical significance.

4.2 Which code features predict maintainability?
We have established that patches from different sources have dif-
ferent maintainability, as measured by the accuracy obtained and
effort required when participants answer indicative software main-
tenance questions about them. In this section we investigate these
changes in maintainability in terms of code features and quantita-
tively analyze those features in terms of their predictive power.

We tested several types of classifiers (e.g. naı̈ve Bayesian,
Bayesian network, multi-layer perceptron, decision tree, etc.)
and chose a Logistic regression based on its simplicity and abil-
ity to correctly classify patches with respect to human accuracy
(Bayesian and perceptron accuracies were within 9% of the chosen
classifier). Given the feature values associated with a patch, the lo-
gistic model was able to correctly classify whether the participant
would answer the maintenance question correctly for 73.16% of
the 2109 human judgments. We find this model accurate enough
to be useful when investigating the predictive power of individ-
ual features. We used the ReliefF technique to measure a given
feature’s relative predictive power, which computes this statistic
without assuming conditional independence [29]. A principle com-
ponent analysis shows that 17 code features are needed to account
for 90% of the variance in the data. This high number of features
highlights the complex nature of maintainability: it is not easily
explained away by a small combination of notions.

Table 2 ranks the top 17 features by their ReliefF predictive
power with respect to the human accuracy data collected from our
study. The results show that a mix of both syntactical and seman-
tic features help to predict maintainability. Of note is that “number
of comments” is not a particularly predictive feature, while Fig-
ure 3 and Figure 4 show a clear difference in human performance
between Machine and Machine+Doc — patch types in which the
only difference is the presence of summarizing documentation.
Heitlager et al. echo this intuition, finding that the majority of
comments are “simply code that has been commented out” [14].
Since the mere number of comments present (i.e., one more in Ma-
chine+Doc) is not sufficient to explain the difference in human per-
formance, we conclude that the content of the comments is critical.3

That is, Machine and Machine+Doc can be viewed as a controlled
experiment in which only the presence of the documenting com-
ment changes, and thus only a few features change (e.g., number
of comments and total number of characters). Those changed fea-
tures are not sufficient to mathematically predict the differences in
accuracy and effort actually observed; we thus conclude that an ad-
ditional feature, such as the content of the comment, must matter.
Together with Figure 3 and Figure 4, this result supports our claim
that our proposal to augment machine-generated patches with doc-
umentation that summarizes their effects and contexts is useful.

Previous investigations have indicated a lack of consensus on
which metrics and concepts adequately explain maintainability [18,
23, 28]. The large number of low-impact features describing human
accuracy, as measured by our study, reinforces this conclusion.
In the following subsection, we elaborate this claim by showing

3 We cannot include comment quality as a feature since it does not admit a
simple and standard numerical measurement.

Measured Code Feature Power

Ratio of variable uses per assignment 0.178
Code readability (Buse et al. metric [8]) 0.157
Ratio of variables declared out of scope / in scope 0.146
Number of total tokens 0.097
Number of non-whitespace characters 0.090
Number of macro uses 0.080
Average token length 0.078
Average line length 0.072
Number of conditionals 0.070
Number of variable declarations or assignments 0.056
Maximum conditional clauses on any path 0.055
Number of blank lines 0.054
Number of variable uses 0.041
Maximum statement nesting depth 0.033
Number of comments 0.022
Curly braces on same line as conditionals 0.014
Majority of lines are longer than half-screen width 0.012

Table 2. Relative Predictive power of code features for modeling
human accuracy when answering questions related to maintainabil-
ity (ReliefF method). A value of 1.0 indicates the feature is a per-
fect predictor while a value of 0.0 suggests the feature is of no value
when predicting the given response variable.

that humans often fail to recognize which features actually predict
maintainability.

4.3 Do human maintenance intuitions match reality?
Software maintenance is a complex and demanding task that may
be poorly-understood by some practitioners. We hypothesize that,
in addition to not being able to identify what makes code more or
less maintainable, humans may not be able to recognize maintain-
able code at all. This section compared subjective data collected
during the study against measured human effort and accuracy to
assess the validity of participants’ intuitions about maintainability.

