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ABSTRACT
Many software systems exceed our human ability to compre-
hend and manage, and they continue to contain unaccept-
able errors. This is an unintended consequence of Moore’s
Law, which has led to increases in system size, complexity,
and interconnectedness. Yet, software is still primarily cre-
ated, modified, and maintained by humans. The interactions
among heterogeneous programs, machines and human oper-
ators has reached a level of complexity rivaling that of some
biological ecosystems. By viewing software as an evolving
complex system, researchers could incorporate biologically
inspired mechanisms and employ the quantitative analysis
methods of evolutionary biology. This approach could im-
prove our understanding and analysis of software; it could
lead to robust methods for automatically writing, debugging
and improving code; and it could improve predictions about
functional and structural transitions as scale increases. In
the short term, an evolutionary perspective challenges sev-
eral research assumptions, enabling advances in error detec-
tion, correction, and prevention.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
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1. INTRODUCTION
More than 30 years of research in software engineering

and programming languages have given us improved tech-
niques for developing, debugging, maintaining, modifying,
and testing software systems. One aim of this research is
to allow programmers to more easily design and construct
systems that correctly satisfy their requirements when de-
ployed. This research highlights a key aspect of modern
software development: Complex software systems are still
largely developed, maintained, and verified by humans.

Significant research has been undertaken to ease human-
centered software engineering. Topics include testing and
test-suite generation (e.g., [15, 31]), languages such as Al-
loy [19] that help programmers model code more accurately,
error detection based on existing specifications (e.g., [5]),
mined specifications (e.g., [1]), heuristics and best practices
(e.g., [4, 8]), and even source control histories and other de-
velopment artifacts (e.g., [38]), to outline just a small frac-
tion of existing approaches. The problems of identifying
and localizing different types of errors have received indi-
vidual treatment, from null pointer exceptions (e.g., [17]), to
buffer overruns (e.g., [34]), to SQL injection vulnerabilities
(e.g., [35]), among many. Other techniques take a different
approach, focusing on building programs that are correct by
construction (e.g., [22]) or more easily verified (e.g., [37]), or
on synthesizing code from specifications (e.g., [32]), reducing
the need for post-hoc bug finding and localization.

Despite these advances, however, software today remains,
in many ways, far less reliable and more prone to bugs than
in the past. The number of reported defects appears to be
growing at unsustainable rates. For example, in 2005, one
Mozilla developer claimed that, “everyday, almost 300 bugs
appear [. . . ] far too much for only the Mozilla program-
mers to handle” [2, p. 363]. In the absence of sufficient re-
sources to repair them, mature software projects are forced
to ship with both known and unknown bugs [23]. Bugs in
delivered software are time-consuming to identify, localize,
and repair. This can be seen in reports about maintenance,
which is defined as any modification made on a system af-
ter its delivery. Changing existing code, repairing defects,
and otherwise evolving software are major components of
maintenance [27], in some cases accounting for up to 90%
of the total cost of a typical software project [30], at a total
cost of up to $70 billion per year in the US [21, 33]. This
time and money add up to serious economic consequences:
Deployed programs with incorrect behavior cost billions of
dollars each year [25].

As society increases its dependence on software and net-
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worked computing infrastructures, and as the complexity
of those systems grows, current software engineering prac-
tices have become unsustainable. The complexity, diversity,
functionality and interconnectedness of software and soft-
ware systems have increased to the point that they exceed
human comprehension. We postulate that the complexity of
modern software necessitates a transition to more fully au-
tomated software development and maintenance — in short,
it is time to “get the human out of the loop.”

Rather than viewing software as an externally organized
composition of components, we advocate a view similar to
that of Ref. [12], that software can be best understood
and analyzed as an evolving complex system, exemplified by
living systems. This perspective allows important insights
about how humans or machines can understand, develop,
and modify complex systems. Notably, recent advances in
fields such as evolutionary algorithms, adaptive systems, and
theoretical biology can be profitably applied in the domain
of software engineering.

The remainder of this short paper explores the idea that
modern software engineering can benefit from viewing soft-
ware as an evolving complex system.