For each code segment in the study, participants were asked to
provide not only an answer to the given question but also their con-
fidence in their answer and a subjective judgment of how main-
tainable they believe the subject code to be (see Section 3.2). We
found that participants’ confidence in their answer correlated with
their actual accuracy at a level of 0.18 (p < 0.001) using Pear-
son’s product-moment statistic and with time to a correct answer at
a level of -0.05 (p < 0.05). While there is no universal standard
for the strength of a correlation, it is generally accepted that values
between −0.3 and 0.3 are “not correlated” [9, 12]. We can thus
conclude that participant confidence and participant accuracy are
largely not linearly related.

Similarly, subjectively-reported values for maintainability ex-
hibited a Pearson correlation of 0.13 (p < 0.001) with actual ac-
curacy and of -0.04 (p < 0.20) with time to correct answer. We
conclude that participant judgments of the task difficulty and their
own actual performance are also largely not linearly related.

During the exit survey of the study, participants were asked to
list all relevant code features that they felt affected maintainabil-
ity in any way. The frequencies with which code features were
reported are shown in Table 3. Because they are self-reported as
free-form text, the descriptions of the features are slightly less for-
mal, but overall participants felt that descriptive variable names,
clear whitespace and indentation, and presence of comments affect
maintainability the most. By comparing the “Power” column in Ta-
ble 3 to the top 17 actually predictive features (Table 2), it can be
seen that there is limited overlap between the set of features humans
believe affect maintainability and those that are good predictors of

Human Reported Feature Votes Power

Descriptive variable names 35 0.000*
Clear whitespace and indentation 25 0.003*
Presence of comments 25 0.022
Shorter functions 8 0.000*
Presence of nested conditionals 8 0.033
Presence of compiler directives / macros 7 0.080
Presence of global variables 5 0.146
Use of goto statements 5 0.000*
Lack of conditional complexity 5 0.055
Uniform use and format of curly braces 5 0.014

Table 3. The top ten most-reported features by human participants
when asked to list features they felt affected code maintainabil-
ity. The second column lists the number of human participants
who mentioned that feature; the third lists the relative predictive
power of that feature when modeling actual human accuracy (Re-
liefF method; cf. Table 1). Features marked with an asterisk lack
significant predictive power in the logistic regression model and
are thus cases where humans misjudge the factors that affect main-
tainability.

it. For example, the feature most commonly mentioned by humans,
“descriptive variable names”, was manually annotated on the code
snippets used in the human study by two separate annotators but
was still found to have no predictive power. Similarly, the use of
clear whitespace and indentation had a very minimal predictive ef-
fect — far below any of the top 17 predictive features. Of the three
features most often reported by participants, only one (the presence
of comments) has a significant predictive power.

4.4 Qualitative Analysis
We now present two case studies to help illustrate the perhaps-
surprising result that the features participants claim are most in-
fluential with respect to maintainability do not uniformly result
in higher accuracy. The human-created (and later reverted) patch
shown in Figure 5 exhibits many of the features participants report
make code more maintainable. For instance, comments (the third
highest feature) account for almost half of the lines in the patch.
Additionally, there is only a single one-letter potentially nonde-
script variable and, given the juxtaposition of its type, GtkWidget,
the use of the letter w would not seem overly ambiguous in this
case. It is clearly indented, uses whitespace well, is a short function,
lacks gotos, and does not feature complex conditionals. Despite
displaying qualities reported to aid in maintainability, participants
correctly answered questions associated with this code only 20.0%
of the time — significantly below overall average of 57.2% for all
questions in the study. The original, un-patched version of this code
contains less commenting and shows a slightly greater use of non-
descript identifiers (i.e., w and data vs. after_save_no_action).
Despite this, participants exhibit 6.1% greater accuracy, on aver-
age, for questions about the original code.

Figure 6 presents a code segment which exhibits relatively few
of the features participants claim help to increase maintainability.
Notably, the code lacks comments entirely and most of the vari-
able names are terse. While humans subjectively report that these
features should make it difficult to answer questions correctly, the
average accuracy rate associated with the corresponding mainte-
nance question was 75% — or 17.8% above the average and a 55%
increase over the code depicted in Figure 5. While the code in Fig-
ure 6 does not match human-reported notions of maintainability, it
does have higher-than-average for three out of the top fives features
shown to actually predict maintainability in Table 2.

1 - void file_save_cmd_cb(GtkWidget *w,
2 - gpointer data) {
3 + void file_save_cmd_cb(GtkWidget *w _U_ ,
4 + gpointer data _U_) {
5 /* If the file’s already been
6 saved , do nothing. */
7 if (cfile.user_saved)
8 return;
9 + /* Properly dissect innerContextToken for

10 + Kerberos in GSSAPI. Now , all I have to
11 + do is modularize the Kerberos dissector */
12 /* Do a "Save As". */
13 - file_save_as_cmd(w, data);
14 + file_save_as_cmd(after_save_no_action ,
15 + NULL , FALSE);
16 }

Figure 5. Human-Reverted patch from wireshark. The patch
modifies function file_save_cmd_cb, replacing lines 1–2 with
lines 3–4 in addition to replacing line 13 with lines 14–15 and
adding the comment on lines 9–11. Despite containing many fea-
tures subjectively associated with high maintainability, participant
accuracy on this snippet was 37% lower than average.

1 static void snmp_users_update_cb(
2 void* p _U_ , const char** err) {
3 snmp_ue_assoc_t* ue = p;
4 GString* es = g_string_new("");
5 *err = NULL;
6 if (! ue->user.userName.len)
7 g_string_append(es,"no userName ,");
8 if (es ->len) {
9 g_string_truncate(es,es->len -2);

10 *err = ep_strdup(es ->str);
11 }
12 g_string_free(es,TRUE);

Figure 6. Original un-patched code snippet from wireshark. De-
spite having few features reportedly associated with maintainabil-
ity, this code was particularly easy for participants to reason about
(75% accuracy).

We conclude that there is a significant disconnect between hu-
man intuitions and reality regarding which code features affect
maintainability. This discrepancy reinforces the need to investi-
gate the root causes of maintainability with respect to guiding fu-
ture development of both human-created and machine-generated
patches. More directly, as automatically-generated patches become
more commonplace, it is increasingly critical to know which fea-
tures actually affect maintainability. Automated repair approaches
can often produce multiple patches or target certain code features.
Our results suggest, for example, that machine-generated patches
should pay more attention to using locally-scoped variables and
keeping the total size of the code low than to avoiding nested or
complex conditionals.

5. Threats to Validity
Although our experiments show that automatically generated
patches augmented with synthesized documentation are at least
as maintainable as human written patches, our results may not gen-
eralize.

First, the code segments we selected may not be indicative of in-
dustrial systems. We attempted to address this threat by including
code from a variety of application domains, including web servers,
language interpreters, graphics processing, and compression utili-
ties. However, our results may not generalize to commercially de-

veloped systems, closed-source programs, or programs with com-
plex graphical user interfaces, for example. Furthermore, there are
several threats related to failing to control for factors such as inher-
ent code complexity or readability when measuring maintainability
levels for various patch types. We attempt to mitigate these threats
by randomizing the selection of both the code segments and the
target questions when assigning tasks to patch types.

The participants selected may not accurately reflect industrial
developers. We address this bias by soliciting a combination of
senior level undergraduates, graduate students, and external par-
ticipants. Participant self-reported computer science experience
ranged from 1–35 years indicating a diverse population. We further
restrict the population by removing participants whose skills may
not be comparable with that of paid developers by imposing an ac-
curacy cutoff. A related concern is that participants had no a priori
experience with the code under study. Thus, while our experiments
reflect situations in which developers are tasked with examining
unfamiliar code, our results cannot generalize to maintenance tasks
involving code developers are familiar with. Finally, the questions
posed may not be indicative of all maintenance tasks. However, our
paper focuses only on measuring maintainability as it relates to the
questions developers ask when performing maintenance tasks as
described by Sillito et al. [32] directly.