2. SOFTWARE AS AN EVOLVING SYSTEM
Software today is deployed in highly dynamic environ-

ments. Nearly every aspect of a computational system is
likely to change during its normal life cycle. For example:
new users who interact with software in novel ways, often
finding new uses for old code; the specification of what the
system is supposed to do; the owner and maintainers of the
system; the system software and libraries on which the com-
putation depends, and the hardware on which the system is
deployed. These changes are routine and continual:

“Turning to evolution, we see that the history
of manufactured computers is a truly evolution-
ary history, and evolution does not anticipate,
it reacts. To the degree that a system is large
enough and distributed enough that there is no
effective single point of control for the whole sys-
tem, we must expect evolutionary forces — or
‘market forces’ — to be significant. In the case
of computing, this happens both at the technical
level through unanticipated uses and interactions
of components as technology develops and at the
social level from cultural and economic pressures.
Having humans in the loop of an evolutionary
process, with all their marvelous cognitive and
predictive abilities, with all their philosophical
ability to frame intentions, does not necessar-
ily change the nature of the evolutionary pro-
cess. There is much to be gained by recogniz-
ing and accepting that our computational sys-
tems resemble naturally evolving systems much
more closely than they resemble engineered ar-
tifacts such as bridges or buildings. Specifically,
the strategies that we adopt to understand, con-
trol, interact with, and influence the design of
computational systems will be different once we
understand them as ongoing evolutionary pro-
cesses.” [12]

The evolutionary perspective on software is just one ex-
ample of how technological progress generally can be under-

stood as a product of evolution. Arthur argues in a recent
book [3] that new technologies are descended from novel
combinations and improvements of older technologies, and
Bela et al. show in Ref. [24] that many observed patterns
such as Moore’s Law or Wright’s Law are likely driven by
evolutionary processes. Early antecedents of this idea ap-
peared in the work of Rogers [29], who believed that the
process by which innovations and ideas spread through cul-
ture resembles biological evolution. By extending this line of
work, an evolutionary perspective on software development
could lead to theoretical explanations and macro-laws, for
example, theoretical predictions about distributions of bug
sizes [7], scaling of development time with project size, and
so forth.

To summarize, programs are already subject to the evo-
lutionary pressures and large-scale patterns of biology, ex-
cept they are implemented by hand. And humans mod-
ify software in ways that resemble the mechanisms of nat-
ural evolution — copying code from one program to an-
other (inheritance), making small modifications to exist-
ing code (mutation), and combining program modules to-
gether in mashups (recombination). When rightfully under-
stood, these processes can potentially be automated using
the methods of evolutionary computation, leading to a more
automated form software evolution.

3. BIO-INSPIRED COMPUTATION
Viewing software as an evolving complex system suggests

promising mechanisms and design principles that can be ap-
plied to software, including adaptation and learning, diver-
sity, disposability of components, redundancy, and home-
ostasis [12].

As a concrete example, recent research has shown the ap-
plicability of a computational form of evolution known as
genetic programming (GP) to the problem of automatic er-
ror repair [14, 36]. Although fixing localized bugs in preex-
isting code is a long way from the vision of an automatically
evolving software ecosystem outlined above, it is a first step
and proof of principle.

To review, the automatic error repair technique assumes
access to a program’s source code (in C), a test case that
encodes a bug (a negative test case that the program cur-
rently fails), and a set of test cases that encode required
program behavior (positive test cases). Fault localization
distinguishes between statements executed only by the neg-
ative test case and those executed by both positive and nega-
tive test cases; this isolates the error and reduces the search
space. The repair process randomly mutates and recom-
bines subtrees of the program’s abstract syntax tree; fault-
localized areas are more likely to undergo change. Mutations
are drawn exclusively from elsewhere in the program, and
may either insert a statement somewhere along the negative
test case’s execution path, or delete a statement along that
path. These mutations produce variants of the original pro-
gram, which, if successfully compiled, are evaluated by the
provided test cases. The search is successful when it finds
a program variant that passes all of the test cases, positive
and negative.

This technique has been shown to repair a wide variety
of error types, including buffer overruns, denial of service
attacks, and format string vulnerabilities, in legacy C soft-
ware totaling over two millions lines of code, in under five
minutes, on average.
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The success of this technique says as much about the na-
ture of software as it does about genetic programming. In
particular, it highlights the strong analogy between soft-
ware and living, complex evolving systems. For example,
the method assumes that a program “contains the seeds of
its own repair”—potential fixes are adapted from other parts
of the program. This illustrates redundancy of functionality
even in software executing in isolation (and not in a com-
plex ecology). Similarly, many bugs are repaired currently
by manually copying code from one location to another, per-
haps to propagate fixes between otherwise similar code, or
simply because it is easy. In this regard, human evolution of
software resembles the mechanisms of biological evolution.

4. CHALLENGED ASSUMPTIONS
Shifting to an evolutionary perspective on software will

challenge several assumptions in current software engineer-
ing research practice.