Two common threats associated with human studies are train-
ing or fatigue effects. A training effect occurs when participants do
poorly at the beginning of a study and increase in accuracy with
familiarity. Conversely, a fatigue effect occurs when participants
grow tired or apathetic and their performance declines. We explic-
itly measured for these effects and found none: accuracy changed
by only half a percentage point on average between the first half
and the second half of the study.

Feature selection admits bias if the particular features measured
are chosen based on either the code or the questions being asked.
We mitigate this threat by choosing as features the union of those
mentioned by participants and those used in previous studies ex-
ploring the maintenance process [8, 11].

6. Related Work
There are three general research areas related to this work: auto-
mated program repair, investigations of code maintainability, and
synthesizing documentation.

6.1 Automated program repair
The recent research area of automated program repair aims to
construct or evolve patches or runtime modifications to address
defects in programs, but with little or no manual intervention. The
GENPROG technique used to generate the patches used in this paper
leverages evolutionary computation to craft patches from existing
code [20]. It has proven effective at fixing a significant fraction
of indicative bugs at costs that are comparable to current industry
standards [19].

There are a number of promising approaches to automated pro-
gram repair. The CLEARVIEW tool uses dynamic invariant moni-
toring to recognize errors at runtime and creates patches by satis-
fying the offending invariants at the binary level [26]. Compara-
tively, the AUTOFIXE technique utilizes Eiffel-based contracts to
pinpoint pre- and post-condition violations and construct patches
to rectify specific failures [35]. Orlov and Sipper have applied
evolutionary computation to the domain of unrestricted Java byte-
code [25]. The AFIX project uses static analysis techniques to ex-
pose atomicity-related errors and automatically generate patches
for single-variable atomicity violations [16].

While arguments for functional correctness have been made for
the aforementioned automated repair techniques, there has been no
investigation into what effects such patches will have on the main-

tainability of systems. Furthermore, there has been little compari-
son between human-created and machine-generated patches with
respect to understandability. By contrast, this paper investigate
those two questions directly.

6.2 Code Maintainability
The maintenance process is the dominant cost of the software
lifecycle [4, 31]. As such, there has been a significant amount
of work aimed at both measuring maintainability aggregately and
distinguishing the various subcomponents that affect a system’s
overall level of maintainability.

Aggarwal et. al argue that being able to understand and rea-
son about code is central to the concept of maintainability [1]. Our
study measures software understanding by gauging humans’ abili-
ties to answer various maintenance-related questions.

Welker et al. describe a single metric, the Maintainability In-
dex, to statically determine the maintainability of source code [38].
This metric takes into account a number of other software qual-
ity metrics, including Halstead’s program volume [13], McCabe’s
cyclomatic complexity [21], and average lines of code. In sub-
sequent work, Heitlager et al. presented several criticisms of the
original Maintainability Index and suggest potential improvements
such as mapping system-wide characteristics of maintainability to
source code properties and determining appropriate measurements
for each of these properties [14]. Unlike this line of work, we do
not measure maintainability through software metrics designed to
model cost and effort related to humans. Instead, we gather an ob-
jective measure of maintainability directly from humans and at-
tempt to elucidate maintainability a posteriori.

Kozlov et al. correlate various software metrics with the Main-
tainability Index described previously and find that no single analy-
sis can definitely describe the relationships between maintainability
and software quality metrics [18]. The idea that there is “no silver
bullet” is echoed in the work of Riaz et al. [28] and Nishizono et
al. [23]. We similarly found that no single code feature can predict
maintainability, but rather a combination of many syntactical and
semantic notions provides a reasonably accurate model.

6.3 Documentation Synthesis
Previous work has shown that documentation aids in program
understanding and thus in the overall maintainability of a code
base [10, 24]. There have been a number of proposed approaches
for automatically documenting particular software aspects (e.g.,
exceptions [7] or API usage rules [5]). In this paper we propose to
augmenting patches with a slightly modified version of the DELTA-
DOC tool [6]. DELTADOC uses symbolic execution to reason about
code changes and synthesize natural language explanations of the
concrete events associated with the change and the predicates nec-
essary to observe said events. We propose a number of small modi-
fications to DELTADOC, generally designed to favor completeness
over conciseness because patches produced by automated program
repair tend to be small [37]. This paper presents the first strongly
human-evaluated proposal to augment automated patches with syn-
thesized documentation, as well as an evaluation of DELTADOC on
newly-created patches without available human documentation —
previous work has focused on comparisons against human-written
documentation for the same patch [6, Fig. 7].