First, viewing software as an evolving system can release
program analyses from the “shackles of soundness”,
thereby influencing their development and application. The
complexity of software systems is one reason that bugs and
errors that are so often not discovered in pre-release testing
or development phases. This complexity arises from non-
linearities and interactions with continuously evolving com-
putation environments; in this setting, the idea of finding
a priori, mathematically precise proofs of program correct-
ness, either using testing or verification techniques, is prob-
lematic. Biological complex systems, similarly, do not rely
on a priori correctness for continued success. We conjecture
that program analysis techniques could profitably focus on
fulfilling alternative definitions of utility and on features that
enable adaptation in practice. Relaxed assumptions about
soundness may explain the success and industrial uptake of
several research approaches that make no guarantees about
false positive or negative rates. Instead, these systems focus
on finding useful, actionable bug reports based on heuristics
and common coding error patterns [4, 8, 10].

As an alternative to the heuristics used by these and sim-
ilar approaches, correct behavior for a given program could
be encoded in evolving test suites. Such test suites, found
much more commonly in practice than formal specifications,
may act as a useful proxy for specifications and are already
used by a number of recent program analysis techniques
(e.g. [20]). This is the approach taken by evolutionary pro-
gram repair (Section 3), which does not require special pro-
gram annotations or coding practices [36].

Before evolving test suites can gain acceptance as a proxy
for correctness, we need additional support for construct-
ing them. Although automated test case generation is a
popular topic, in practice, scalable approaches produce test
inputs, not full test cases (e.g., [15, 31]). They may gener-
ate successive inputs that help maximize code coverage, for
example, but, in the terminology of the oracle-comparator
model [9], they do not produce comparators. Unless the pro-
gram crashes, it is often difficult to determine automatically
whether the program passes the test case when presented
with the input. We believe that this is a fruitful area for fu-
ture research, one that would enhance our existing methods
for assessing the fitness of evolving software.

Shifting focus away from soundness as the program anal-
ysis goal challenges common definitions of acceptability
and presents a need for different metrics and benchmarks.

This is the general approach taken by Rinard et al. in their
failure-oblivious computing models, where programs are dy-
namically modified to continue execution in the face of an
error such as a buffer overrun [26, 28]. Continued execu-
tion of an adapted or evolved system may often be a better
outcome than complete failure.

An evolutionary approach to software challenges the prin-
ciple of separation of concerns. Although biological sys-
tems have evolved many boundaries and interfaces for en-
forcing modularity (e.g., the cell wall), biological implemen-
tations are considerably richer than is typically seen in com-
puting. For example, the strict hardware/software abstrac-
tion, on which so much of computer science relies, is likely
ill-suited to robust computational behavior in the dynamic
and energy-constrained, environments we project for the fu-
ture. We view research to use multi-core architectures to
gain correctness, rather than speed, as a positive step in
this direction (e.g., [16]).

Finally, viewing software as an evolving, complex sys-
tem will encourage researchers and practitioners alike to
accept software diversity as both an inevitable result
of biologically-inspired analyses and program modification
techniques and as a desirable state of affairs for a system
of software deployments. For example, automatic, individu-
alized software evolution in response to errors—a potential
side-effect of evolutionary program repair [36]— is likely to
compromise the consistency of a single program across mul-
tiple deployments in different environments. Although such
diversity may initially seem unappealing, n-variant systems
have security advantages [11, 13]. Diversity is an impor-
tant source of robustness in biological systems, providing
protection against the spread of disease in populations and
alternative pathways that allow functionality to be main-
tained when one particular pathway is disrupted. Diversity
has already proven valuable in practice in security research:
instruction set randomization is an effective prevention for
many common attacks [6, 18].

5. CONCLUSIONS
The overwhelming size and complexity of modern software

systems, taken together with recent advances in fields such
as adaptive systems, evolutionary computation and theoret-
ical biology, suggest that it may be time to revisit the dream
of ‘automatic programming’—a vision dating back to earli-
est days of computing—with the goal of automating many
aspects of the software development process.

Rethinking software as an evolving, complex system has
the potential to dramatically change how software is devel-
oped and maintained. It can also provide theoretical pre-
dictions and analyses of how the software process is likely
to operate over long time scales. More immediately, shifting
our perspective on software could enable new approaches by
challenging several long-held assumptions in current soft-
ware engineering research practice. We believe that soft-
ware engineering researchers have much to gain by viewing
software systems through the lens of biological adaptive sys-
tems.
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