7. Summary and Conclusion
We have presented a human study of patch maintainability. Our
study is large (157 humans participated; the most-accurate 102 pro-
duced over 2,100 data points), uses high-priority defects from re-
alistic programs (4.8 million lines of code and 9000 tests), is con-
trolled (we compare human-written to machine-generated patches

for the same defects), and is grounded (we use human-reverted
patches as a baseline indicative of wasted maintenance effort). The
results shed light on the relative accuracy and effort required for
participants to answer indicative maintenance questions on patched
code. We also contrast the code-level features that humans think
influence maintainability with those that are actually predictive
of their performance. We acknowledge the research area of auto-
mated patch generation and include machine-generated patches in
our study, proposing to augment them with human-readable syn-
thesized documentation describing their effects and contexts.

When we control for accuracy, we find that it took participants
30% less time to correctly answer maintenance questions about
machine-generated patches with synthesized documentation than
to correctly answer questions about human-written patches, in a
statistically significant manner. We find that our approach to auto-
matically documenting machine patches is critical to this increase.
This result is particularly compelling in light of the general per-
ception that machine-generated patches lower code maintainabil-
ity. Finally, we investigate code features related to human accuracy
and find a strong disparity between what humans think matters to
maintainability (e.g., shorter functions, the presence of comments,
descriptive variable names) and what is actually predictive (e.g.,
how often variables are modified, how many referenced variables
are locally scoped, etc.).

Understanding the maintainability of patches is crucial to soft-
ware engineering, especially as automated program repair becomes
more common. We believe this work provides a first step toward
directly measuring the maintainability of patches, both human-
written and machine-generated, as well as proposing particular ap-
proaches and treatments (i.e., synthesizing documentation, focus-
ing on particular code features) that repair techniques, developers,
and educators can consider for maintainability in the future.

Acknowledgements
We thank Claire Le Goues for insightful discussions. We are indebted
to the anonymous reviewers their positive suggestions. We gratefully ac-
knowledge the partial support of NSF (CCF 1116289, CCF-0954024, CCF-
0905373), AFOSR (FA9550-07-1-0532, FA9550-10-1-0277), and DARPA
(P-1070-113237).

References
[1] K. Aggarwal, Y. Singh, and J. Chhabra. An integrated measure of soft-

ware maintainability. In Reliability and Maintainability Symposium,
pages 235 –241, 2002.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques
and Tools. Addison Wesley, 1986. ISBN 0201100886.

[3] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In
International Conference on Software Engineering, pages 361–370,
2006. ISBN 1-59593-375-1.

[4] B. Boehm and V. Basili. Software defect reduction. IEEE Computer
Innovative Technology for Computer Professions, 34(1):135–137, Jan-
uary 2001.

[5] R. P. L. Buse and W. Weimer. Synthesizing API usage examples. In
International Conference on Software Engineering (to appear), 2012.

[6] R. P. L. Buse and W. Weimer. Automatically documenting program
changes. In Automated Software Engineering, pages 33–42, 2010.

[7] R. P. L. Buse and W. Weimer. Automatic documentation inference
for exceptions. In International Symposium on Software Testing and
Analysis, pages 273–282, 2008.

[8] R. P. L. Buse and W. Weimer. A metric for software readability.
In International Symposium on Software Testing and Analysis, pages
121–130, 2008.

[9] J. Cohen. Statistical power analysis for the behavioral sciences, 2nd
edidtion. Routledge Academic, 1988. ISBN 0805802835.

[10] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira. A study of
the documentation essential to software maintenance. In international
conference on Design of communication, pages 68–75, 2005. ISBN
1-59593-175-9.

[11] Z. Fry and W. Weimer. A human study of fault localization accuracy.
In International Conference on Software Maintenance, pages 1–10,
2010.

[12] L. L. Giventer. Statistical Analysis in Public Administration. Jones
and Bartlett Publishers, 2007.

[13] M. Halstead. Elements of Software Science. Elsevier, New York, 1977.
[14] I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring

maintainability. In International Conference on Quality of Information
and Communications Technology, pages 30–39, 2007.

[15] P. Hooimeijer and W. Weimer. Modeling bug report quality. In
Automated Software Engineering, pages 34–43, 2007.

[16] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated atomicity-
violation fixing. In Programming Language Design and Implementa-
tion, 2011.

[17] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with
mechanical turk. In Conference on Human Factors in Computing
Systems, pages 453–456, 2008.

[18] D. Kozlov, J. Koskinen, M. Sakkinen, and J. Markkula. Assessing
maintainability change over multiple software releases. J. Softw.
Maint. Evol., 20:31–58, January 2008.

[19] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A system-
atic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In International Conference on Software Engineering (to
appear), 2012.

[20] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg:
A generic method for automated software repair. Transactions on
Software Engineering, 38(1):54–72, 2012.

[21] T. J. McCabe. A complexity measure. IEEE Trans. Software Eng., 2
(4):308–320, 1976.

[22] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermedi-
ate language and tools for analysis and transformation of c programs.
In Conference on Compiler Construction, volume 2304, pages 213–
228, 2002.

[23] K. Nishizono, S. Morisaki, R. Vivanco, and K. Matsumoto. Source
code comprehension strategies and metrics to predict comprehension
effort in software maintenance and evolution tasks — an empirical
study with industry practitioners. In International Conference on
Software Maintenance, pages 473 –481, sept. 2011.

[24] D. G. Novick and K. Ward. What users say they want in documenta-
tion. In International Conference on Design of Communication, pages
84–91, 2006.

[25] M. Orlov and M. Sipper. Flight of the finch through the java wilder-
ness. IEEE Transactions on Evolutionary Computation, 15(2):166–

192.
[26] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,

M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically patch-
ing errors in deployed software. In Symposium on Operating Systems
Principles, 2009.

[27] D. R. Raymond. Reading source code. In Conference of the Centre
for Advanced Studies on Collaborative Research, pages 3–16, 1991.

[28] M. Riaz, E. Mendes, and E. Tempero. A systematic review of software
maintainability prediction and metrics. In International Symposium on
Empirical Software Engineering and Measurement, pages 367–377,
2009.

[29] M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical
analysis of ReliefF and RReliefF. Mach. Learn., 53:23–69, October
2003.

[30] S. Rugaber. The use of domain knowledge in program understanding.
Ann. Softw. Eng., 9(1-4):143–192, 2000.

[31] R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing Legacy
Systems: Software Technologies, Engineering Process and Business
Practices. Addison-Wesley Longman Publishing Co., Inc., 2003.

[32] J. Sillito, G. C. Murphy, and K. De Volder. Questions programmers
ask during software evolution tasks. In Foundations of Software
Engineering, pages 23–34, 2006.

[33] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast—
but is it good?: evaluating non-expert annotations for natural language
tasks. In Empirical Methods in Natural Language Processing, 2008.

[34] Symantec. Internet security threat report. In http:
// eval. symantec. com/ mktginfo/ enterprise/ white_
papers/ ent-whitepaper_ symantec_ internet_ security_
threat_ report_ x_ 09_ 2006. en-us. pdf , Sept. 2006.

[35] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer,
and A. Zeller. Automated fixing of programs with contracts. In
International Symposium on Software Testing and Analysis, pages 61–
72, 2010.

[36] W. Weimer. Patches as better bug reports. In Generative Programming
and Component Engineering, pages 181–190, 2006.

[37] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In International Confer-
ence on Software Engineering, pages 364–367, 2009.

[38] K. D. Welker, P. W. Oman, and G. G. Atkinson. Development and
application of an automated source code maintainability index. Jour-
nal of Software Maintenance: Research and Practice, 9(3):127–159,
1997.

[39] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N. Bairavasundaram.
How do fixes become bugs? In Foundations of Software Engineering,
pages 26–36, 2011.

